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In analog in-memory computing systems based on non-volatile memories such as resistive
random-access memory (RRAM), neural network models are often trained offline and then
the weights aresprogrammed onto memory devices as conductance values. The programmed
weight values inevitably deviate from the target values during the programming process. This
effect can begpronounced for emerging memories such as RRAM, PcCRAM, and MRAM due
to the stochastic nature during programming. Unlike noise, these weight deviations do not
change during inférence. We investigate the performance of neural network models against
this programming variation under realistic system limitations, including limited device on/off
ratios, memory array size, ADC characteristics, and signed weight representations. We also
evaluate approaches to mitigate such device and circuit non-idealities through architecture-
aware training,The effectiveness of variation injection during training to improve the

inference robustness, as well as the effects of different neural network training parameters

such as learningrate schedule, will be discussed.

1. Introduction

Deep neural'networks (DNNs) have achieved unprecedented capabilities in tasks such as
image and voice analysis and recognition and have been widely adopted. However,

computation requirements and the associated energy consumption of neural network
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implementations have been growing rapidly!"). In addition, traditional computing architectures
are ineffective for DNN workloads due to the high memory access demands, making it even
more challenging to meet these computational requirements. Many systems based on digital
CMOS technology have been developed specifically for accelerating DNN workloads,
including GRUyFPGA, and more specialized accelerators like DPUs. While these systems
have shown significant improvements over traditional CPUs in both computing power and
energy efficiency, continued innovation is necessary to meet the growing demand.
Particularly, DPNNsinference workload on edge computing platforms like mobile and IoT has
stringent energy efficiency requirements due to limited energy supply, and unconventional

approaches like;analog computing may prove more advantageous in meeting this requirement.

The most impottant limiting factor for DNN computing is the transfer of data between
processors and off-chip memories due to the limited density of existing on-chip memory
technology. IMC systems, utilizing the density advantage of emerging memory technologies
like RRAM, can potentially store entire DNN models on-chip, thus eliminating off-chip
memory access. Analog IMC systems that utilize the device conductance to directly perform
vector-matrix multiplication (VMM) operations further allow device-level parallelism that
leads to higher.performance'®*. Meanwhile, neural networks are known for their fault
tolerance, making it a feasible workload for analog computing, which is generally unsuitable
for traditional.arithmetic operations due to its inherently lower precision. Thus analog IMC
systems promise drastic improvement in performance and energy efficiency for DNN
applicatiofis. and have gained much popularity in recent years'* ). However, non-idealities in
memory devices and peripheral circuits can still cause significant degradation of neural
network inference accuracy. In general, for analog computing systems, inference accuracy

needs to be ensured before any benefit in energy efficiency can become material.
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Figure 1. i nalog in-memory computing systems. Large DNN layers are mapped

onto mult mory arrays. Analog outputs of each array are digitized by ADCs to produce
partial sums. rtial sums are then summed in the digital domine to produce the final

layer out igned weights are represented on two memory cells in two different columns.
c) device characteristics consider in this study. d) Neural network models are trained off-line
then prograTed onto memory arrays for inference.

This article is protected by copyright. All rights reserved



Level 1
Quantization

WILEY-VCH

Level 2
Device-Aware

[ input | [ input |

© ®
O o B3
@

LA
'
;
00

Level 3
Tile-Aware

|’_-.'|
L Vg |
g

mm@ o EIED ©
- @ @ pa vy O
a ® i OO

"
-

{
@ "

Figure 2.Architecture-aware training topology. We propose that architecture aware trainin
can be considered.in 3 levels. Level 1 is the standard quantization-aware training method™
where high precision weights are passed through a fake-quantization function before
computation. At'Level 2 device-aware training, signed weight representation in memory cells,
and limited on/off ratio are considered. At Level 3 tile-aware training, the limited memory
array size and ADC precision limitation are also considered. In addition, for all 3 levels,
variation can.be injected on per mini-batch basis to mimic the effect of programming
variation.

2. Tiled Analog In-Memory Computing System and Architecture-Aware Training

2.1. The Necessity of the Tiled-Architecture
There are 3 types.of important non-idealities in analog IMC systems for VMM operations,

interconnect parasitics, ADC limitations, and memory device non-idealities. Because energy
efficiency is the most important target, ADC operating frequency is likely to be limited to

below ~100MHz™. At this speed, with more than 10ns of hold time between input change
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and ADC sampling, in conjunction with the limited array size, transient effects are generally
negligible in memory arrays. Therefore, line resistance is the primary parasitic effect. In a
large array, the effect of line resistance is dependent on data pattern from all cells in the array
and the input signals, and thus can only be compensated by performing expensive calculations
based on thermemorysstates and input signals, which defeats the purpose of IMC!'2. To
address this issue, the array size must be limited to avoid the effect of line resistance, and
large-scale néural networks have to be mapped onto multiple arrays!'*. This is one of the
reasons for the tiled architecture analyzed in this study. In our proposed system, the array size
is 256 x 64, and assuming line resistance of ~2 Q per cell, device LRS resistance of 33 kQ,

line resistanceswill'have a negligible effect on the array operation.

2.2. Cell Defects
In this study; we did not consider stuck at fault cell defects. The defects have been considered

by many prior studies, including some of our works ['*. Generally, a small portion of stuck at
open deviees will not have meaningful impacts. However, a shorted device would saturate the
output of an entire column. Columns with shorted cells have to be disabled and replaced with
spare ones to deal with shorted devices. Although replacing columns means extra areas are
needed for spare.ecolumns, once the defective ones are replaced, they will not have an impact

on the inference accuracy.

2.3. Error Caused by the Tiled-Architecture
Although the'tiled architecture avoids the line resistance effects, the additional computing

error causeéd by this implementation needs to be analyzed, including the effects of ADC
limitations and device non-idealities. Several prior studies have been published that discuss
approaches to implement large DNN models on practical RRAM arrays using a tiled
architecture, as shown in Figure 1131516 The effects of limited RRAM array size, ADC

precision, signed weights representation in two RRAM cells, and RRAM cell quantization
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effects in analog IMC systems have been studied. In such a system, neural network models
are trained off-line and programmed onto memory arrays, and large neural network layers are
mapped onto multiple memory arrays where partial sums (Psums) are produced by ADCs at
each array and summed in digital domain'" (Figure 1a). Signed weights are represented in
two cells on twoerdifferent columns that receive the same input activations. Currents from the
two columns are quantized by ADCs individually, then the digital output of the negative

column is subtracted from that of the positive column (Figure 1b).

2.4. Architecture-Aware Training
In general, many of the device and circuit non-ideality effects can be effectively mitigated

through architecture-aware training methods!'”!, where hardware details are mimicked in the
training process. In'architecture-aware training, we developed a simulator based on Google’s
TensorFlow deep learning framework by modifying the training graph from the standard
floating-pomt pipeline. To compare the impact of different hardware non-idealities, we
consider 3dnference pipelines, Level 1 through Level 3, and their corresponding training
topologies (Figure 2). In Level 1, only the quantization of weights and activations are
considered. In Level 2, the effects of signed weights representation on two cells and limited
device on/off'raties are introduced. For both training and inference in Level 1 and Level 2, we
used the common scheme for quantization-aware training!'®, where the weights pass through
the fakequantization function before calculations are conducted. The fakequantization
function does not change the overall range of the weights and instead rounds the weights to a
number of fixedwalues determined by the range and resolution set for the function, and these
parameters can bewdifferent for each layer. For actual hardware representation of weights
where the conductance range is fixed for the whole system, the outputs of each layer need to
be multiplied by a high precision scaler to match that of the software model. In Level 3, the

physical range of memory cells, the multiplier, limited memory array size, and ADC precision
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limitation are introduced. As described in Figure 2, separate multipliers are assigned to each

array and trained during the training process.

By sequentially.introducing different levels of architecture details during the training process,
the neural network madel can potentially account for these architecture and device factors and
recover the désired model accuracy™ . However, high levels of device programming variation,
which is indicative of today‘s analog memory devices, still present challenges in considerable

inference accuracy.degradation.

| CIFAR-10 VGG Block | [ WRN-16-8 |
Mumber of[Row Vector|Number of Mumber of flow Vectarflumber of
niput Size  Filtec shage Columns Length JArrays Input Size  [Filter Shape  Kolumns  Jlength o rays
CNN 1 F2x32x3 PBu3xixil Gd av 1x1 151 Conw Ire32x3  Pxixixls 32 27 11
KNN 2 B2x32x32 BEExITN32 64 UER 2xl 152 MEB1 Comnvl BIx32x16 PBe3xlexl28 [R56 144 1x4
KNN3 [l6x16x32Bx3n3d xbd 128 D28 2xl )52 ME1 Comvl |BIx32w128 BuixllBx1l8 P56 1152 Fud
ICHM 4 (16 x 16 x 64 B @ bdnbd (128 576 3l I52 Res Conv 32n32wle [Axixl6xl28 [256 16 [l
ENMS BxBxbd PBu3xbdx12E P56 576 xd 152 MBZ Convl B2x32x128 Bxixl2Bx128 256 1152 Fud
KNNG Bx8x 128 Bw3xldfx 128 256 1152 S 52 MBZ Comv? B2x32x128 BxixlZBxl28 256 1152 Fd
FC1 [2043 BOAEK 128 256 JOAE [Exd 153 MB1 Convi [32x32x128 PBxdxl28x256 [512 1152 [l
FC2z [128 2B x 20 10 128 1x1 153 MB1 Conv? [32x33x256 Bxind56n256 (512 2304 [10x3
Motal T8 Arrays I3 Res Cony BIx32x128 1x1x12Bx256 (512 128 148
)53 MEB2 Comvl |16x165256 Bx3xlSax256 (512 12304 10x8
153 MBZ Conv? [16x16x256 PBxind56n256 (512 2304 [10x3
154 BAE1 Convl [16x16x256 Bx3x256x512 (1024 12304 10x16
1G4 MEBE1 Comv? [ExBxS512 Pxix512x512 (1024 K508 19x16
)54 Res Cony 616256 [Inlnd56e512 [1024 [256 1xl6
G4 MBZ Convl Bx8x512 BxIx512x512 (1024 d608 19416
1G4 MEZ Comvl [ExBx512 Px3x312x512 (1024 K503 19x16
FC 512 I512x10 20 512 [x1
[Total 1447

Table 1.Models'used for benchmarking. Only CNN and fully connected layers are shown.
RRAM array size of 256x64 is used.

3. System.Setup

3.1. Networks:Used for Benchmarking
In this study;we.chose 3 neural network and dataset combinations of various complexities to

investigate the impact of analog IMC accuracy at realistic device non-idealities for different
network and dataset complexity (Table 1). The first network is a relatively simple VGG-
block-based model trained for the CIFAR-10 dataset. This model contains only convolution
(Conv) layers, a fully connected (FC) layer, and MaxPool layers. The second network is the
Wide ResNet 16-8 model (WRN)™". This network uses residual connections and batch

normalization in addition to convolution and fully connected layers. We used the WRN 16-8
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network for the CIFAR-10 dataset and the more complex CIFAR-100 dataset to test the

effects on more challenging tasks.

3.2. Hardware Characteristics
We used 8bit ADC in our study because it has been found to offer a good balance between

energy efficiency-and resolution, as reducing resolution further does not appear to yield a
meaningful improvement in energy/sample™™®. RRAM cells with an analog read current range
of 0.3uA ~ 3pA;-/ADC input range of 0 ~ 45uA, array size of 265x64 were considered for the
tiled implementation.
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Figure 3.Architecture-aware training process and parameters used during training.

3.3. Training Process
We first obtain floating-point models using standard practice. For the VGG-block-based!*”?

models, we trained for 150 epochs using the stochastic gradient descent (SGD) optimizer with

a learning rate of 0.001, momentum of 0.9. For WRN models, we follow the parameters

described in*%. Then, different levels of hardware details are progressively introduced during
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training, as schematically shown in Figure 3, along with the parameters used during the
training processes. Specifically, Level-1 models are fine-tuned from the floating-point models,
Level-2 models are fine-tuned Level-1 models, and Level 3 models are fine-tuned from
Level-2 models..We found this approach leads to better model inference accuracy compared
with training-directly-the Level-2 or Level-3 models from scratch with random weights''>). In
fact, we found that Level-3 MNIST models trained from random weights reached only
77.78% accuracy (compared to 99.13% for model fine-tuned from Level-2 and float model) in
previous studiesgand Level-3 VGG and WRN models produced accuracies of only 10%,
which is no more than chance for the CIFAR-10 dataset. In the fine-tuning process, we used a
learning rate,0f0:001 for the VGG-block-based model and trained for 20 epochs. For the
WRN models, we used a learning rate schedule, where the learning rate starts at 0.003, then

steps down t@70:001, 0.0005, 0.0002 after 5, 10, 15 epochs and trained for a total of 40 epochs.

4. Effects of Computation Errors in Analog IMC Systems

First, we presentithe effects of deterministic errors including weight and activation
quantizationgsigned weight representation, limited RRAM array size, ADC precision
limitations, and'RRAM cell on/off ratios (Figure 4). For the 3 network-dataset combinations
we studied, when only quantization (activation and weights quantized to 8bits) and signed
weight representation were considered during inference (Level 2), there is minimal accuracy
drop from just using the quantization-aware trained models!"” (Level 1). We do note that the
activation quantization range in the inference pipelines must correspond to the input range of
activation function used during training (ReLu6 etc.), or there is severe degradation in

accuracy due to the limited range due to the quantization effects.

However, in the presence of a low device on/off ratio and/or array size and ADC limitations,

the quantization-aware trained models cannot produce acceptable accuracies. By introducing
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the finite on/off ratio properties in the training pipeline, device-aware trained models can
successfully mitigate the effect of limited on/off ratio down to 10, along with any effects due
to the two-column signed weight representation, as shown in Figure 4. On the other hand, in
the presence of array size and ADC limitations, the device-aware training, i.e. Level-2
training pipeline;results in poor accuracy for the more complex models or datasets such as
WRN. Acceptable results may be produced by Level-2 training for simpler models such as
VGG-blocks due to the use of only Conv and FC layers which are generally more resilient to
errors. As a resultytile-aware training (i.e. Level 3 pipeline) must be used for the more
complex models or datasets to produce good accuracy, as shown in Figure 4. We believe the
more complicated:model structure with residue connections and the use of batch
normalization layers make the WRN models more sensitive to errors. Particularly, models
with batch nermalization layers are sensitive to changes in activation distribution, and the
quantization of partial sums due to ADC precision and range limitations produce a shift in

activation distribttions?”!,

Quantization-Aware Modal Device-Aware Model Tile-Aware Model
100, 10 10
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Figure 4.Effect of signed weights represented in two cells, on/off ratio, ADC, and array size
limitation. Inference accuracy. Act Quant CR: activation and weight quantization 8bits with
activation quantization range corresponding to ReL.u6 used during training, on/off ratio 1000.
Act Quant IR: activation and weight quantization 8bits with activation quantization range of
0-1 which does not correspond to the ReLu6 range used during training. Act Quant CR +
On/Off: low on/off ratio of 10. Act Quant CR + On/Off + Array + ADC: array size 265x64,
8bit ADC. Floating-point accuracies for the CIFAR-10 VGG, CIFAR-10 WRN, CIFAR-100
WRN models are 83.73%, 95.11%, and 74.74%.
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5. Programming Variation Effects on Inference Accuracy

Next, we examine the effects of device variations on network inference accuracy. Neural
network models are trained off-line then programmed onto memory arrays for inference, and
the weights do not change during the inference process. Combined with analog computation,
this means any deviations that occur during the device programming process result in
inference to be conducted on models that are effectively different from the trained models,
leading to potential accuracy degradation. Different from deterministic errors discussed earlier,
the randomness of device variations means each programmed chip maps an essentially
different model. Re-training each chip individually may potentially recover the accuracy, but
will be very expensive and impractical. In the following, we investigate the impact of device
programming variation on large-scale DNN networks inference accuracy, the effectiveness of
mitigations methods, and factors that impact network robustness against device variation

under realistierdevice and circuit conditions.

We examined-the'effect of weight variations using models trained with Level 1, 2, and 3
pipelines, and studied the model accuracy in the corresponding inference conditions (e.g.
when only quantization effects, quantization + device on/off, and quantization, on/off and
finite array size and ADC precision effects are present during inference, respectively) (Figure
5). Previous.studies have shown that the VGG-block-based model had minimal accuracy drop
even at relatively high variation levels, while more complex models show severe accuracy
degradation '] In/this section, we thus used the more complex WRN-16-8 models for the

CIFAR-10.dataset to highlight the effects of device variations.
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Figure 5.Variation effect under different inference pipelines for WRN-16-8 network on the
CIFAR-10 dataset, for models trained with different levels of noise injection. The variation
level is defined as standard deviation relative to the dynamic range of the weights. The
boxplots show.model inference accuracy distribution from 40 runs. Legend: variation injected
during training..Orange lines: floating-point baseline. Ideal Array and ADC: no array size
limitation, no quantization or range limitation of output. Realistic ADC: 8bit ADC with 0 ~
45pA as described in section 3.2, array size 256x64.

In the accuracy test, after weight storage, variations were applied additively as Gaussian
distributions with a constant standard deviation across all weights (i.e. 4% variation means the
standard deviation is 4% of the dynamic range of memory cells). This variation distribution
was chosen as a generic example, since memory technologies have substantially different
characteristics, and it represents a near-worst-case scenario. On one side, many emerging
resistive switchingrdevices exhibit state-dependent programming variation, where lower
conductance states are associated with lower variations®?!!, which is less detrimental to
inference accuracy. On the other side, programming variations in multi-bit Flash memories
are generally'more state-independent while also suffering from additional non-linear
behaviors®??¥. In Level-2 and Level-3 inference pipelines, where signed weights are
represented in two columns (Figure 1b), the variations are applied independently to each cell.

This is different from variations that are directly applied to the signed weights (Level-1) and

means the impacts of weight variations are not equivalent between Level-1 and the other
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pipelines. We also note that the signed weight representation we adopted (Figure 1b) is more
realistic than the approach where differential cells (cells consisting of two devices) are read
out individually™*! and more practical to implement in circuits compared to the approach
where 2 rows with positive and negative input voltages signs are used to represent to positive

and negative-weights:

Because each programming session on each chip results in effectively different models and
different infereneeyaccuracy, the process was simulated 40 times for each condition. The
distribution of inference accuracy is shown in box plots (Figure 5). The models are expected
to be programmed‘onto memory arrays and do not change during inference. Therefore,
programming time is less important. Thus, the top 25 percentile in the accuracy distribution is
more representative than the average or the median, because it can be achieved by attempting
programming sessions multiple times. Gray boxes in Figure 5 represent inference accuracies
of models trained without any mitigation measures, and, in general, accuracy degradation

becomes unacceptable for variations beyond 4%.

When comparing between Level-1 and Level-2 pipelines, accuracy degradation is more
pronounced inJdsevel-2 due to the signed weight representation and low on/off ratio of
memory devices (Figure 5a and Figure 5b). When ADC and array size limitation is introduced
at Level-3, surprisingly, the accuracy degradation at high variation levels (> 4%) improved
compared to'Level-1 and Level-2. This is likely due to the presence of trainable S2 multipliers
on a per affay basis we implemented in the tiled architecture (Figure 2)!'). At this level, we
can also observe the negative effect of a low device on/off ratio (Figure 5S¢ and Figure 5d).
However, in general, accuracy degradations become unacceptable when variations exceed 4%

of the dynamic range.
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As a natural extension in the architecture-aware training approach, we hypothesize that
injecting noise during training may improve inference accuracy. Specifically, we used weight
noise injection during training to mimic device programming variations to produce trained
DNN models that can produce better inference accuracy in presence of variations. In this
implementationgweight noise is added after each mini-batch during training, where an error is
drawn from a Gaussian distribution for each weight then added to it. The standard deviation
for the Gaussian distribution is defined as relative to the dynamic range of the memory cells.
For example,4 .56% noise injection means the Gaussian distribution has a standard deviation
that is 1.56% of the dynamic range of memory cells. From a general neural network training
perspective, neisednjection at inputs, hidden units, and weights during training have long

24-28] 1,

been proposed as methods to improve the generalization ability of neural networks!
particular, weightfnoise injection has been shown mathematically to improve fault tolerance
as it produces networks with smoother input-output mapping where the output becomes less
sensitive to noise®?). Recent studies have also applied this method to analog computing
systems[ZMZ]. However, these prior studies are generally limited to small-scale networks or
did not consider realistic system limitations like ADC characteristics, device on/off ratios, and
especially arfay size limitations. The improvements in inference accuracy from weight noise
injection in training can be observed in Figure 5, and the trend in improvements is consistent
across different inference pipelines. In general, higher-level noise injection leads to better
accuracy recovery.-For high device variations, noise injection not only allows the average and

the peak accliracy to recover but also reduces the variation in performance between different

runs.

The improvements from noise injection can also be observed from model outputs directly.
Figure 6a shows the error in model outputs caused by device programming variation with

CIFAR-10 validation dataset as input. For inference with a programming variation level of
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6.24%, the injection of noises of the same level during training significantly reduces the error
in the model outputs. For inference with a higher device programming variation of 12.48%,
although substantial errors still occur with 12.48% noise injection, the trend in improvement
is similar. When.random patterns are used as input for models trained on the CIFAR-10, the
error caused bysprogramming variation is significantly larger Figur 5b. This suggests that
neural network models are trained for a specific input distribution, and the impact of weight

variation can be more pronounced if the inference task is different from that during training.

The robustness of neural network models against weight variation can be characterized as part
of the generalization ability. It has been shown that the addition of weight variation
exacerbates inference error caused by generalization limitations and roughness of neural
network models®¥ This means, in order to obtain acceptable inference accuracy for the same
tasks, the models will need to have better generalization ability in the presence of weight
variation, and many factors in the training process influence the ability. Indeed, we have
found that even when models have similar accuracy with no weight variations, they can have
very different.robustness against variations. Prior literature has shown ample results for the
effects of quantization and learning rate on the generalization ability in standard digital
implementations-However, the effects of these factors on neural networks model have not
been discussed in the context of analog in-memory computing systems with the presence of
realistic hardware limitations. In the next section, we investigate the impact of learning rate,
programming target resolution, and different inference pipelines have on model robustness

against weéight variation.
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Figure 6.The proportional error of network model inference output with weight programming
variation compared to inference output without variation, Level-3 model in Level-3 inference
pipeline with on/off ratio of 10. Programming variations are simulated 40 times, and results
are aggregated. Tr. Var.: variation injected during training. Inf. Var: variations experienced in
the device programming process. (a) images from the validation dataset as input to the
network. (b) random pattern as input to the network.

5.1. Effectof Higher Target Programming Resolution

Although 8bit programming target resolution cannot be reliably represented by devices with a
variation of even as low as 1.56%, we found, compared to 4bit programming target, higher
target resolution produces models more robust to programming variations (Figure 7). Thus,

8bit programming target resolution was used in this work. We believe this is because,
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although quantization-aware training methods produce models more suited for the specific
deterministic error caused by quantization, these models have diminished generalization
ability, thus more sensitive to any additional errors like device variation™*3l. The higher
target resolution.produces trained models with wider local minima, thus higher robustness

against variation-in-weights.
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Figure 7.Sensitivity to variation of tile-aware trained WRN-16-8 CIFAR-10 model in tiled
inference pipeline with ADC limitation, array size of 265x64, on/off ratio of 10 for both
training and inference, accuracy evaluations were run 40 times. a) models trained with 8bit
quantized weights.and 8bit programming target resolution during inference. b) models trained
with 4bit quantized weights and 4bit programming target resolution during inference.
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5.2. Effect of Difference Inference Pipeline on the Same Models
We observed-that although the same model can generally achieve very similar accuracies

under different inference pipelines, in the presence of weight variations very different
behaviors are obtained. For example, Level-1 trained models show similar accuracy in the
Leve-1 (Figure 5a) and Level-2 (Figure 8a) inference pipelines. However, in the presence of
relatively high weight variations, the accuracies are consistently lower in the Level-2
inference pipeline. This is likely because Level-1 trained models are not optimized for the
Level-2 inference pipeline when additional hardware details are introduced that are not
incorporated during training, but the errors may not be large enough to cause accuracy
degradation when there is no weight variation. In the presence of weight variations, the effects
are amplified and lead to much worse accuracy degradation when training is not matched with

the inference conditions.
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Figure 8. WRN-16-8 models for the CIFAR-10 dataset. a) Accuracy of Level-1 trained model
in Level-2 inference pipeline. b) 75th percentile accuracies of Level-1 trained models in Leve-
2 inference pipeline, normalized to Level-1 inference pipeline accuracies of coresponding
training and inference variation.
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Figure 9.Effects of learning rates. a) Device-aware models trained with a learning rate of
0.0002, evaluated In tiled inference pipeline. b) 75th percentile accuracies in Figure 9a
normalized to that of models trained with learning rate schedule (Figure 5b). c) 750 percentile
tile-aware models-evaluated in the tiled pipeline with an on/off ratio of 10. d) Accuracies in
Figure 9¢c normalized to that of models trained with learning rate schedule (Figure 5d).
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5.3. Impactof Learning Rate
When a simple learning rate of 0.0002 is used in the fine-tuning process instead of the

learning rate schedule described in Section 2.2, models achieved similar accuracies with no
weight variation. When weight variation is introduced, device-aware trained models (Level 2)

showed no clear pattern between the two different learning rates, while tile-aware trained
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(Level 3) models with a learning rate of 0.0002 are more sensitive to weight variations
compared to ones obtained with the learning rate schedule (Figure 9). It is well known that
selecting suitable learning rates is critical in the training process for neural network models to
converge to optimal states, and learning rate schedules are often superior to constant learning
rates¥. In thisspatticular case, the learning rate schedule showed an advantage in Level-3
training but not in Leve-2 training. We believe the addition of array size and ADC limitations
at Level-3, analogous to weight quantization, results in models with less smooth input-
mapping, thus:illuminating the difference between models produced by the different learning

rates.

6. CIFAR-100 Results and Discussions
We also considered the WRN-16-8 model for the more complex CIFAR-100 dataset. The

results showed a'similar general trend to the results for the CIFAR-10 dataset, while models
are much moreéwsensitive to variations across the board with significant accuracy degradation
at as low as 2% wvariation (Figure 10). This, again, illustrate that larger-scale networks, as well
as more complex tasks, are more sensitive to weight variations during inference, and as neural
networks and.tasks become more complicated, further improvements in DNN model

robustness and device performance may be required.

Other than improving the intrinsic precision of memory devices, two main methods have been
proposed to improve weight storage precision. The first is using multiple cells to encode

(21351 "and the second is to use closed-loop, write-verify

different bits0f one weight
programming schemes*®*7. Using multiple cells drastically decreases memory density and
incurs additional peripheral circuit overhead, thus resulting in decreases in computing

efficiency in terms of both area and energy. Closed-loop programming processes have already

been widely implemented, but have not been able to yield programming precision high
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enough for 8bit or even 4bit weights. As shown in Figure 10, even 2% variation can lead to

significant accuracy degradation for complex tasks.

Here we provide another possibility for future device and programming algorithm design.
Neural networks-aresgenerally sparse, where weights close to zero constitute a large portion of
all weights. This means programming variations at low conductance states have much higher
impacts, and‘non-uniform device programming variation characteristics can be engineered to
minimize the effect at low conductance value. In particular, most resistive switching memory
technologies have a limited analog dynamic range where conductance can be changed
continuously;compared to the entire dynamic range. For weights close to zero, the
corresponding memory devices can be hard reset, where conductance is set to the lowest
possible value'beyond the analog range. This would greatly reduce weight variation for
weights close to zero because the absolute variation at the lowest conductance state is
generally much lower compared to that inside the analog range. Although hard reset can have
an impact on endurance in some memory technology, programming is expected to be

infrequent, and endurance is unlikely to be the primary limiting factor.
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Figure 10.Variation effect under different inference pipeline for WRN-16-8 network on
CIFAR-100 dataset.

7. Conclusion

In this work, we took a systematic look at the weight variation effect caused by memory
device programming in analog IMC systems, which appears to be the most difficult error
source to mitigate. We show proper noise injection can improve model robustness against
weight variations::However, in the presence of moderate to high variations and for complex
tasks and models, these methods may not be able to fully recover the accuracy drop. Thus,
further developments in algorithms to produce neural networks that are more robust against
weight variations could be critical for practical deployment for analog IMC systems for neural

network workload.
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In non-valatile-memary-based analog in-memory
computing systems, variation in the device programming
process can cause neural network inference accuracy
degradation since the stored weights are different from
thase in the original model. We investigate the
performance of deep neural network models against this
programming variation under realistic system limitations,
including limited device on/foff ratios, memaory array size,
circuit characteristics, and signed weight representations.
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