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Abstract

The contact topology of a protein determines important aspects of the folding pro-

cess. The topological measure of contact order has been shown to be predictive of

the rate of folding. Circuit topology is emerging as another fundamental descriptor of

biomolecular structure, with predicted effects on the folding rate. We analyze the

residue-based circuit topological environments of 21 K mutations labeled as patho-

genic or benign. Multiple statistical lines of reasoning support the conclusion that the

number of contacts in two specific circuit topological arrangements, namely inverse

parallel and cross relations, with contacts involving the mutated residue have discrim-

inatory value in determining the pathogenicity of human variants. We investigate

how results vary with residue type and according to whether the gene is essential.

We further explore the relationship to a number of structural features and find that

circuit topology provides nonredundant information on protein structures and patho-

genicity of mutations. Results may have implications for the polymer physics of pro-

tein folding and suggest that “local” topological information, including residue-based

circuit topology and residue contact order, could be useful in improving state-of-the-

art machine learning algorithms for pathogenicity prediction.
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1 | INTRODUCTION

One mechanism by which missense mutations can cause disease is by

altering the folding properties of the protein in which the amino acid

change is located. Databases of pathogenic and benign mutations

have been established, where the domain of the protein containing

the mutation can often be linked to a crystal structure or NMR struc-

ture in the Protein Data Bank.1–5 However, it is still a challenge to

predict whether a given mutation will lead to disease, suggesting that

common measures such as ΔΔG, the change in free energy of folding

upon mutation,6 may not account for all the relevant information con-

tained in the structure.7,8 This “missing information” may include

kinetic rates and misfolding propensity.9–13 While energetics is impor-

tant to determining a protein's folding and unfolding rates and folding

robustness, the positioning of contacts along the protein chain also

seems to play an important role. A quantity known as contact order,

defined either as the average distance along the chain between con-

tacting residues or that quantity divided by the chain length, has been

shown to anticorrelate significantly with the folding rate.14–16 Topol-

ogy may have general importance in defining pathogenicity of muta-

tions, and as such, recent advances in molecular topology may have

relevance to medicine.

There is a substantial history of the application of topology more

generally to biomolecular structure and mutational analysis. Much
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early work investigated knot theoretical aspects of DNA.17,18

Recently, algebraic topology, and persistent homology in particular,19–22

as well as differential geometry,23 have shown much success in

protein-based analyses and predictions, where the combination of

topology and machine learning has demonstrated much predictive

power.23 However, none of these methods examine contact topology

as it occurs along the protein chain. Therefore, such methods may lack

predictability and proper interpretation where folding kinetics is an

important factor. In addition, although persistent homology has been

applied to predict ΔΔG of a mutation within a protein,21 such

methods have not been applied directly to prediction of pathogenic-

ity. Contact order is commonly known as a contact-based “topologi-
cal” method that has shown some success in predicting protein

folding rates.10,14 However, it reduces protein structure to a single

value, so it may be less informative than a method with multiple

descriptors.

Circuit topology is a theoretical method for describing relations

between pairs of contacts, as positioned on the protein backbone.24–29

Two contacts may be in parallel, in series, or in cross relation, as

illustrated in Figure 1A. Briefly, we define the interval as the span of

sequence between the contacting residues. Two contacts in series

have nonoverlapping intervals, contacts in cross have partially over-

lapping intervals, and in the case of parallel contacts, one interval is

contained within the other. A distinction is made between whether

a contact is in strict parallel with another contact (its interval is con-

tained within the contact) or in inverse parallel with another contact

(its interval contains the contact). Note that a first contact necessar-

ily shortens the distance along the chain for all contacts in inverse

parallel with this contact. This may also be the case for contacts in

cross, depending on the nature of overlap. Considering the process

of intramolecular diffusion, early folding can then facilitate later

folding through establishment of parallel and cross relations.

Following this logic, a theoretical dependence of folding rate on the

types of relations between contacts has been proposed, for proteins

and other linear heteropolymers30 and was demonstrated for pro-

teins with known experimental folding rates.31 In general, circuit

topology may be related in integral ways to the folding and

unfolding processes.32

The residue-based circuit topology of a biological protein can

be obtained from a crystal structure or NMR structure, following a

published method,24,31 while treating individual residues as inter-

acting segments. An example of the case of myoglobin is shown in

Figure 1B,C. In Figure 1B, an arc is drawn between each pair of con-

tacting sequence positions. Each row of the matrix in Figure 1C rep-

resents the relations of all other contacts with respect to a single

contact drawn in Figure 1B. The use of graphs akin to those utilized

in this study to visualize protein topology has precedent in the liter-

ature.33 In the present work, we omit secondary structure and direc-

tion information and denote each single amino acid as a

separate node.

Here, we utilize the newly developed ADDRESS database map-

ping human variants to structures available in the Protein Data Bank1

to explore the relationship between circuit topology and pathogenic-

ity. We seek to establish statistical differences between pathogenic

and benign variants in the numbers of parallel, series, and/or cross

relations relative to contacts involving the mutated residue. Using

comparison of distributions, logistic regression, single decision tree

analysis, and Random Forests, we find that the number of inverse par-

allel relations and the number of cross relations particularly inform on

pathogenicity, where a greater number of such relations indicates

greater likelihood that the mutation will cause disease. We speculate

that differences in the local topology of pathogenic and benign

mutants reflect the nature of polymer folding in the biological

environment.

F IGURE 1 Molecular circuit topology.
(A) Definitions of contact relations: series (top),
parallel (middle), and cross (bottom). Black P green
(read black is in parallel with green) indicates that
the interval of the black contact is contained in
the interval of the green contact. Green P�1 black
(green is in inverse parallel with black) indicates
that the interval of the green contact contains the
interval of the black contact. (B) Circuit topology

arc diagram for myoglobin (PDB ID: 1MBN).
(C) Circuit topology relations diagram for
myoglobin. Each row corresponds to a single arc
from (B)
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2 | METHODS

2.1 | Database

We utilized an existing database containing structural and pathoge-

nicity information, in order to determine the dependence of patho-

genicity on various circuit topological features. We reference the

ADDRESS database of pathogenic and benign mutations, which

contains entries from the UniProt Humsavar database mapped to

protein structures from the Protein Data Bank: https://zhanglab.

ccmb.med.umich.edu/ADDRESS/download.html. Considering all

entries that contain information on numbers of contacts, ΔΔG

predicted by EvoEF,34,35 and ΔΔG predicted by FoldX,36 our dataset

contains 13 624 pathogenic mutations and 7627 benign mutations.

Consistent with the convention in EvoEF and FoldX, positive values

of ΔΔG indicate destabilization of the protein, while negative values

indication stabilization. Here, “pathogenicity” is curated based on

literature references, according to the referenced version of the

Humsavar database, and “the number of contacts” describes the

number of residues contacting the WT residue at the mutated posi-

tion, with a cutoff of 6 or more heavy atom contacts of any type

within 5 Å. Further, the MISCAST database5 was referenced for the

set of mutations that are mappable to protein structures and are

common between ADDRESS and MISCAST to explore the relation-

ship of circuit topological information to additional structural

features.

2.2 | Relations calculations

Dependence of pathogenicity on circuit topology relations was con-

sidered in this study. Matrices of parallel, series, and cross relations

were calculated from contact maps identical to those used in the con-

struction of the ADDRESS database, using methods described previ-

ously.24 Here, we simplified the matrices: concerted parallel relations

were counted as parallel relations of the corresponding type, and con-

certed series relations were counted as series relations. Identity rela-

tions on the diagonal (parallel by definition) were not included in the

relations count. For the calculation of numbers of relations associated

with a mutation, we considered rows of the relations matrix

corresponding to contacts involving the mutated residue, and for each

column, we recorded whether any of the rows contained the specified

topology relation. The sum of columns with this property cor-

responded to the number of relations.

2.3 | Secondary structural element-based graphs

Secondary structural element based graphs were used to visualize

protein structures at a resolution more easily visualized than amino

acid based graphs such as that shown in Figure 1B Arc plots were

generated as previously described,24 with a cutoff of 7 or more con-

tacts within 3.8 Å.

2.4 | Logistic regression

A logistic regression model was used as one method to determine the

relative importance of features used in pathogenicity prediction.

Logistic regression was carried out in Matlab 2020b. Coefficients and

p-values were calculated using the mnrfit function. Relations values

were set to zero when no contacts were present. Features considered

were the number of contacts with other residues, number of cross

relations, parallel relations, inverse parallel relations, and series rela-

tions with contacts involving the mutated residue, and protein length.

The signs indicate the signs of coefficients from mnrfit.

2.5 | Essential genes

Whether or not a given gene is essential was considered as a feature

in machine learning methods. A list of essential genes was down-

loaded from the Database of Essential Genes (DEG),37 which collects

genes determined to be essential primarily referencing CRISPR/Cas9

editing on human cell types and high depletion of protein-truncated

variants identified by whole-exome sequencing. The database con-

tains 43 294 genes, 13 449 of which were in common with the genes

of ADDRESS proteins. Genes that the ADDRESS and DEG had in

common were considered to be essential. Proteins were marked as

essential if they were contained within a DEG-annotated

essential gene.

2.6 | Decision trees

Single decision trees and random forests were used as additional

models to determine feature importance and which features produce

the best predictor, in addition to providing a classifier based solely on

structural data and information about mutated residue type. A single

decision tree with default parameters was constructed on the entire

dataset using the tree function in R. Additionally, the random forest

analysis was carried out in R, dividing the data randomly into training

(80% of the data) and test (20% of the data) sets. We used five-fold

cross validation on the data from the training set to optimize the num-

ber of trees (Figure S1). Increasing ntree by 100 at a time, we consid-

ered the data to plateau at the point where less than 0.05%

performance improvement (AUC) was achieved, at 500 trees. The

parameter “ntree” was set to 500, “mtry” was set to 2, and “replace-
ment” was set to TRUE. Relations and contact order values were set

to zero when no contacts were present. Features considered for both

the single tree and random forests approach were the residue type of

the mutated residue, the residue type mutated to, the predicted ΔΔG

from EvoEF and FoldX, whether or not the gene is essential, the num-

ber of parallel, inverse parallel, and cross relations, the number of con-

certed parallel and concerted series relations, and the local contact

order, defined as the average sequence distance to residues in contact

with the mutated residue. This analysis was intended to complement

the logistic regression model, which additionally considered
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information on the number of series relations and protein length (but

not contact order or free energy change). The single decision tree pro-

vides insight not seen in the logistic regression model, including how

dependence on one feature, such as change in stability upon muta-

tion, depends on another, such as whether the gene is essential.

2.7 | Auto-ML

We used the Auto-ML program H2O38 to train and test pathogenicity

data from our dataset. We again trained on 4/5 of the data and tested

on 1/5. On the training set, we performed 10-fold cross validation

and considered models with high validation AUC. For the leading

model, a stacked ensemble, we calculated MCC on the test set.

3 | RESULTS

3.1 | Properties of database

Our dataset contains 13 624 pathogenic and 7627 benign human var-

iants mapped to protein structures, out of 30 255 pathogenic and

39 465 benign human variants total in the Uniprot Humsavar data-

base. Pathogenic mutations stem from 1192 different genes, while

benign are from 2464 genes. Most genes contain one to a few differ-

ent mutations (Figure S2). Pathogenic genes are more likely than

benign to contain many mutations, with 64 genes containing more

than 50 mutations (vs. nine such genes for benign mutations). Number

of mutations from and to each amino acid type are shown in

Figure S3. Some expected trends are seen: for instance, mutations

from tryptophan or cysteine are particularly likely to be pathogenic as

opposed to benign among our data, reflective of the roles of these

residues in formation of the hydrophobic core and disulfide bonding.

Interestingly, mutations to alanine are especially likely to be benign

versus pathogenic. Examination of the ADDRESS database statistics

indicates that such mutations are dominated by mutations from threo-

nine and valine, two amino acids that are small and similar to alanine.

Seventy-seven percent of mutations are in the SNPdb database, as of

the release of ADDRESS. Numbers of genes and mutations with vari-

ous GO annotations in the database are shown in Table S1. For

instance, 2530 mutations are in DNA-binding proteins, while 2183

mutations are in proteins with kinase activity.

3.2 | Contact and relations distributions

A previous publication reported a moderate but highly significant dif-

ference in the number of residues in contact with the mutated resi-

due, comparing pathogenic and benign variants in the ADDRESS

database, based on UniProt Humsavar.1 Here, we compared muta-

tions to a background distribution of all residue positions for all pro-

teins in the database. We found that pathogenic mutations are shifted

toward greater numbers of contacts with respect to the background,

while benign mutations are shifted toward smaller numbers of con-

tacts (Figure S4A, Table S2). The cutoff values (6 or more contacts

within 5 Å) for contacts were chosen based on visual inspection of cir-

cuit topology diagrams of simple helices and sheets. An alternate cut-

off scheme of 5 or more contacts within 4.5 Å also shows a clear

difference in pathogenic versus benign variants, but with somewhat

lower significance (Table S2).

Next, we asked whether a difference exists for the number of cir-

cuit topology relations of a particular type associated with the

mutated residue, or for the local contact order, defined as the mean

intrachain distance to contacting residues. In these comparisons, we

excluded cases in which the residue formed zero contacts. The two

relations types with the greatest significance of the difference in

means were cross and inverse parallel relations (Table S2, Figure S4B,

C). While for the number of contacts and cross relations histograms,

benign mutations appear more similar to the background than patho-

genic, the opposite is true in the case of inverse parallel relations. In

both cross and inverse parallel cases, pathogenic mutations are shifted

toward greater numbers of relations, while benign mutations are

shifted toward fewer.

Other topological measures show less (but still substantial) statis-

tical significance in the difference between distributions (Table S2,

Figure S5). Pathogenic mutations are shifted toward larger local con-

tact order, indicating that disruption of far-reaching contacts is more

likely to result in pathogenicity. Pathogenic mutations are shifted

toward greater numbers of parallel relations. Finally, there is a differ-

ence between pathogenic and benign mutations in the number of

series relations. However, this final observation likely reflects, in part,

biases in the database, where benign mutations may especially be cat-

alogued for small proteins, given the high correlation of 0.88 between

protein length and number of series relations. Preliminary work

showed that absolute numbers, not divided by chain length, were far

more informative in distinguishing between pathogenic and benign

variants, so we do not divide by chain length for these features.

Unnormalized local long range order (based on long range order,

defined in39), defined as the number of contacts with amino acids sep-

arated by more than 12 residues in sequence distance, shows a highly

significant difference that is still somewhat less significant than the

total number of contacts. Due to this and due to the low importance

of this feature calculated for the Random Forests model, we excluded

long range order from other analysis.

3.3 | Logistic regression model

To further investigate which measures are most important in deter-

mining pathogenicity, we performed logistic regression on the dataset,

considering circuit topological features along with protein length and

number of contacts (Table 1). Here, the objective was to obtain the

relative feature importance of the features. Protein length showed a

significant p-value of .01, contributing positively toward pathogenic-

ity, while the number of series relations was not a significant feature.

It has been shown that longer proteins have slower folding rates,
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which may lead to higher pathogenicity of mutations.40 While the

number of contacts showed the most significant p-value, the number

of cross relations and inverse parallel relations were also highly signifi-

cant, both contributing positively toward pathogenicity. This suggests

that the number of cross relations and inverse parallel relations are

the two important topological measures in determining the pathoge-

nicity of mutations.

We find that residues with a large number of cross relations rela-

tive to protein length and a residue with a large number of inverse

parallel relations likely play important roles within protein structures,

suggesting that their mutations would be likely detrimental. Further-

more, it is informative to consider the structural environments sur-

rounding residues with near equal numbers of a given relations type,

considering both pathogenic and benign variants.

We examine select proteins with large numbers of a given rela-

tion type with respect to a protein residue. First, we note two exam-

ples of cross-relation-rich two-domain proteins (Figure 2). Because

residue-based diagrams can be difficult to view and interpret visu-

ally, we here show diagrams where secondary structural elements

are the basic unit. Among proteins with a large number of residue-

based cross relations per length is the serine protease neutrophil

elastase (1B0F, ranked ninth of all mutations). Neutrophil elastase's

active site residues are contributed by both domains; therefore, it is

crucial that the two domains bind to each other via a specific inter-

action. Residue 141 is at the interaction interface and is part of a

loop in the C-terminal domain. Mutation of this tryptophan residue

to either cysteine or arginine is pathogenic. The benign-case residue

with the largest number of cross relations is beta-B3 crystallin

(3QK3) residue 105. The arginine in the N-terminal domain interacts

with glutamate in the C-terminal domain. The evolutionarily related

protein Beta-B2 crystallin has domains separated, suggesting that

interdomain interaction may be less vital to function. The circuit

topology diagrams of the two proteins are shown in Figure 2,

revealing similarities in topology. Interestingly, the circuit topology

diagram of neutrophil elastase exhibits an almost fractal-like struc-

ture, with each colored domain in Figure 2C showing a similar struc-

ture to the highlighted purple topology in Figure 2D (see

comparison in Figure 2E). It is possible that the same types of inter-

actions that stabilizing local regions of the protein are also suitable

in the case of longer-range interactions. Serine proteases of this

structural type are known to have high kinetic stability, which may

be facilitated in part by large numbers of cross relations and the

presence of the Greek key topological motif. In general, the degree

of conservation of domain-domain interaction varies greatly among

proteins,41 and it will be interesting to investigate in further detail

the relationship between this conservation and circuit topology.

The residue with the largest number of cross relations per protein

length is residue 651 (tryptophan) of the NC1 domain of collagen X

(1GR3). Mutation to arginine causes heritable disease. Figure 3A

shows the topology diagram, with contacts with the gray point indi-

cated by colored lines. The contacting secondary structural elements

are displayed in like colors in Figure 3B. It is evident that the cross

relations have a role in bringing together sequence-distant parts of

the chain. The inverse parallel relation is also important to this struc-

ture, as seen by considering the shortest range contact with endpoint

P�1, which is in parallel with 7 out of 9 other secondary structural ele-

ment based contacts. The residue with the most inverse parallel inter-

actions for this protein ranks fourth of all residues, indicating that

large numbers of local cross and inverse parallel relations can exist in

the same protein. Finally, a residue pair with a large number of parallel

relations (502 and 246 of 4WXQ) is shown in Figure 3C,D. This is a

beta propeller protein, where a repeated beta structure loops back,

such that the terminal beta strands form a strong interaction. We note

that while structural element based graphs are shown in Figures 1 and

2 for ease of viewing, thee statistics and rankings were obtained using

residue-based contacts.

F IGURE 2 Topologies of beta-B3 crystallin and neutrophil
elastase. (A) Left: beta-B3 crystallin. Residue. 105 shown in sphere
representation and interacting residue 174 shown as dots. Right:
neutrophil elastase, with residue 141 shown in sphere representation.
(B) Secondary structural element-based topology diagram for beta-B3
crystallin. (C) Topology diagram for neutrophil elastase. (D) Topology
diagram for neutrophil elastase, with color depicting similarity of long-
range structure to shorter range structure in (C). (E) superimposed
diagrams highlighting similarity of (C), green and black, and (D), purple
and black

TABLE 1 Results of logistic regression for pathogenicity
prediction

Sign p-value

Number of contacts + 2 � 10�75

Cross relations + 5 � 10�22

Parallel relations � 0.07

Inverse parallel relations + 2 � 10�8

Series relations � 0.8

Protein length + 0.01
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3.4 | Proteins encoded by essential genes

We considered whether the difference between pathogenic and

benign mutations could be affected by whether or not a gene is

essential. The difference in the means of number of contacts distribu-

tions is slightly greater for proteins encoded by essential genes versus

proteins encoded by nonessential genes (Table 2, Figure S6). How-

ever, for cross and especially for inverse parallel relations, which we

saw to also be important in determining pathogenicity, nonessential

genes actually show a greater difference in means than essential ones.

Figure S6C shows that nonessential-gene proteins with relatively few

numbers of inverse parallel relations are especially likely to be benign.

Other topological measures show less substantial differences

(Figure S7).

3.5 | Topology by residue type

Different residue types may be expected to promote different cir-

cuit topology relations. We calculated the ratio of the average num-

bers of inverse parallel and parallel relations and the average

number of cross relations, for mutations from each residue type

(Figure S8A). For the inverse parallel-to-parallel ratio, polar residues

tended to have higher values for benign mutations than for patho-

genic mutations, while the two values were generally more similar

for hydrophobic and charged residues. This is potentially because

mutations in polar residues tend to be less disruptive of the brining

together of disparate residues through formation of inner contacts.

Cysteine exhibits a different trend, with a substantially greater value

for pathogenic mutations versus benign ones. We considered dis-

ulfides alone, estimated by considering contacts between cysteine

sulfur atoms with distance of less than 2.3 Å. Of 446 identified

mutated disulfides, 93% of mutations were pathogenic. In fact, the

inverse parallel to parallel ratio for pathogenic disulfides was higher

than this ratio for pathogenic mutations of all residue types. This

may indicate an important role of disulfides in bringing together res-

idues far apart in sequence.

The number of cross relations also differs by mutated residue

type (Figure S8B). Pathogenic mutations involving large hydropho-

bic and aromatic residues have the largest number of cross rela-

tions. This is likely because such residues play important structural

roles in holding together the protein. Note that values reflect in part

the available residue types to which a residue may mutate. For

instance, Isoleucine can mutate to valine, which would be expected

to be less disruptive of the cross relation than mutations available

to tryptophan (cysteine or arginine), perhaps influencing the ratios

of benign to pathogenic mutations for these residue types. The

disulfide has smaller overall values due to the fact that only one

contact is considered, while residues in general may form more than

one contact.

F IGURE 3 Topology of proteins with large
numbers of residue-based topology relations.
Mutated residues are labeled. (A,B) PDB ID 1GR3.
Colors indicate contacts with mutated residue
(spheres). (C,D) Propeller protein 4WXQ. Contact
formed by residues in sphere representation in D
is colored purple in C

TABLE 2 Difference in means of topological features for essential and nonessential genes

Essential Δmean Nonessential Δmean p-value essential p-value nonessential

Number of contacts 1.24 1.16 4 � 10�162 7 � 10�120

Cross relations 32.8 39.4 3 � 10�83 2 � 10�98

Parallel relations 50.1 37.9 2 � 10�30 4 � 10�40

Inverse parallel relations 14.3 28.5 2 � 10�29 1 � 10�83

Local contact order 11.7 15.2 3 � 10�20 3 � 10�24
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3.6 | Comparative importance of features

We further investigated relationships among factors contributing to

pathogenicity. A map of correlations is shown in Figure 4. As previ-

ously noted, a high correlation is seen between protein length and

number of series relations. This is intuitive, because given a contact, a

longer protein is more likely to have a large number of contacts in tan-

dem. The correlation of length with number of cross and inverse par-

allel relations is much smaller but still greater than 0.3. High

correlations are also seen between contact order and the number of

cross and especially the number of parallel relations, since contacts

that span a greater sequence length are able to contain a greater num-

ber of contacts; a high correlation is likewise seen between the num-

ber of parallel and cross relations. The parallel relation likewise has a

high correlation with contact order, since contact order is higher for

contacts that span a long sequence distance, and these are expected

to have more contacts in parallel with (within) the contact span. As

noted previously,1 there is a correlation of 0.67 between the two

computational methods of predicting ΔΔG of the mutation. There is a

weak to moderate correlation between predicted ΔΔG predicted by

each method and the number of contacts. The number of contacts

correlates moderately with the number of cross, parallel, and inverse

parallel relations. However, the logistic regression described in a pre-

vious section of this paper indicates that the numbers of cross and

inverse parallel relations are themselves important to pathogenicity

prediction even in the presence of number of contacts information.

Particularly low correlations are seen between predicted ΔΔG and

protein length, local contact order, or number of series relations.

There is a somewhat higher correlation between ΔΔG and number of

inverse parallel or cross relations, perhaps indicating that contacts

promoting these relations are important in nucleating folding and so

are somewhat stronger energetically.

Using R, we constructed an optimal single decision tree (Figure 5)

incorporating features other than length, which may be problematic

due to redundancies and other biases in the database, and number of

series relations, which correlates strongly with length. The decision

tree first branches at the distinction between essential and nonessen-

tial genes, where mutations in essential genes are predicted to be

pathogenic. Both essential and nonessential genes then branch at the

FoldX predicted ΔΔG, with larger values of ΔΔG promoting pathoge-

nicity. The boundary value is greater for nonessential genes, indicating

that essential genes are more sensitive to small destabilizations. Non-

essential genes with low ΔΔG then split according to the number of

cross relations, where high numbers of cross relations predict patho-

genic mutations. It is possible that mutations of residues with large

numbers of cross relations may promote misfolding and aggregation, a

hypothesis, which can be further investigated in future studies. This

analysis illustrates that while whether the gene is essential and the

free energy change are most important to determining pathogenicity,

relations information plays a nontrivial role.

We next applied Random Forests in R to determine whether

inclusion of topological features may improve machine learning per-

formance. In preliminary analysis, we found that performance metrics

may be inflated by including global factors of the protein, since muta-

tions in the database are often contained within the same protein, and

some proteins contain completely or predominantly pathogenic or

benign mutations due to aspects of the Humsavar database on which

our database ADDRESS is based. We therefore only considered local

features in feature set construction, also excluding the number of

series relations, which correlates strongly with length. We considered

all possible combinations of features for 2, 3, 4, and 5 total features

and identified the set with the highest AUC in each case (Table 3). For

F IGURE 4 Statistical relationships among
energetic and topological factors. Correlations,
with high correlations colored blue and low
correlations colored red

F IGURE 5 Single decision tree showing probability of
pathogenicity, generated in R. The decision tree has an MCC of 0.35.
FoldX free energy change predictions are in units of kcal/mol
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two features, the FoldX ΔΔG and whether the gene is essential gave

the highest AUC, consistent with the simple decision tree. For greater

numbers of features, however, FoldX results are not included and

instead the amino acid type mutated from and the number of cross

relations appears important. For five variables, the number of inverse

parallel relations appears, along with the position of the mutated resi-

due along the chain. Table S3 shows the results as in Table 3 for a

range of ntree values, showing that MCC values tend to level off for

each number of features after about 200 trees. The full model has an

AUC of 0.81 and an MCC of 0.43 on the test set (20% of the data).

We show also the complete confusion matrix in Table 4, taking into

consideration that AUC would not be expected to be the best metric

of performance, since our dataset is imbalanced. From this can be

obtained the recall or sensitivity, 90%, the precision, 76%, and the

specificity, 49%, of a mutation being pathogenic, and the accuracy of

classification, 75%. Calculated feature importance (Table S4) for the

entire dataset shows again that among topological features, the num-

bers of inverse parallel and cross relations are most important in

predicting pathogenicity.

Additionally, we ran H2O AutoML38 on training data to identify

models with high performance. The best method was a stacked

ensemble with a 10-fold cross validated AUC of 0.81 and MCC on the

test set of 0.44. The best single (nonensemble) method was a Gradi-

ent Boosting Machine method with an AUC of 0.80.

3.7 | Relationship of circuit topology to known
structural features

Finally, to test for redundancy to known structural features, we com-

pared the circuit topology information to computed features from the

MISCAST database,5 for a set of 5005 mutations (3225 pathogenic

and 1780 benign) mapped to structures and are in common between

ADDRESS (13 634 pathogenic mutations and 7627 benign mutations)

and MISCAST (32 923 pathogenic mutations and 164 915 general

population variants). Notably, a relationship was seen between circuit

topology measures and both secondary structure and measures of sol-

vent exposure. The example of the cross relation, for which the most

substantial correlations and differences were seen, is shown in

Figure S9. Interestingly, given that in MISCAST beta sheet structures

have an odds ratio for pathogenicity greater than 1, larger numbers of

cross relations contribute toward pathogenicity (Table 1, Figure S4),

and beta sheet residues have a larger number of cross relations on

average than helix or coil residues (Figure S9A). We carried out logis-

tic regression with and without circuit topological features, based on

the Humsavar annotations of pathogenicity, considering also the num-

ber of contacts from the ADDRESS database and the following fea-

tures from MISCAST: residues' exposure to solvent; coil, helix, or

sheet secondary structure; location of the active site; metal binding;

binding site; DNA binding site; nucleotide phosphate binding region;

calcium binding region; and disulfide bond. Inclusion of circuit topo-

logical features decreased the deviance of the fit from 5.811 � 103 to

5.776 � 103, demonstrating that circuit topological features are non-

redundant with other commonly referenced structural features.

4 | DISCUSSION

Recent monumental advances in protein structure prediction have

shown that we can predict, with a high degree of accuracy, the struc-

ture of a protein, given its amino acid sequence.42,43 However, a

wealth of experimental data has shown that fold switches upon point

mutation (the type of sequence change most relevant to our under-

standing of human disease) are rare.44 Instead, missense mutation

seems to alter the folding stability of a protein, in addition to other

properties such as aggregation propensity, binding affinity to other

proteins and/or ligands, catalysis, and dynamic aspects relevant to

protein function. Furthermore, there is still much to learn about the

details of the folding process and how this process is derailed in cases

of misfolding and aggregation.45–47 One approach is to study the

impact of features that are meaningful in terms of the polymer physics

of protein folding. While future efforts will likely incorporate

TABLE 3 Random forests
performance for pathogenicity
prediction, ntree = 500

Number of features 2 3 4 5 Complete14

AUC 0.693 0.741 0.770 0.794 0.807

Features FoldX ΔΔG
essential?

aa1

X

essential?

aa1

X

position

essential?

aa1

X

P�1

position

essential?

Note: essential, whether or not the gene is essential; aa1, amino acid type mutated from; X, number of

cross relations; position, the position of the residue along the chain divided by chain length; P�1, number

of inverse parallel relations.

TABLE 4 Confusion matrix for random forests model based on
full feature set

Actual

Benign Pathogenic

Prediction Benign 743 276

Pathogenic 780 2452

Note: MCC = 0.434.
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sophisticated applications of machine learning methods, including

neural networks, here we have taken a first step toward understand-

ing the importance of yet uninterrogated chain properties, using con-

cepts from circuit topology. Our results suggest that approaches

based on deep learning of contact maps may have strong predictive

value; however, such approaches may lack interpretability in terms of

the details of the chain-folding process.

Although protein stability depends on the ratio of folding and

unfolding rates, it is important to remember that many proteins are

produced and degraded, and interact, at rates comparable to folding.

It will therefore be important to understand the effects of mutations

in terms of kinetic models of folding and interaction in the relevant

biological environment(s), for example, Reference 48. Part of the

inability of folding stability predictors to fully capture predictability in

mutation pathogenicity may be due to an important role of

kinetics,9,13 which topology may in part capture.

The large number of available examples in our dataset of 21 K

pathogenic and benign mutations allows us to draw statistically signif-

icant conclusions based on relatively small trends. We present multi-

ple statistical assessments as multiple lenses for viewing a rich,

though somewhat statistically biased, dataset. An important overall

conclusion is the discriminatory value of the cross-relation. Further

work will be needed to show the reason for this trend and whether it

can be explained by considering other aspects of folding and topology.

It is possible that mutation of contacts with large numbers of cross

relations disrupts important folding nucleation sites and/or especially

promotes misfolding and aggregation, which is supported by the

observation that residues in beta sheet secondary structures contain

greater numbers of cross relations on average than other secondary

structure types. The inverse parallel relation also shows substantial

contribution to pathogenicity. According to models of folding,30,49

residues with many inverse parallel relations are likely to be early to

fold, indicating that they would be expected to disrupt rate of folding.

The hypothesis that the relative importance of the inverse parallel and

cross relations indicate an importance of folding kinetics and non-

native interactions in determining pathogenicity can be validated in

the future using newly developed all-atom models of (un)folding and

misfolding.50

While number of contacts has the highest feature importance in

the logistic regression model, it is relatively unimportant according to

random forests. This suggests, perhaps, a more nuanced connection

between circuit topology and pathogenicity. The logistic regression

model also does not include stability change information, which num-

ber of contacts information may report on.

This work relates to a recent study evaluating the importance of

structural features in predicting and explaining drug responsiveness in

lysosomal storage disorders.49 In this study, a large number of inverse

parallel relations was predictive of nonresponsiveness to pharmaco-

logical chaperone treatment. For a triosephosphate isomerase (TIM)

barrel protein, the structure of which is contained in three lysosomal

storage disorder proteins studied, residues with many inverse parallel

relations were in fact early to fold, according to hydrogen-deuterium

exchange experiments, consistent with a model where late to fold

residues are more likely to be rescued.49,51 It was found that the

dependence on the inverse parallel relation according to a simple deci-

sion tree is consistent with a simple kinetic model of folding, binding,

and export. In the present study which involves a large number of pro-

teins, we also see a dependence on the inverse parallel relation,

according to histograms, logistic regression, and random forests

approaches. Furthermore, we also see a dependence on the cross

relation, which may be important for many proteins more generally.

The simple decision tree suggests that this dependence on the cross

relation is particularly important for nonessential genes. Consistent

with the lysosomal storage disorders study, destabilizing mutations

were seen as mediating pathogenicity (to a greater extent than stabi-

lizing mutations, for instance).

Pathogenicity prediction is important in prioritizing variants for

experimental study and ultimately for genetics-based decision making

within personalized medicine and genetic counseling and for drug dis-

covery. Early methods relied primarily on evolutionary conservation,

where mutation of a well conserved residue is more likely to be path-

ogenic.4,52 Recently developed, advanced methods also incorporate

structural information and predictions.4,8,53 In the case that it is non-

redundant with other features, circuit topology information has the

potential to improve state-of-the-art predictors, as well as providing

mechanistic insight. It will be elucidating to combine the analysis pres-

ented here with binding information and predictions, for example,

Reference 54. It will also be interesting to compare to other

established databases, such as COSMIC,55,56 which catalogs cancer-

associated mutations, for which we may see important similarities and

also differences.

Performance metrics for our method alone are somewhat less

than those for SIFT (MCC of 0.54 on complete HumVar57) and espe-

cially advanced methods such as DAMPred (MCC of 0.601 on a simi-

lar dataset8), which utilize multiple sequence alignments of

homologous proteins. In fact, sequence-based methods were found to

be the best techniques for distinguishing between pathogenic and

benign mutants, with structural information thus far improving

methods by a relatively small amount.8,58 However, we stress that

such methods do not provide information on why, structurally a muta-

tion is pathogenic or benign. Therefore, we believe the appropriate

comparison is to other structure-based methods, such as MISCAST,

next to which we find our metrics provide nonredundant information

on pathogenicity. We also wish to stress that the relation between

topological information and pathogenicity of mutations has not been

studied extensively, and thus new insights are expected to emerge

from future studies. While the present work indicates that circuit

topology relations are important in pathogenicity determination, the

full circuit topology matrix contains much information beyond the

numbers of parallel, series, and cross relations. Treatment of the full

matrix, along with machine learning and/or other advanced analysis

techniques is likely to yield additional insights and predictive value,

perhaps providing further improvement to sequence and structure

based methods and structure-only analyses. How well structure-based

methods can perform without the aid of sequence alignment, is an

interesting question in itself which reflects our current understanding
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of the biophysics of mutations. An exciting endeavor for future stud-

ies, in addition, is the integration of structure-based methods with

information on the systems biology of the relevant molecular net-

works, beyond information on whether or not a gene is essential.

Much past research has focused on specific folding topologies and

aspects unique to particular types of proteins: for instance, specific folds

and relationships between them; the mechanism by which loop confor-

mational dynamics promotes catalysis; and the unique features of pro-

teins that are very thermostable or adapted to a particular environment.

Other studies focus on commonalities between proteins, such as the

two-state folding of many small proteins or the dependence of aggrega-

tion potential on properties such as charge and hydrophobicity. Circuit

topology strikes a middle ground between these two types of perspec-

tives and may ultimately help to bridge them. While all proteins with

substantial order have relations between contacts of parallel, series,

and/or cross types, the details of the relations map are specific to each

protein. We can therefore use circuit topology to ask questions

encompassing a range of levels of detail, using a variety of methods,

data, and perspectives. Circuit topology is not limited to proteins, nor to

biological matter, and it may have utility in the construction of new mol-

ecules and other materials. Biological proteins, however, provide a rich

example of possibilities within heteropolymer chains, which are present

in large, medically relevant datasets. While physics-based studies of pro-

teins have the potential to spur medical advances, this study has pro-

vided an example of how, in addition, medically relevant databases may

help us understand the physical polymer properties of proteins, here

facilitated by a simple mathematical approach.
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