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Abstract

The Continual Reassessment Method (CRM) was developed for Phase I trials to
identify a maximum-tolerated dose (MTD) of an agent using a design in which each
participant is treated with a single administration of the agent. We propose an exten-
sion of the CRM in which participants receive multiple administrations of an agent
using a so-called step-up dosing procedure in which participants receive one or more
administrations of lower doses of the agent before they receive their penultimate dose.
We use methods developed for the CRM to model the probability of DLT for each
administration, which leads to the use of conditional probability models to model the
joint probability of DLT across multiple administrations. We compare our approach
to two existing methods that use time-to-event modeling methods for modeling the
probability of DLT. We demonstrate through simulations that our approach has op-
erating characteristics similar to existing methods, but due to its foundations in the
CRM, ours is simpler to implement than existing approaches and is therefore more
likely to be adopted in practice.
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1 Introduction

Phase I trials in oncology are designed to identify safe, and possibly effective, doses of

prospective treatments for cancer. A number of Bayesian adaptive designs for Phase I

trials have been developed over the past three decades, the first of which was the Continual

Reassessment Method (CRM) [1]. In these designs, study participants are followed during

a fixed period of time for the occurrence of a dose-limiting toxicity (DLT), which is often

defined as any treatment-emergent adverse event of toxicity grade 3 or higher according to

Common Terminology Criteria for Adverse Events (CTCAE) criteria.

In immunotherapy, DLTs often include cytokine release syndrome (CRS), which is a

systemic inflammatory disease characterized by a massive release of cytokine [2]. CRS can

present with a variety of symptoms ranging from those that are mild to those that are

life threatening, and sometimes fatal [3]. Mild symptoms of CRS include fever, fatigue,

nausea, vomiting, headache, rash, arthralgia, myalgia, and malaise. Several case reports

have documented CRS in cancer patients treated with immune-checkpoint inhibitors [4, 5,

6, 7, 8, 9, 10, 11].

Recently, in the context of CAR T-cells, Stein et al. [12] have proposed a model-based

approach to retrospectively characterize the kinetics of tisagenlecleucel, and its relationship

with the emergence of CRS. In their work, they share concerns that co-medication with

steroids or tocilizumab may not suffice to mitigate CRS. Instead, in a more recent and

physiological-based model, Jiang et al. [13] suggest that a stepwise dosing of blinatumomab

in patients with non-Hodgkin’s lymphoma may successfully alleviate release of interleukin-6

and prevent CRS adverse events to occur.

To this end, a post-marketing authorization study, listed on ClinicalTrials.gov with

identifier NCT01029366, was designed to assess the benefit of fractionated dosing in adult

patients with relapsed/refractory acute lymphocytic leukemia treated by CAR T-cell ther-

apy [14]. Patients received either a low dose of tisagenlecleucel as a single infusion (LDS),

or a high dose of tisagenlecleucel as a single infusion (HDS), or the high dose was split

into fractions (HDF), with 10% of the dose delivered on day 1, 30% on day 2, and the

remaining 60% on day 3. In the cohorts treated with a fractionated dosing approach, D2

and/or D3 doses were held if the patient experienced early signs of CRS, including fever.
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The frequency of grades 4 and 5 CRS was markedly lower in the HDF cohort (1 out of 20

patients) compared to the LDS (2 out of 9) or the HDS (3 out of 6) cohorts. As a result,

fractionated or step-up dosing (SUD) has been proposed in other programs (e.g. see [15])

and seems to be a promising treatment option to mitigate CRS. However, challenges arise

in the design and analysis of DLT data collected during dose escalation studies involving

fractionated dosing.

As the goal is now to identify a maximum tolerated dose (MTD) that is preceded by one

or more lower doses, which we call a maximum-tolerated schedule (MTS), the first challenge

is to deal with probability of a DLT occurring after any of several consecutive dosing events.

Both Colin et al. [16] and Fernandez et al. [17] proposed a logistic regression model

with a Markov component for deal with DLTs observed over multiple cycles. Assuming

that the drug was administered in consecutive cycles of similar length, an additive time

homogeneous transition model could be specified as log(1−pik) = −α[di1−ρdi,(k−1)]−βdik
where, for patient i receiving cycle k, pik is the probability of toxicity, dik is the scaled dose,

and dik = ∑
k dik is the cumulative administered scaled doses received. Respectively, the

parameters α, β, and ρ capture the probability of a DLT on cycle 1, the effect of cumulative

dose from previous cycles, and the dependency in short-term toxicity outcomes between

cycles (Markov term). A limitation of this model is that there must be sufficient cycles in

the DLT assessment period to allow a plausible estimation of ρ and β. Also, Fernandez et

al. did not consider the setting in which dose varies across dosing events during the DLT

assessment period, making their design unsuitable to the situation of fractionated dosing.

A second challenge in the design of fractionated dosing studies occurs because later

planned administrations are omitted once a participant experiences a DLT after earlier

administrations. Indeed, it is routine practice to discontinue or hold treatment in patients

who experience DLT. If the intention is to develop a dose-toxicity model akin to those

used in the CRM, the missing administrations and resulting DLT outcomes will inflate the

uncertainty associated with the model parameters and make the dose recommended for the

next cohort less robust. In addition, by using step-up dosing, we assume the dose of the

first administration is lower than or equal to the dose of the second administration, which

is lower than or equal to the dose of the third administration. Through this treatment
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plan, the absence of DLT associated with the second and/or third doses will lead to greater

emphasis on DLT outcomes observed at lower doses, resulting in over-conservative dose

escalation and loss of the convergence benefits of the CRM [18].

To circumvent this problem, Braun and colleagues [19, 20] modeled DLT as an absorbing

state that precludes any further administrations, using time-to-event concepts rather than

logistic regression methods. As originally conceived, this work assumed that the hazard

of DLT for a single administration increases linearly to a known future point in time and

then decreases linearly to zero to a later point in time. The total hazard for several

administrations is simply the sum of the hazards of the individual administrations that

have been received, and the probability of DLT is based upon the survivor function derived

from the cumulative hazard. By modeling the hazard, this approach moves away from

a binomial likelihood and instead uses the likelihood of survival models, which accounts

for partial follow-up of participants, much like the time-to-event Continual Reassessment

Method (TITE-CRM) [21] was developed to account for partial follow-up in Phase I trials

designed with the CRM.

In a similar vein, Gunhan et al. [22] recently modeled the probability of DLT through a

hazard function for each administration like the methods of Braun and colleagues. However,

Gunhan et al. chose to relate the DLT hazard to a parametric pharmacokinetic (PK) model

quantifying the cumulative drug exposure over time. Gerard and colleagues [23] also created

a design that integrates PK and pharmacodynamic (PD) models into the design. Given

that in a more general setting, it may be unclear how to order consecutive administrations

of doses with respect to their cumulative probabilities of DLT, Wages et al. [24] presented

an approach to incorporate partial ordering constraints and used existing CRM modeling

for each administration.

Like many adaptive Phase I trial methods, many view the statistical underpinnings

of dose and schedule-finding methods as too complex, a view which tends to hinder their

implementation in practice. Thus, as an alternative to the time-to-event approaches cited

earlier, we have adopted the longitudinal binary outcome view used by Fernandez et al.

However, our model is based on the CRM, which is a widely accepted adaptive design

for Phase I trials of single administrations. By using the CRM as a framework, we hope
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to reach our primary goal with a simpler, more accepted model, that performs as well as

more complex methods, but is more likely to be adopted by a wider audience of clinical

trialists. The underlying specifics of our design can be found in Section 2. Via simulation,

we compare the operating characteristics of our design to the designs of Braun et al. and

Gunhan et al. in Section 3, and we present our concluding thoughts in Section 4.

2 Methods

2.1 Notation

We have a study designed to examine a set of J pre-defined treatment schedules, each of

which is a series of K administrations of an investigational agent. The study will enroll a

total of N participants, each of whom will be assigned to one of the J treatment schedules.

We denote schedule j = 1, 2, . . . , J as Sj = {Dj1, Dj2, . . . , DjK}, in which Djk is the value

for the dose of the agent given at administration k = 1, 2, . . . K in schedule j. We will

describe how to select a value for Djk in a later section.

Our primary goal is to identify which treatment schedule has a probability of dose-

limiting toxicity (DLT) at the end of follow-up for the entire schedule closest to a targeted

probability p∗. For k < K, we let τk denote the span of time between administrations

k and k − 1. For each administration, we let 0 ≤ tik ≤ τk denote the amount of follow-

up observed for participant i = 1, 2, . . . , N after receiving administration k, and we let

wik = tik/τk denote the proportion of completed follow-up.

At the start of administration k, we set the DLT indicator Yik = 0, which changes to

Yik = 1 if participant i experiences a DLT before τk. Once Yik = 1, we also set wik =

1, i.e. we assume complete follow-up occurs, reflecting a recommendation of treatment

discontinuation after a patient experiences a DLT. Furthermore, once Yik = 1, participant

i receives no further planned administrations, while if Yik = 0 when tik = τk, participant i

receives their next administration.
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2.2 Model

For each administration, we model the marginal probability of DLT with a model tradi-

tionally used in the CRM, known as the “power” or “empiric” model. First, assuming that

patient i is assigned to schedule j, we let dik = Djk ∈ (0, 1) be the value assigned to the

dose given to participant i at administration k, and we assume

πi1 = Pr(Yi1 = 1 | di1) = d
exp(β)
i1 (1)

πi2 = Pr(Yi2 = 1 | di2) = d
exp(β−θ2)
i2

πi3 = Pr(Yi3 = 1 | di3) = d
exp(β−θ2−θ3)
i3

· · ·

πiK = Pr(YiK = 1 | diK) = d
exp(β−

∑K

k=2 θk)
iK , (2)

in which −∞ ≤ β ≤ ∞, θk ≥ 0 for k = 2, 3, . . . K. Note that we place no restriction on the

value of β because the DLT probability for the first administration can take any value in

[0, 1]. However, we do place a non-negativity constraint on each of θ2, θ3, . . . θK to enforce an

ordering constraint. Specifically, we assume that the cumulative probability of DLT cannot

decrease with additional administrations. This restriction could be removed for another

setting should this assumption not hold. However, less restriction on the parameters may

also impact the ability to sufficiently identify those parameters, requiring continued focus

on both appropriate prior distributions and the number of study participants needed to

collect sufficient data to estimate those parameters.

Although our model can theoretically accommodate any number of administrations,

most practical settings will examine a handful of administrations at most. Furthermore,

we highlight that each administration k ≥ 2 corresponds to an additional model parameter

θk. Given the relatively small sample sizes used in dose-finding trials, the number of

administrations will have to be limited without strong constraints or assumptions placed

on model parameters. As a result, the remainder of this manuscript will focus upon our

motivating example that studied K = 3 administrations.

We will assume β has a normal prior distribution with mean µ1 and standard deviation

σ, while θ2 and θ3 each have exponential prior distributions with respective means µ2 and

µ3. Note that β, θ2, and θ3 are a priori independent of each other, and we will present a

6



systematic approach for selecting values for the four hyperparameters in Section 2.5.

Because further planned administrations are not given to participants who experience

DLT, the observed data cannot be used to directly estimate πi2 and πi3. Instead, the

observed data allow us to estimate the conditional probabilities of DLT for the second and

third administrations, given no DLT was observed in all prior administrations. Nonetheless,

the conditional probabilities are easy to generate from our model. Specifically, as derived

in the Appendix, we have:

φi2 = Pr(Yi2 = 1 | Yi1 = 0, di1, di2)

= πi2 − πi1
1− πi1

φi3 = Pr(Yi3 = 1 | Yi1 = Yi2 = 0, di1, di2, di3)

= πi3 − πi2
1− πi2

.

2.3 Likelihood

Thus, at any point in the trial, we have enrolled a total of M ≤ N participants, who

belong to one of three groups: those who have received the first administration, those

who have received the first and second administrations, and those who have received all

three administrations. We denote these three groups as G1,G2, and G3, respectively. We

let D1 denote the collective set of doses, DLT outcomes, and lengths of follow-up for all

participants in G1, with corresponding definitions for D2 and D3. Thus, each of the three

groups has a respective likelihood equal to:

L1(β | D1) =
M∏
i=1

[
πYi1
i1 (1− wi1πi1)(1−Yi1)

]I(i∈G1)

L2(β, θ2 | D2) =
M∏
i=1

[
(1− πi1)φYi2

i2 (1− wi1φi2)(1−Yi2)
]I(i∈G2)

L3(β, θ2, θ3 | D3) =
M∏
i=1

[
(1− πi2)φYi3

i3 (1− wi1φi3)(1−Yi3)
]I(i∈G3)

,

which leads to the overall likelihood

L(β, θ2, θ3 | D1,D2,D3) = L1(β | D1)× L2(β, θ2 | D2)× L3(β, θ2, θ3 | D3) (3)
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Note that the weights used in the likelihood are akin to those used in the time-to-event

CRM (TITE-CRM) [21], which assume that DLTs occur uniformly during the follow-up

period, and are related to a cure model for the distribution of times to DLT [25].

2.4 Specifying Skeleton

Prior to study start, thought must be given to the numeric value assigned to each dose

given at each administration. Given the complexity of selecting appropriate values for all

of the JK = 18 administrations, we have developed a systematic approach to identifying

values that allow for generally good operating characteristics across many settings, as we

will show in Section 3.

We start by assigning D11 = δ, where δ is a value relatively close to zero and can be

seen as an approximate probability of DLT for the lowest dose examined in the study. In

our application, we use δ = 0.03; see Table 1. For the remaining first doses of schedules

2, 3, . . . J , we choose values that increase by an amount defined by an odds ratio ORb (“b”

is for between-schedules), i.e for j = 2, 3, . . . J ,

Dj,1

1−Dj,1
= ORb

Dj−1,1

1−Dj−1,1
.

We then select two additional odds ratios ORw1 and ORw2 (“w” is for within-schedules)

such that for j = 1, 2, . . . J ,
Dj2

1−Dj2
= ORw1

Dj1

1−Dj1

and
Dj3

1−Dj3
= ORw2

Dj2

1−Dj2
.

Values of the odds ratios should be sufficiently large enough so that successive schedules

have DLT probabilities that are distinct enough from each other and promote discrimination

between them with the traditional sample sizes used in dose-finding studies. We have

found that appropriate values for each of the odds ratios are generally between 1.5 and 2.5,

but they need to be determined in conjunction with the hyperparameter values described

next. Selection of appropriate values for the odds ratios also can be informed by existing

clinical information or previous dose-escalation studies that might inform how doses vary

in their DLT probabilities and the cumulative effects of repeated dosing. Nonetheless, like
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any regression model, estimation of model parameters is facilitated by variability in the

predictor variable, which, in our setting, are the values assigned to each administration.

Even if one believes, for example, that ORw1 should be 1.1, such a study will be hard to

implement without an unrealistically large number of participants, and doses with greater

variability should be considered.

2.5 Specifying Hyperparameters

In order to determine appropriate prior means for each of β, θ2, and θ3, we take Equations

(1) - (2) and define ηjk = Pr(Yi1 = 1 | Dik = djk), which is the same value for every

participant. With regard to the prior mean for β, we identify an appropriate value through

the values D11, D21, . . . , D61 assigned to the set of first doses among the schedules. Based

upon a second-order Taylor series expansion for ηj1 = d
exp(β)
j1 , we outline in the Appendix

that a suitable value for the prior mean is µ1 = ∑J
j=1 log [−log(Dj1)] /J , which is the

average of the transformed dose values. We then select σ = √µ1, so that the exponent

exp(β) in ηj1 has mean exp(µ1 + 0.5σ2) = exp(1.5µ1).

For the prior means of θ2 and θ3, we first select a value k ≥ 1, such that ηj2 = kηj1

and ηj3 = kηj2, so that the probability of DLT within-schedule is assumed to increase

proportionally with each administration. First focusing on the prior mean for θ3, we start

with the fact that ηj3 = η
exp(−θ3)
j2 , which leads to θ3 = −log[log(ηj3)/log(ηj2)]. If we set

ηj3 = p∗ and given that ηj2 = ηj3/k, we use the resulting equation for the prior mean of θ3,

i.e.

µθ3 = log(p∗)
log(p∗)− log(k) .

By similar algebra, we find θ2 = −log[log(ηj2)/log(ηj1)], which leads to the value

µθ2 = log(p∗)− log(k)
log(p∗)− 2log(k) .

Using these four hyperparameter values, we generate many draws of β, θ2, and θ3 from

their respective prior distributions, which allows us to compute many realizations of the

probability of DLT for each administration of each schedule. Averaging over the realizations

gives us an expected a priori probability of DLT for each administration of each schedule.

These averages then allow us to see which schedule is now assumed to be the a priori best

9



schedule and whether or not the prior distributions should be modified to produce suitable

a priori DLT probabilities. For example, we would not want prior distributions that suggest

that the first schedule is the best schedule, as this would likely be too informative and lead

to poor operating characteristics if the true best schedule were the last schedule. To help

the reader apply these ideas in practice, we will explore these thoughts in greater detail in

Section 3 when presenting the prior distributions developed for the simulation study.

2.6 Dose Assignment Algorithm

Once all necessary study design parameters, including sample size, skeleton dose values,

and prior distributions, have been identified, participant assignments are made adaptively

as follows:

1. The first participant is assigned to the schedule with the lowest starting dose;

2. Once a new participant ` = 2, 3, . . . N , can be enrolled, the accrued data for partici-

pants i = 1, 2, . . . (`−1) are used to compute the posterior distributions of probability

of DLT at the end of follow-up for each schedule;

3. Per a pre-defined stopping rule, if the accrued data suggest that the cumulative

DLT probability after the follow-up for the last administration in first schedule is

unacceptably high, the study ends early and no further accrual occurs because all

schedules are considered unsafe.

4. If the stopping rule is not met, the new participant is assigned to the schedule with

cumulative posterior mean probability at the end of follow-up closest to a desired

target probability p∗, subject to any restrictions on assignments.

5. Repeat steps (2) - (4) as each new participant is accrued, or until the study is stopped.

6. If the study has not stopped accrual, once participant N has completed their follow-

up:

(a) Use all of the accrued data to compute the cumulative posterior mean probability

of DLT at the end of follow-up for each schedule;
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(b) Select the schedule with posterior mean probability closest to p∗ as the maximum

tolerated schedule.

As suggested in step 3 above, Phase I trials often include a stopping rule when excessive

toxicity is observed for the first schedule. Although stopping rules can be based upon

posterior DLT probabilities, we have chosen instead to use a frequentist-based stopping

rule that is independent of the model used for computing DLT probabilities. Specifically,

we use the observed number of DLTs seen for participants assigned to the first schedule

to compute a one-sided 95% confidence interval for the true DLT probability of the lowest

schedule. If the lower bound of this confidence interval is higher than the targeted DLT

probability p∗, the trial is stopped and future accrual is terminated. For example, the study

would be stopped if four out of five participants assigned to schedule 1 experienced a DLT.

This stopping rule is implemented in step 3 of the algorithm above and will be assessed in

Section 3 with a setting in which all schedules have excessive probability of DLT.

In step 4 of the algorithm above, many possible restrictions on assignments can occur.

For example, it is common to require that a schedule cannot be assigned to a participant

until all lower schedules have been assigned to at least N1 participants, or that participants

must be enrolled in cohorts of size C, i.e. all members of the same cohort must be given

the same assignment. A common choice is C = 3, which is adopted from the so-called 3+3

algorithm [26]. We could also require that at least N2 participants must have completed

their follow-up on the same schedule before higher schedules can be assigned. Note that

our parametric model, through the use of prior distributions, is able to estimate the DLT

probabilities of later administrations without the direct observation of individuals who

have received those administrations. Discomfort with decision-making on incomplete data

is mitigated directly through these restrictions.

Furthermore, one might also consider the entire posterior distribution, beyond the pos-

terior mean, when making assignment decisions. This approach, commonly referred to as

Escalation with Overdose Control (EWOC) [27], examines how much mass of the posterior

distribution lies above a threshold for each schedule’s cumulative DLT probability. An

upper bound is placed upon how much mass is acceptable and only schedules meeting this

criterion are considered for assignment. Thus, it is possible that a schedule may have a
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posterior mean DLT probability that is closest to the targeted DLT probability, but its

entire posterior distribution may be skewed or have too large a variance to be certain that

the schedule is safe enough to assign to the next participant.

3 Simulations

3.1 Motivating Example

Our motivating example is a study of six schedules (J = 6) that follow a step-up dosing

plan. Each schedule consists of three administrations (K = 3) of an experimental agent,

each spaced apart by seven days (τ1 = τ2 = 7), and it is assumed that the dose used in each

administration is no more than the dose used in the preceding administration. The actual

clinical doses under study are shown in the first six rows of Table 1. Participants are followed

for an additional seven days after the third administration, for a total planned follow-up

of 21 days given to each participant. After each administration, patients are continually

followed for the occurrence of a DLT, defined as any grade 3 or higher adverse event (per

National Cancer Institute CTCAE v5.0), or occurrence of cytokine release syndrome grade

3 or above, according to the ASTCT consensus [28]. If a participant experiences a DLT, all

further planned administrations are withheld for that participant, and they are considered

to have complete follow-up.

[Table 1 here]

3.2 Simulation Details

Our study wishes to identify which schedule is associated with a DLT probability by Day

21 closest to p∗ = 0.25. A maximum of N = 30 participants will be enrolled. Participants

will be enrolled in cohorts of size C = 1 and a schedule cannot be assigned to a participant

unless at least N1 = 1 participants have already been assigned to all lower schedules and

at least N2 = 1 participants have been fully followed on all lower schedules. Participant

enrollment is assumed to follow a Poisson process with mean 21 days, i.e. on average, each

participant is enrolled after the previous participant has completed their follow-up.
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Based upon D11 = 0.03, and ORw = ORb = 1.5, the skeleton values assigned to

each dose are shown in the first six rows of Table 1. Based upon these skeleton values,

we assign β a prior normal distribution with mean µ1 = 0.91 and standard deviation

σ = √µ1 = 0.95. Assuming a value k = 1.6 defined in Section 2.5, we assign θ2 a prior

exponential distribution with mean µ2 = 0.23 and θ3 a prior exponential distribution with

mean µ3 = 0.29.

Figure 1(a) graphically presents the prior mean and standard deviation for the DLT

probabilities for each administration of each schedule that result from the hyperparameter

and skeleton values just described. In this figure, we see that all three administrations of

Schedules 1 and 2 are a priori likely to be safe, while Schedules 4, 5 and 6 are less likely to

be so. Specifically, although each has a mean prior probability of DLT at Day 21 that is

below the target of 0.25, all of the latter three schedules have sufficient variability so that

much of their prior distributions exceed the target.

[Figure 1 here]

To demonstrate how the chosen hyperparameter values impact the resulting prior dis-

tributions for DLT probabilities, Figure 1(b) displays information analogous to Figure 1(a),

but when the prior mean for β is 2.5 times larger. We now see stronger prior belief that all

six schedules are safe, which might be implausible and lead to poor operating characteristics

in a setting where Schedules 1 or 2 are the only acceptable schedules. Conversely, Figure

1(c) displays the resulting prior distributions when the prior means of θ2 and θ3 are each

2.5 larger. Now we see that there is greater prior uncertainty placed on all six schedules

and we felt this prior would provide insufficient support to an algorithm incorporating data

from only 30 participants. It is through these visual examinations that one can develop a

suitable set of hyperparameter values before running any simulations.

To assess the operating characteristics of our design, we have simulated 1,000 hypothet-

ical trials for each of six scenarios, in which schedule j = 1, 2, . . . 6 has a cumulative DLT

rate after the third administration closest to p∗ in scenario j. We also include a seventh

scenario in which all schedules have Day 21 DLT probabilities above the target. The true

DLT rates for each scenario are shown in Table 1. These DLT probabilities are not based
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on any specific model; values were selected so that neighboring schedules had DLT prob-

abilities after the third administration spaced by approximately 10 percentage points, a

difference that is biologically plausible, but is also large enough to allow for discriminating

between the optimal schedule and its neighbors.

3.3 Details for Comparator Approaches

We will compare the operating characteristics of our design to two other designs, both of

which model a hazard function for the time-to-DLT and implicitly generate a cumulative

probability of DLT by Day 21. Note that we have modified both methods from what was

originally published in order to (i) accommodate use of the skeleton values used with our

proposed model, and (ii) allow for dose levels that vary within each schedule. For the first

comparator, we generalize the work of Braun et al. [19, 20], assuming each administration

of the drug has a hazard function at time u equal to

h(u | θ1, θ2, θ3) =


θ2

u
θ1

0 ≤ u ≤ θ1

θ2
θ3−u
θ3−θ1

θ1 < u ≤ θ3

0 u > θ3 or u < 0

(4)

which increases linearly to a value θ2 at time θ1 and then decreases linearly to zero at time

θ3.

If a participant is assigned to a schedule of doses d1, d2, . . . , dK and dose dk, k =

1, 2, . . . K is administered at time tk, then the total hazard of DLT at future time u

is H(u | θ1, θ2, θ3) = ∑K
k=1 dkh(u − tk | θ1, θ2, θ3), which leads to a cumulative hazard

function equal to Λ(u | θ1, θ2, θ3) =
∫ u

0 H(t | θ1, θ2, θ3) dt and cumulative probability of

DLT F (u | θ1, θ2, θ3) = 1 − exp{−Λ(u | θ1, θ2, θ3)}.. The likelihood contribution at u is

f(u | θ1, θ2, θ3)Y (u){1− F (u | θ1, θ2, θ3)}1−Y (u), where Y (u) = 1 if a DLT has occurred at u

and is zero otherwise, and f(u | θ1, θ2, θ3) = dF (u | θ1, θ2, θ3)/du.

In our simulations, we assume a fixed value of θ3 = 10, while θ1/10 has a prior Beta

distribution with parameters a = 5.8 and b = 3.9, and θ2 has an exponential distribution

with mean 0.09. These values were selected so that the expected prior cumulative DLT

probability at Day 21 for each schedule was similar to that used with the other methods.
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For the second comparator, we generalized the work of Gunhan et al. [22], replacing

Equation (4) above with the difference of two exponential decay functions

h(u | θ1, θ2, θ3) = θ1θ2

θ2 − θ3
[exp{−θ3(u− tk)} − exp{−θ2(u− tk}].

All remaining equations above for the total and cumulative hazards and the cumulative

probability of DLT are unchanged. In the simulations, we have assumed fixed values for

both θ2 and θ3, such that θ2 = 0.14 and θ3 = 0.35. With regard to θ1, we assume log(θ1) has

a normal distribution with mean -2 and standard deviation 1, again so that the expected

prior cumulative DLT probability of each schedule was similar to that of the other methods.

For both comparators, we use the same stopping rule and limits on escalation as used

with our model, so that variations in the operating characteristics presented next are due

primarily to the model that is used. All simulations were performed in R, version 4.0.4.

Due to a vast savings in computation time, all posterior moments were computed through

integral approximation methods, rather than through Markov Chain Monte Carlo methods.

All code for our method, as well as the two comparator methods, is available on GitHub

at https://github.com/tombraun1216/CRM-with-Step-Up-Dosing.git.

3.4 Operating Characteristics

The performance of our design is summarized by three metrics: (i) the proportion of

simulations in which each schedule is selected as the MTS at the end of the study; (ii) the

average proportion of participants assigned to each schedule during the study, and (iii) the

average Day 21 DLT probability of the schedule assigned to each participant. Information

regarding metrics (i) and (ii) is shown in Table 2, while information regarding metric (iii)

is shown in Figure 2.

[Table 2 here]

[Figure 2 here]

To start, we focus on the boldfaced values in Table 2, which indicate that final selection

or assignment during the study is done at the schedule with Day 21 DLT probability

closest to the target. With regard to the decision made at the end of the study, we see that
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all three methods have fairly similar performance; averaging across all scenarios, we have

correct selection proportions of 0.47, 0.48, and 0.46 for our proposed method, the method

of Gunhan et al., and the method of Braun et al., respectively. Furthermore, we extended

the work of O’Quigley et al. [29], and generated, for each of the first six scenarios, a non-

parametric optimal upper bound for probability of correct schedule selection at study end.

Based upon 10,000 simulations, the realized upper bounds were 0.69, 0.57, 0.52, 0.49, 0.54,

and 0.58 for scenarios 1-6, respectively, with an average of 0.57, which supports that all

three methods have solid, but not overly-optimistic, performance with 30 participants.

With regard to assignments made during the trial, 2 presents fairly comparable per-

formance among the methods, although with greater variation than what was seen for the

probability of correct selection at study end. Averaging across all six scenarios, we have

average proportions of assignment equal to 0.38, 0.37, and 0.34 for our proposed method,

the method of Gunhan et al., and the method of Braun et al., respectively. The greatest

discrepancy among the methods appears in Scenario 2, in which both our proposed design

and the triangular hazard design both assign fewer participants to schedule 2 than does the

PK-based hazard design. This issue is also demonstrated in the upper left-hand panel in

Figure 2, in which we see that the proposed design tends to assign Schedule 1 more often

than Schedule 2, while the triangular hazard design tends to assign Schedule 3 more than

Schedule 2.

To examine this phenomenon in more detail, we examined all six scenarios and tabu-

lated, for each of the three designs, the difference in schedule assignments between a current

participant who experiences a DLT and the next participant, i.e. determining if the next

assignment was at a lower schedule, the same schedule, or a higher schedule. What we

found was that across the six scenarios, the probability of de-escalating by two or more

schedule levels ranged from 0.05-0.13 for our proposed design, 0.01-0.03 for the PK hazard

design, and 0.01-0.04 for the triangular hazard design. Conversely, the probability of esca-

lating one schedule level ranged from 0.01-0.02 for our proposed design, 0.01-0.03 for the

PK hazard design, and 0.07-0.11 for the triangular hazard design.

This differential is also supported by the results in Table 2 for scenario 7, in which all

six schedules are overly toxic, so that dose assignments should be restricted to the lowest
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schedules, and the study should terminate before accruing all 30 participants. We see that

the proposed method and PK-based hazard method both terminate accrual more often

than the triangular hazard approach, which also assigns schedule 3 far more often than

the others. Furthermore, early termination occurred after an accrual of 13, 14, and 19

participants, on average, for our method, the PK hazard design, and the triangular hazard

design, respectively.

In Figure 2, we have presented the dose assignment patterns for Scenarios 2-5 and have

omitted Scenarios 1 and 6 because they present redundant information from the other

scenarios. We see across all four scenarios that all three methods have assignments that

tend to coverage toward the schedule with a DLT probability closest to the target of 0.25.

As expected, all three methods tend to escalate to schedules with DLT probabilities higher

than 0.25, and then respond to observed DLTs and de-escalate in efforts to observe fewer

DLTs. The greatest divergence among the three methods is seen for Scenario 2 and supports

our earlier discussion of the results presented in Table 2, namely that our proposed method

tends to be least aggressive with schedule assignments and the triangular hazard method

tends to be most aggressive.

3.5 Sensitivity Analyses

Using the settings from Scenarios 1-6 presented in Table 1, we also examined how the oper-

ating characteristics of our proposed methods varied with (i) a different prior distribution

for θ2 and θ3, (ii) a different skeleton, which implicitly impacts the prior for β, (iii) a larger

sample size of 45 participants, and (iv) a shorter average inter-arrival for participants of

seven days. The results for aspects (i) and (ii) can be found in Table 3, while the results

for aspects (iii) and (iv) can be found in Table S1 (Supplementary) in the Appendix.

Assuming an increased value k = 3.2 (as described in Section 2.5), we assigned θ2 a prior

exponential distribution with mean µ2 = 0.38 and θ3 a prior exponential distribution with

mean µ3 = 0.61. From the first set of six rows in Table 3, we also see no substantial change

to the operating characteristics for our design, although with slightly lower performance

in scenario 6. The latter set of six rows in Table 3 correspond to operating characteristics

when we changed the skeleton by using values D11 = 0.01, and ORw = ORb = 2.0 (as
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described in Section 2.4), which led to skeleton values that were shifted closer to zero. As

with the prior distributions for θ2 and θ3, we see little change in operating characteristics

for scenarios 1-5, although the performance is decreased in scenario 6, which emphasizes

that the skeleton values do impact the prior mean for β1, which is the likely cause of this

result in scenario 6.

In Supplementary Table S1, the first six rows present the operating characteristics when

the sample size is increased to 45 participants. Not surprisingly, we see that the probability

of correctly selecting the best schedule increases approximately 10 points, with a slightly

lower increase in the average proportion of participants assigned to the best schedule. With

regard to the average inter-arrival time of patients, when participants arrived an average

of every seven days, rather than every 21 days, the last six rows of Supplementary Table 1

demonstrate no material change in the operating characteristics relative to those in Table

2.

4 Discussion

In recent Phase I dose-escalation trials assessing the tolerability of new investigational drugs

in cancer immunotherapy, high rates of DLT after first dose have been reported. To address

this issue, adjusted dosing schemes have been proposed that consist of planned stepwise

dose-escalation for each participant at the start of treatment. These dosing schemes, known

as step-up dosing or dose fractionation, pose new challenges for the design of such a Phase

I dose-escalation trial.

Certainly, identifying the MTD in a Phase I dose-escalation trial is always challenging

because the process relies on sparse data. Each patient contributes a single data point,

either a 0 if no DLT is observed during the DLT assessment period, or a 1 otherwise.

With step-up dosing schemes, the challenge of identifying the MTD is even larger, as a

combination of doses have to be identified, each of which induces a probability of toxicity

close to the target toxicity level.

To this end, we have proposed an approach for assessing the cumulative probability

of DLT for a series of administrations given to participants in a step-up dosing design,

whereby participants are first given administrations of a lower dose in hopes of leading to
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less likelihood of DLT when the final desired dose of the agent is administered. Our design is

a simple extension of the CRM, as compared to other approaches founded in time-to-event

methods, and our design has operating characteristics comparable to those methods. Our

method resembles a piecewise hazard model and is suitable for designs in which participants

are treated with a succession of non-decreasing doses. One limitation of our method, is

that each administration is assumed to occur within a specific timeframe, so our current

model is unable to accommodate treatment delays and resulting DLT information, unless

additional assumptions or modifications are made.

The number of parameters in our model also grows with the number of administrations,

although we could include approaches to smooth among the parameters, correlate them

through their prior distributions, or even assume that the change in DLT probability is

the same for each additional administration. Nonetheless, our method does not make

an assumption of additivity of hazards among the administrations, as is done with the

approaches we used as comparators. And, like all designs using Bayesian methods, any

data from a previous study of a related compound, including information on PK and PD

patterns, should be considered to assist with the selection of prior distributions and all

parameter and dose values.

Our proposed CRM extension requires specifying a skeleton, which is a set of plausible

values ascribed to each dose and is often related to the a priori probability of DLT for

single administration. Typically, the skeleton is chosen to cover a wide range of possible

dose-toxicity profiles, and this choice can be difficult given the lack of prior knowledge on

dose-toxicity at the study start. To help in this undertaking, we provide a systematic and

intuitive approach for choosing the values used in the skeleton. By simplifying the selection

of the initial guesses of the probabilities of DLT in practice, we hope to enhance the use of

our CRM-based approach.

Our method is also extremely flexible and allows for nearly any modification desired for

a specific trial. For example, although our simulations assigned a dose to each participant

individually, such assignments can be done to a collective cohort of participants, such as

in groups of three participants, as a safeguard against early escalation to doses later seen

to be toxic. Our method also allows for any dose-toxicity model used in the CRM, such as
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a standard logistic model with known intercept.

Nonetheless, before implementing our or any proposed design, clinical and safety experts

should be consulted to evaluate the risk of planning to increase a participant’s dose while

on study. Additionally, a thoughtful and careful safety monitoring plan should be made

and possibly include restrictions on how many participants can be exposed to a dose level,

whether a participant is exposed to that dose initially as part of a new study cohort or

is exposed during their planned dose escalation. Furthermore, our design is founded on a

strong a priori belief that step-up dosing is necessary. Although our design does allow for

the estimation of DLT probabilities for single administrations of varying doses, as well as

the ability to compare the DLT probability of a dose given immediately versus gradually

via step-up dosing, investigators must weight scientific interest in this latter comparison

with the safety, costs, and time resources that might arise with repeated administrations.

Data Availability Statement

Data sharing is not applicable to this article as no new data were created or analyzed.
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Appendix

Deriving Conditional Probabilities

To promote readability, all derivations below omit conditioning upon doses.

For the second administration, we have

πi2 = Pr(Yi2 = 1) = Pr(Yi2 = 1 | Yi1 = 0)× Pr(Yi1 = 0)

+ Pr(Yi2 = 1 | Yi1 = 1)× Pr(Yi1 = 1)

= Pr(Yi2 = 1 | Yi1 = 0)× (1− πi1) + 1× πi1

Solving for Pr(Yi2 = 1 | Yi1 = 0), we have

Pr(Yi2 = 1 | Yi1 = 0) = πi2 − πi1
1− πi1

This conditional probability also leads to the joint probability

Pr(Yi2 = 1, Yi1 = 0) = Pr(Yi2 = 1 | Yi1 = 0)× [1− Pr(Yi1 = 1)]

= πi2 − πi1,

which will be used in the following derivation.
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For the third administration, we have

Pr(Yi3 = 1) = Pr(Yi3 = 1 | Yi2 = 1, Yi1 = 0)× Pr(Yi2 = 1, Yi1 = 0)

+ Pr(Yi3 = 1 | Yi2 = 0, Yi1 = 0)× Pr(Yi2 = 0, Yi1 = 0)

+ Pr(Yi3 = 1 | Yi2 = 1, Yi1 = 1)× Pr(Yi2 = 1, Yi1 = 1)

+ Pr(Yi3 = 1 | Yi2 = 0, Yi1 = 1)× Pr(Yi2 = 1, Yi1 = 1)

= Pr(Yi2 = 1, Yi1 = 0)

+ Pr(Yi3 = 1 | Yi2 = 0, Yi1 = 0)× Pr(Yi2 = 0, Yi1 = 0)

+ Pr(Yi2 = 1 | Yi1 = 1)× Pr(Yi1 = 1)

= Pr(Yi2 = 1, Yi1 = 0)

+ Pr(Yi3 = 1 | Yi2 = 0, Yi1 = 0)× Pr(Yi2 = 0, Yi1 = 0)

+ Pr(Yi1 = 1)

because Pr(Yi3 = 1 | Yi2 = 1, Yi1 = 0), Pr(Yi3 = 1 | Yi2 = 1, Yi1 = 1), and Pr(Yi2 =

1 | Yi1 = 1) are each exactly equal to 1, and Pr(Yi3 = 1 | Yi2 = 0, Yi1 = 1) is exactly equal

to 0.

Solving for Pr(Yi3 = 1 | Yi2 = 0, Yi1 = 0), we have

Pr(Yi3 = 1 | Yi2 = 0, Yi1 = 0) = Pr(Yi3 = 1)− Pr(Yi2 = 1, Yi1 = 0)− Pr(Yi1 = 1)
Pr(Yi2 = 0, Yi1 = 0)

= πi3 − (πi2 − π1i)− π1i

Pr(Yi2 = 0 | Yi1 = 0)× Pr(Yi1 = 0)

= πi3 − πi2
[1− Pr(Yi2 = 1 | Yi1 = 0)]× [1− Pr(Yi1 = 1)]

= πi3 − πi2
[(1− πi2) / (1− πi1)]× (1− πi1)

= πi3 − πi2
1− πi2
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Deriving Prior Mean for Model Parameter β

We start with f(β) = πj1 = d
exp(β)
j1 . Given first and second derivatives

f
′(β) = df

dβ
= log(dj1)exp(β)f(β)

f
′′(β) = d2f

dβ2 = log(dj1)exp(β)[f ′(β) + f(β)]

= log(dj1)exp(β)f(β)[log(dj1)exp(β) + 1]

we use a second order Taylor expansion of f(β) around the prior mean µ1 to derive

E[f(β)] = f(µ1)

+ 0.5σ2log(dj1)exp(µ1)f(µ1)[log(dj1)exp(µ1) + 1]

We seek to make the second-order term equal to zero, which occurs when log(dj1)exp(µ1) =

−1. Solving for µ1, we find the suggested prior mean µ1 = log[−log(dj1)]. To collapse over

all schedules, we compute the arithmetic average, so that we have

µ1 = 1
6

6∑
j=1

log [−log(dj1)] .
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Table 1: Actual dose values, assigned skeleton values, and hypothetical true toxicity prob-

abilities for motivating example presented in Section 3.

Administration Administration
Schedule 1 2 3 1 2 3

Actual Dose Values Skeleton Dose Values
1 0.006 0.018 0.018 0.03 0.05 0.05
2 0.030 0.090 0.090 0.06 0.10 0.10
3 0.090 0.270 0.270 0.10 0.16 0.16
4 0.270 0.800 0.800 0.16 0.25 0.25
5 0.800 2.400 2.400 0.25 0.36 0.36
6 2.400 7.200 7.200 0.36 0.50 0.50

True DLT Probabilities
Scenario 1 Scenario 2 Scenario 3

1 0.20 0.21 0.23 0.10 0.11 0.13 0.02 0.03 0.05
2 0.25 0.29 0.34 0.15 0.19 0.24 0.07 0.10 0.14
3 0.31 0.37 0.45 0.21 0.27 0.35 0.12 0.17 0.24
4 0.37 0.45 0.56 0.27 0.35 0.46 0.17 0.24 0.34
5 0.45 0.57 0.73 0.35 0.47 0.63 0.24 0.34 0.48
6 0.56 0.73 0.95 0.46 0.63 0.85 0.34 0.48 0.67

Scenario 4 Scenario 5 Scenario 6
1 0.01 0.02 0.03 0.01 0.02 0.03 0.01 0.01 0.02
2 0.03 0.06 0.10 0.04 0.06 0.08 0.03 0.04 0.06
3 0.06 0.10 0.15 0.06 0.10 0.12 0.05 0.07 0.10
4 0.08 0.15 0.24 0.09 0.14 0.15 0.07 0.09 0.13
5 0.11 0.21 0.34 0.13 0.20 0.26 0.10 0.13 0.18
6 0.16 0.30 0.48 0.18 0.28 0.36 0.14 0.19 0.27

Scenario 7
1 0.25 0.35 0.45
2 0.30 0.40 0.50
3 0.36 0.46 0.56
4 0.42 0.52 0.62
5 0.50 0.60 0.70
6 0.61 0.71 0.81
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Figure 1: Visual representations of posterior DLT probability distributions resulting from

three sets of hyperparameter values examined in Section 3. The height of each bar repre-

sents the posterior mean, and the length of each vertical line above the bar indicates the

posterior standard deviation. The horizontal dotted line represents targeted DLT proba-

bility of 0.25. S1 = schedule 1, S2 = schedule 2, . . ., S6 = schedule 6
28



Ta
bl

e
2:

O
pe

ra
tin

g
ch

ar
ac

te
ris

tic
s

re
su

lti
ng

fro
m

sim
ul

at
io

ns
de

sc
rib

ed
in

Se
ct

io
n

3.
2.

C
R

M
=

pr
op

os
ed

ex
te

ns
io

n
of

C
R

M
;

G
W

F
=

PK
ha

za
rd

m
et

ho
d

of
[2

2]
;T

R
I=

tr
ia

ng
ul

ar
ha

za
rd

m
et

ho
d

of
[1

9]
an

d
[2

0]
;S

el
=

pr
op

or
tio

n
of

sim
ul

at
io

ns
in

w
hi

ch

sc
he

du
le

wa
s

se
le

ct
ed

as
be

st
at

en
d

of
st

ud
y;

A
ss

n
=

av
er

ag
e

pr
op

or
tio

n
of

pa
rt

ic
ip

an
ts

as
sig

ne
d

to
sc

he
du

le
du

rin
g

st
ud

y;

Ea
rly

Te
rm

=
no

sc
he

du
le

se
le

ct
ed

du
e

to
ea

rly
te

rm
in

at
io

n
of

st
ud

y.
Bo

ld
fa

ce
te

xt
co

rr
es

po
nd

s
to

op
er

at
in

g
ch

ar
ac

te
ris

tic
s

co
rr

es
po

nd
in

g
to

sc
he

du
le

w
ith

tr
ue

D
LT

cl
os

es
t

to
ta

rg
et

D
LT

pr
ob

ab
ili

ty
of

0.
25

.

Ea
rly

Te
rm

Sc
he

du
le

1
Sc

he
du

le
2

Sc
he

du
le

3
Sc

he
du

le
4

Sc
he

du
le

5
Sc

he
du

le
6

Sc
en

M
et

ho
d

Se
l

A
ss

n
Se

l
A

ss
n

Se
l

A
ss

n
Se

l
A

ss
n

Se
l

A
ss

n
Se

l
A

ss
n

Se
l

A
ss

n
C

R
M

0.
08

n/
a

0.
68

0.
66

0.
20

0.
17

0.
05

0.
09

0.
00

0.
03

0.
00

0.
01

0.
00

0.
00

1
G

W
F

0.
07

n/
a

0.
60

0.
51

0.
28

0.
28

0.
05

0.
13

0.
00

0.
03

0.
00

0.
00

0.
00

0.
00

T
R

I
0.

06
n/

a
0.

72
0.

39
0.

16
0.

27
0.

06
0.

25
0.

00
0.

06
0.

00
0.

01
0.

00
0.

00

C
R

M
0.

01
n/

a
0.

32
0.

38
0.

40
0.

29
0.

23
0.

21
0.

04
0.

09
0.

00
0.

03
0.

00
0.

01
2

G
W

F
0.

00
n/

a
0.

21
0.

23
0.

49
0.

40
0.

26
0.

26
0.

04
0.

10
0.

00
0.

02
0.

00
0.

00
T

R
I

0.
00

n/
a

0.
42

0.
19

0.
28

0.
27

0.
27

0.
38

0.
03

0.
13

0.
00

0.
02

0.
00

0.
00

C
R

M
0.

00
n/

a
0.

02
0.

12
0.

25
0.

22
0.

41
0.

31
0.

27
0.

23
0.

04
0.

09
0.

00
0.

03
3

G
W

F
0.

00
n/

a
0.

00
0.

06
0.

23
0.

24
0.

45
0.

35
0.

28
0.

26
0.

04
0.

08
0.

00
0.

01
T

R
I

0.
00

n/
a

0.
12

0.
08

0.
15

0.
16

0.
46

0.
39

0.
24

0.
29

0.
03

0.
07

0.
00

0.
01

C
R

M
0.

00
n/

a
0.

00
0.

06
0.

03
0.

09
0.

21
0.

19
0.

42
0.

29
0.

30
0.

24
0.

05
0.

13
4

G
W

F
0.

00
n/

a
0.

00
0.

04
0.

02
0.

11
0.

25
0.

22
0.

44
0.

34
0.

25
0.

21
0.

05
0.

07
T

R
I

0.
00

n/
a

0.
04

0.
04

0.
02

0.
10

0.
23

0.
22

0.
42

0.
38

0.
27

0.
20

0.
02

0.
06

C
R

M
0.

00
n/

a
0.

00
0.

05
0.

01
0.

07
0.

06
0.

11
0.

29
0.

22
0.

41
0.

28
0.

24
0.

26
5

G
W

F
0.

00
n/

a
0.

00
0.

04
0.

01
0.

09
0.

07
0.

13
0.

31
0.

27
0.

40
0.

28
0.

22
0.

18
T

R
I

0.
00

n/
a

0.
02

0.
04

0.
01

0.
09

0.
07

0.
12

0.
32

0.
31

0.
43

0.
28

0.
16

0.
16

C
R

M
0.

00
n/

a
0.

00
0.

05
0.

00
0.

05
0.

02
0.

08
0.

12
0.

14
0.

34
0.

24
0.

52
0.

44
6

G
W

F
0.

00
n/

a
0.

00
0.

04
0.

00
0.

08
0.

02
0.

09
0.

14
0.

19
0.

33
0.

26
0.

51
0.

34
T

R
I

0.
00

n/
a

0.
01

0.
04

0.
00

0.
08

0.
02

0.
09

0.
16

0.
22

0.
39

0.
27

0.
42

0.
31

C
R

M
0.

75
n/

a
0.

24
0.

48
0.

00
0.

05
0.

00
0.

02
0.

00
0.

01
0.

00
0.

00
0.

00
0.

00
7

G
W

F
0.

71
n/

a
0.

28
0.

47
0.

02
0.

11
0.

00
0.

03
0.

00
0.

01
0.

00
0.

00
0.

00
0.

00
T

R
I

0.
57

n/
a

0.
41

0.
38

0.
02

0.
22

0.
01

0.
16

0.
00

0.
02

0.
00

0.
00

0.
00

0.
00

29



Scenario 2 Scenario 4 

  
Scenario 3 Scenario 5 

  
 

0.15

0.20

0.25

0.30

0.35

0.40

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Participant ID

Av
er

ag
e 

Tr
ue

 D
LT

 P
ro

ba
bI

lit
y 

of
 A

ss
ig

ne
d 

D
os

e

0.05

0.10

0.15

0.20

0.25

0.30

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Participant ID

Av
er

ag
e 

Tr
ue

 D
LT

 P
ro

ba
bI

lit
y 

of
 A

ss
ig

ne
d 

D
os

e

0.05

0.10

0.15

0.20

0.25

0.30

0.35

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Participant ID

Av
er

ag
e 

Tr
ue

 D
LT

 P
ro

ba
bI

lit
y 

of
 A

ss
ig

ne
d 

D
os

e

0.05

0.10

0.15

0.20

0.25

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Participant ID

Av
er

ag
e 

Tr
ue

 D
LT

 P
ro

ba
bI

lit
y 

of
 A

ss
ig

ne
d 

D
os

e

Figure 2: Schedule assignment patterns in Scenarios 2-5 of simulations described in Section

3. • = proposed method using extension of CRM; � = PK hazard method of [22]; M =

triangular hazard method of [19] and [20]. Horizontal dashed line represents targeted DLT

probability of 0.25.
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