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In analog in-memory computing systems based on non-volatile memories such as resistive 

random-access memory (RRAM), neural network models are often trained offline and then 

the weights are programmed onto memory devices as conductance values. The programmed 

weight values inevitably deviate from the target values during the programming process. This 

effect can be pronounced for emerging memories such as RRAM, PcRAM, and MRAM due 

to the stochastic nature during programming. Unlike noise, these weight deviations do not 

change during inference. We investigate the performance of neural network models against 

this programming variation under realistic system limitations, including limited device on/off 

ratios, memory array size, ADC characteristics, and signed weight representations. We also 

evaluate approaches to mitigate such device and circuit non-idealities through architecture-

aware training. The effectiveness of variation injection during training to improve the 

inference robustness, as well as the effects of different neural network training parameters 

such as learning rate schedule, will be discussed. 

 
1. Introduction 

Deep neural networks (DNNs) have achieved unprecedented capabilities in tasks such as 

image and voice analysis and recognition and have been widely adopted. However, 

computation requirements and the associated energy consumption of neural network 
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implementations have been growing rapidly[1]. In addition, traditional computing architectures 

are ineffective for DNN workloads due to the high memory access demands, making it even 

more challenging to meet these computational requirements. Many systems based on digital 

CMOS technology have been developed specifically for accelerating DNN workloads, 

including GPU, FPGA, and more specialized accelerators like DPUs. While these systems 

have shown significant improvements over traditional CPUs in both computing power and 

energy efficiency, continued innovation is necessary to meet the growing demand. 

Particularly, DNN inference workload on edge computing platforms like mobile and IoT has 

stringent energy efficiency requirements due to limited energy supply, and unconventional 

approaches like analog computing may prove more advantageous in meeting this requirement.  

 

The most important limiting factor for DNN computing is the transfer of data between 

processors and off-chip memories due to the limited density of existing on-chip memory 

technology. IMC systems, utilizing the density advantage of emerging memory technologies 

like RRAM, can potentially store entire DNN models on-chip, thus eliminating off-chip 

memory access. Analog IMC systems that utilize the device conductance to directly perform 

vector-matrix multiplication (VMM) operations further allow device-level parallelism that 

leads to higher performance[2,3]. Meanwhile, neural networks are known for their fault 

tolerance, making it a feasible workload for analog computing, which is generally unsuitable 

for traditional arithmetic operations due to its inherently lower precision. Thus analog IMC 

systems promise drastic improvement in performance and energy efficiency for DNN 

applications and have gained much popularity in recent years[4–9]. However, non-idealities in 

memory devices and peripheral circuits can still cause significant degradation of neural 

network inference accuracy. In general, for analog computing systems, inference accuracy 

needs to be ensured before any benefit in energy efficiency can become material. 
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Figure 1.  a) Tiled analog in-memory computing systems. Large DNN layers are mapped 
onto multiple memory arrays. Analog outputs of each array are digitized by ADCs to produce 
partial sums. The partial sums are then summed in the digital domine to produce the final 
layer output. b) Signed weights are represented on two memory cells in two different columns. 
c) device characteristics consider in this study. d) Neural network models are trained off-line 
then programmed onto memory arrays for inference. 
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Figure 2.Architecture-aware training topology. We propose that architecture aware training 
can be considered in 3 levels. Level 1 is the standard quantization-aware training method[10], 
where high precision weights are passed through a fake-quantization function before 
computation. At Level 2 device-aware training, signed weight representation in memory cells, 
and limited on/off ratio are considered. At Level 3 tile-aware training, the limited memory 
array size and ADC precision limitation are also considered. In addition, for all 3 levels, 
variation can be injected on per mini-batch basis to mimic the effect of programming 
variation.  
 
 
2. Tiled Analog In-Memory Computing System and Architecture-Aware Training  

2.1. The Necessity of the Tiled-Architecture 
There are 3 types of important non-idealities in analog IMC systems for VMM operations, 

interconnect parasitics, ADC limitations, and memory device non-idealities. Because energy 

efficiency is the most important target, ADC operating frequency is likely to be limited to 

below ~100MHz[11]. At this speed, with more than 10ns of hold time between input change 
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and ADC sampling, in conjunction with the limited array size, transient effects are generally 

negligible in memory arrays. Therefore, line resistance is the primary parasitic effect. In a 

large array, the effect of line resistance is dependent on data pattern from all cells in the array 

and the input signals, and thus can only be compensated by performing expensive calculations 

based on the memory states and input signals, which defeats the purpose of IMC[12]. To 

address this issue, the array size must be limited to avoid the effect of line resistance, and 

large-scale neural networks have to be mapped onto multiple arrays[13]. This is one of the 

reasons for the tiled architecture analyzed in this study. In our proposed system, the array size 

is 256 x 64, and assuming line resistance of ~2 Ω per cell, device LRS resistance of 33 kΩ, 

line resistance will have a negligible effect on the array operation.  

 

2.2. Cell Defects 
In this study, we did not consider stuck at fault cell defects. The defects have been considered 

by many prior studies, including some of our works [14]. Generally, a small portion of stuck at 

open devices will not have meaningful impacts. However, a shorted device would saturate the 

output of an entire column. Columns with shorted cells have to be disabled and replaced with 

spare ones to deal with shorted devices. Although replacing columns means extra areas are 

needed for spare columns, once the defective ones are replaced, they will not have an impact 

on the inference accuracy.  

 

2.3. Error Caused by the Tiled-Architecture 
Although the tiled architecture avoids the line resistance effects, the additional computing 

error caused by this implementation needs to be analyzed, including the effects of ADC 

limitations and device non-idealities. Several prior studies have been published that discuss 

approaches to implement large DNN models on practical RRAM arrays using a tiled 

architecture, as shown in Figure 1[13,15,16]. The effects of limited RRAM array size, ADC 

precision, signed weights representation in two RRAM cells, and RRAM cell quantization 
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effects in analog IMC systems have been studied. In such a system, neural network models 

are trained off-line and programmed onto memory arrays, and large neural network layers are 

mapped onto multiple memory arrays where partial sums (Psums) are produced by ADCs at 

each array and summed in digital domain[15] (Figure 1a). Signed weights are represented in 

two cells on two different columns that receive the same input activations. Currents from the 

two columns are quantized by ADCs individually, then the digital output of the negative 

column is subtracted from that of the positive column (Figure 1b).  

 

2.4. Architecture-Aware Training 
In general, many of the device and circuit non-ideality effects can be effectively mitigated 

through architecture-aware training methods[15], where hardware details are mimicked in the 

training process. In architecture-aware training, we developed a simulator based on Google’s 

TensorFlow deep learning framework by modifying the training graph from the standard 

floating-point pipeline. To compare the impact of different hardware non-idealities, we 

consider 3 inference pipelines, Level 1 through Level 3, and their corresponding training 

topologies (Figure 2). In Level 1, only the quantization of weights and activations are 

considered. In Level 2, the effects of signed weights representation on two cells and limited 

device on/off ratios are introduced. For both training and inference in Level 1 and Level 2, we 

used the common scheme for quantization-aware training[10], where the weights pass through 

the fakequantization function before calculations are conducted. The fakequantization 

function does not change the overall range of the weights and instead rounds the weights to a 

number of fixed values determined by the range and resolution set for the function, and these 

parameters can be different for each layer. For actual hardware representation of weights 

where the conductance range is fixed for the whole system, the outputs of each layer need to 

be multiplied by a high precision scaler to match that of the software model. In Level 3, the 

physical range of memory cells, the multiplier, limited memory array size, and ADC precision 
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limitation are introduced. As described in Figure 2, separate multipliers are assigned to each 

array and trained during the training process.  

 

By sequentially introducing different levels of architecture details during the training process, 

the neural network model can potentially account for these architecture and device factors and 

recover the desired model accuracy[15]. However, high levels of device programming variation, 

which is indicative of today‘s analog memory devices, still present challenges in considerable 

inference accuracy degradation.  

 
Table 1.Models used for benchmarking. Only CNN and fully connected layers are shown. 
RRAM array size of 256x64 is used. 
 
 
3. System Setup 

3.1. Networks Used for Benchmarking 
In this study, we chose 3 neural network and dataset combinations of various complexities to 

investigate the impact of analog IMC accuracy at realistic device non-idealities for different 

network and dataset complexity (Table 1). The first network is a relatively simple VGG-

block-based model trained for the CIFAR-10 dataset. This model contains only convolution 

(Conv) layers, a fully connected (FC) layer, and MaxPool layers. The second network is the 

Wide ResNet 16-8 model (WRN)[17]. This network uses residual connections and batch 

normalization in addition to convolution and fully connected layers. We used the WRN 16-8 
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network for the CIFAR-10 dataset and the more complex CIFAR-100 dataset to test the 

effects on more challenging tasks.  

 

3.2. Hardware Characteristics  
We used 8bit ADC in our study because it has been found to offer a good balance between 

energy efficiency and resolution, as reducing resolution further does not appear to yield a 

meaningful improvement in energy/sample[18]. RRAM cells with an analog read current range 

of 0.3µA ~ 3µA, ADC input range of 0 ~ 45µA, array size of 265x64 were considered for the 

tiled implementation. 

 
Figure 3.Architecture-aware training process and parameters used during training. 
 
 
3.3. Training Process 
We first obtain floating-point models using standard practice. For the VGG-block-based[17] 

models, we trained for 150 epochs using the stochastic gradient descent (SGD) optimizer with 

a learning rate of 0.001, momentum of 0.9. For WRN models, we follow the parameters 

described in[19]. Then, different levels of hardware details are progressively introduced during 
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training, as schematically shown in Figure 3, along with the parameters used during the 

training processes. Specifically, Level-1 models are fine-tuned from the floating-point models, 

Level-2 models are fine-tuned Level-1 models, and Level 3 models are fine-tuned from 

Level-2 models. We found this approach leads to better model inference accuracy compared 

with training directly the Level-2 or Level-3 models from scratch with random weights[15]. In 

fact, we found that Level-3 MNIST models trained from random weights reached only 

77.78% accuracy (compared to 99.13% for model fine-tuned from Level-2 and float model) in 

previous studies, and Level-3 VGG and WRN models produced accuracies of only 10%, 

which is no more than chance for the CIFAR-10 dataset. In the fine-tuning process, we used a 

learning rate of 0.001 for the VGG-block-based model and trained for 20 epochs. For the 

WRN models, we used a learning rate schedule, where the learning rate starts at 0.003, then 

steps down to 0.001, 0.0005, 0.0002 after 5, 10, 15 epochs and trained for a total of 40 epochs. 

 

4. Effects of Computation Errors in Analog IMC Systems 

First, we present the effects of deterministic errors including weight and activation 

quantization, signed weight representation, limited RRAM array size, ADC precision 

limitations, and RRAM cell on/off ratios (Figure 4). For the 3 network-dataset combinations 

we studied, when only quantization (activation and weights quantized to 8bits) and signed 

weight representation were considered during inference (Level 2), there is minimal accuracy 

drop from just using the quantization-aware trained models[10] (Level 1). We do note that the 

activation quantization range in the inference pipelines must correspond to the input range of 

activation function used during training (ReLu6 etc.), or there is severe degradation in 

accuracy due to the limited range due to the quantization effects.  

 

However, in the presence of a low device on/off ratio and/or array size and ADC limitations, 

the quantization-aware trained models cannot produce acceptable accuracies. By introducing 

Au
th

or
 ntization, signed weight representation, limited RRAM array size, ADC precision 

Au
th

or
 ntization, signed weight representation, limited RRAM array size, ADC precision 

limitations, and RRAM cell on/off ratios (Figure 4). For the 3 network-dataset combinations 

Au
th

or
 

limitations, and RRAM cell on/off ratios (Figure 4). For the 3 network-dataset combinations 

studied, when only quantization (activation and weights quantized to 8bits) and signed 

Au
th

or
 

studied, when only quantization (activation and weights quantized to 8bits) and signed 

Au
th

or
 

ight representation were considered during inference 

Au
th

or
 

ight representation were considered during inference 

from just using the quantization-aware trained models

Au
th

or
 

from just using the quantization-aware trained models

activation quantization range in the inference pipelines must 

Au
th

or
 

activation quantization range in the inference pipelines must 

ctivation function used during trAu
th

or
 

ctivation function used during tr

accuracy due to the limited range due to the quantization effects.  Au
th

or
 

accuracy due to the limited range due to the quantization effects.  

M
an

us
cr

ip
tmodels. We found this approach leads to better model

M
an

us
cr

ip
tmodels. We found this approach leads to better model

with training directly the Level-2 or Level-3 models from scratch with random weights

M
an

us
cr

ip
t

with training directly the Level-2 or Level-3 models from scratch with random weights

we found that Level-3 

M
an

us
cr

ip
t

we found that Level-3 

 accuracy (compared to 99.13% for model fine-tuned from Level-2 and float model) in 

M
an

us
cr

ip
t

 accuracy (compared to 99.13% for model fine-tuned from Level-2 and float model) in 

evious studies, and Level-3 

M
an

us
cr

ip
t

evious studies, and Level-3 

which is no more than chance for the CIFAR-10 dataset. In the fine-tuning process, we used a 

M
an

us
cr

ip
t

which is no more than chance for the CIFAR-10 dataset. In the fine-tuning process, we used a 

rning rate of 0.001 for the 

M
an

us
cr

ip
t

rning rate of 0.001 for the 

WRN models, we used a learning rate schedule, where the learning rate starts at 0.003, then 

M
an

us
cr

ip
t

WRN models, we used a learning rate schedule, where the learning rate starts at 0.003, then 

down 

M
an

us
cr

ip
t

down to 0.001, 0.0005, 0.0002 after 5, 10, 15 epochs and trained for 

M
an

us
cr

ip
t

to 0.001, 0.0005, 0.0002 after 5, 10, 15 epochs and trained for 

Effects of Computation Errors in Analog IMC Systems M
an

us
cr

ip
t

Effects of Computation Errors in Analog IMC Systems 

irst, we present the effects of M
an

us
cr

ip
t

irst, we present the effects of 



  

This article is protected by copyright. All rights reserved 

the finite on/off ratio properties in the training pipeline, device-aware trained models can 

successfully mitigate the effect of limited on/off ratio down to 10, along with any effects due 

to the two-column signed weight representation, as shown in Figure 4. On the other hand, in 

the presence of array size and ADC limitations, the device-aware training, i.e. Level-2 

training pipeline, results in poor accuracy for the more complex models or datasets such as 

WRN. Acceptable results may be produced by Level-2 training for simpler models such as 

VGG-blocks due to the use of only Conv and FC layers which are generally more resilient to 

errors. As a result, tile-aware training (i.e. Level 3 pipeline) must be used for the more 

complex models or datasets to produce good accuracy, as shown in Figure 4. We believe the 

more complicated model structure with residue connections and the use of batch 

normalization layers make the WRN models more sensitive to errors. Particularly, models 

with batch normalization layers are sensitive to changes in activation distribution, and the 

quantization of partial sums due to ADC precision and range limitations produce a shift in 

activation distributions[20]. 

 
Figure 4.Effect of signed weights represented in two cells, on/off ratio, ADC, and array size 
limitation. Inference accuracy. Act Quant CR: activation and weight quantization 8bits with 
activation quantization range corresponding to ReLu6 used during training, on/off ratio 1000. 
Act Quant IR: activation and weight quantization 8bits with activation quantization range of 
0-1 which does not correspond to the ReLu6 range used during training. Act Quant CR + 
On/Off: low on/off ratio of 10. Act Quant CR + On/Off + Array + ADC: array size 265x64, 
8bit ADC. Floating-point accuracies for the CIFAR-10 VGG, CIFAR-10 WRN, CIFAR-100 
WRN models are 83.73%, 95.11%, and 74.74%. 
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5. Programming Variation Effects on Inference Accuracy 

Next, we examine the effects of device variations on network inference accuracy. Neural 

network models are trained off-line then programmed onto memory arrays for inference, and 

the weights do not change during the inference process. Combined with analog computation, 

this means any deviations that occur during the device programming process result in 

inference to be conducted on models that are effectively different from the trained models, 

leading to potential accuracy degradation. Different from deterministic errors discussed earlier, 

the randomness of device variations means each programmed chip maps an essentially 

different model. Re-training each chip individually may potentially recover the accuracy, but 

will be very expensive and impractical. In the following, we investigate the impact of device 

programming variation on large-scale DNN networks inference accuracy, the effectiveness of 

mitigations methods, and factors that impact network robustness against device variation 

under realistic device and circuit conditions. 

 

We examined the effect of weight variations using models trained with Level 1, 2, and 3 

pipelines, and studied the model accuracy in the corresponding inference conditions (e.g. 

when only quantization effects, quantization + device on/off, and quantization, on/off and 

finite array size and ADC precision effects are present during inference, respectively) (Figure 

5). Previous studies have shown that the VGG-block-based model had minimal accuracy drop 

even at relatively high variation levels, while more complex models show severe accuracy 

degradation [15]. In this section, we thus used the more complex WRN-16-8 models for the 

CIFAR-10 dataset to highlight the effects of device variations.  Au
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Figure 5.Variation effect under different inference pipelines for WRN-16-8 network on the 
CIFAR-10 dataset, for models trained with different levels of noise injection. The variation 
level is defined as standard deviation relative to the dynamic range of the weights. The 
boxplots show model inference accuracy distribution from 40 runs. Legend: variation injected 
during training. Orange lines: floating-point baseline. Ideal Array and ADC: no array size 
limitation, no quantization or range limitation of output. Realistic ADC: 8bit ADC with 0 ~ 
45µA as described in section 3.2, array size 256x64. 
 

In the accuracy test, after weight storage, variations were applied additively as Gaussian 

distributions with a constant standard deviation across all weights (i.e. 4% variation means the 

standard deviation is 4% of the dynamic range of memory cells). This variation distribution 

was chosen as a generic example, since memory technologies have substantially different 

characteristics, and it represents a near-worst-case scenario. On one side, many emerging 

resistive switching devices exhibit state-dependent programming variation, where lower 

conductance states are associated with lower variations[5,21], which is less detrimental to 

inference accuracy. On the other side, programming variations in multi-bit Flash memories 

are generally more state-independent while also suffering from additional non-linear 

behaviors[22,23]. In Level-2 and Level-3 inference pipelines, where signed weights are 

represented in two columns (Figure 1b), the variations are applied independently to each cell. 

This is different from variations that are directly applied to the signed weights (Level-1) and 

means the impacts of weight variations are not equivalent between Level-1 and the other 
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pipelines. We also note that the signed weight representation we adopted (Figure 1b) is more 

realistic than the approach where differential cells (cells consisting of two devices) are read 

out individually[2,5] and more practical to implement in circuits compared to the approach 

where 2 rows with positive and negative input voltages signs are used to represent to positive 

and negative weights. 

 

Because each programming session on each chip results in effectively different models and 

different inference accuracy, the process was simulated 40 times for each condition. The 

distribution of inference accuracy is shown in box plots (Figure 5). The models are expected 

to be programmed onto memory arrays and do not change during inference. Therefore, 

programming time is less important. Thus, the top 25 percentile in the accuracy distribution is 

more representative than the average or the median, because it can be achieved by attempting 

programming sessions multiple times. Gray boxes in Figure 5 represent inference accuracies 

of models trained without any mitigation measures, and, in general, accuracy degradation 

becomes unacceptable for variations beyond 4%.  

 

When comparing between Level-1 and Level-2 pipelines, accuracy degradation is more 

pronounced in Level-2 due to the signed weight representation and low on/off ratio of 

memory devices (Figure 5a and Figure 5b). When ADC and array size limitation is introduced 

at Level-3, surprisingly, the accuracy degradation at high variation levels (> 4%) improved 

compared to Level-1 and Level-2. This is likely due to the presence of trainable S2 multipliers 

on a per array basis we implemented in the tiled architecture (Figure 2)[15]. At this level, we 

can also observe the negative effect of a low device on/off ratio (Figure 5c and Figure 5d). 

However, in general, accuracy degradations become unacceptable when variations exceed 4% 

of the dynamic range. 
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As a natural extension in the architecture-aware training approach, we hypothesize that 

injecting noise during training may improve inference accuracy. Specifically, we used weight 

noise injection during training to mimic device programming variations to produce trained 

DNN models that can produce better inference accuracy in presence of variations. In this 

implementation, weight noise is added after each mini-batch during training, where an error is 

drawn from a Gaussian distribution for each weight then added to it. The standard deviation 

for the Gaussian distribution is defined as relative to the dynamic range of the memory cells. 

For example, 1.56% noise injection means the Gaussian distribution has a standard deviation 

that is 1.56% of the dynamic range of memory cells. From a general neural network training 

perspective, noise injection at inputs, hidden units, and weights during training have long 

been proposed as methods to improve the generalization ability of neural networks[24–28]. In 

particular, weight noise injection has been shown mathematically to improve fault tolerance 

as it produces networks with smoother input-output mapping where the output becomes less 

sensitive to noise[26]. Recent studies have also applied this method to analog computing 

systems[29–32]. However, these prior studies are generally limited to small-scale networks or 

did not consider realistic system limitations like ADC characteristics, device on/off ratios, and 

especially array size limitations. The improvements in inference accuracy from weight noise 

injection in training can be observed in Figure 5, and the trend in improvements is consistent 

across different inference pipelines. In general, higher-level noise injection leads to better 

accuracy recovery. For high device variations, noise injection not only allows the average and 

the peak accuracy to recover but also reduces the variation in performance between different 

runs. 

 

The improvements from noise injection can also be observed from model outputs directly. 

Figure 6a shows the error in model outputs caused by device programming variation with 

CIFAR-10 validation dataset as input. For inference with a programming variation level of 
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6.24%, the injection of noises of the same level during training significantly reduces the error 

in the model outputs. For inference with a higher device programming variation of 12.48%, 

although substantial errors still occur with 12.48% noise injection, the trend in improvement 

is similar. When random patterns are used as input for models trained on the CIFAR-10, the 

error caused by programming variation is significantly larger Figur 5b. This suggests that 

neural network models are trained for a specific input distribution, and the impact of weight 

variation can be more pronounced if the inference task is different from that during training. 

 

The robustness of neural network models against weight variation can be characterized as part 

of the generalization ability. It has been shown that the addition of weight variation 

exacerbates inference error caused by generalization limitations and roughness of neural 

network models[26]. This means, in order to obtain acceptable inference accuracy for the same 

tasks, the models will need to have better generalization ability in the presence of weight 

variation, and many factors in the training process influence the ability. Indeed, we have 

found that even when models have similar accuracy with no weight variations, they can have 

very different robustness against variations. Prior literature has shown ample results for the 

effects of quantization and learning rate on the generalization ability in standard digital 

implementation. However, the effects of these factors on neural networks model have not 

been discussed in the context of analog in-memory computing systems with the presence of 

realistic hardware limitations. In the next section, we investigate the impact of learning rate, 

programming target resolution, and different inference pipelines have on model robustness 

against weight variation. Au
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Figure 6.The proportional error of network model inference output with weight programming 
variation compared to inference output without variation, Level-3 model in Level-3 inference 
pipeline with on/off ratio of 10. Programming variations are simulated 40 times, and results 
are aggregated. Tr. Var.: variation injected during training. Inf. Var: variations experienced in 
the device programming process. (a) images from the validation dataset as input to the 
network. (b) random pattern as input to the network. 
 
 
5.1. Effect of Higher Target Programming Resolution 
Although 8bit programming target resolution cannot be reliably represented by devices with a 

variation of even as low as 1.56%, we found, compared to 4bit programming target, higher 

target resolution produces models more robust to programming variations (Figure 7). Thus, 

8bit programming target resolution was used in this work. We believe this is because, 
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although quantization-aware training methods produce models more suited for the specific 

deterministic error caused by quantization, these models have diminished generalization 

ability, thus more sensitive to any additional errors like device variation[10,33]. The higher 

target resolution produces trained models with wider local minima, thus higher robustness 

against variation in weights.  

 
Figure 7.Sensitivity to variation of tile-aware trained WRN-16-8 CIFAR-10 model in tiled 
inference pipeline with ADC limitation, array size of 265x64, on/off ratio of 10 for both 
training and inference, accuracy evaluations were run 40 times. a) models trained with 8bit 
quantized weights and 8bit programming target resolution during inference. b) models trained 
with 4bit quantized weights and 4bit programming target resolution during inference. 
 
 
5.2. Effect of Difference Inference Pipeline on the Same Models 
We observed that although the same model can generally achieve very similar accuracies 

under different inference pipelines, in the presence of weight variations very different 

behaviors are obtained. For example, Level-1 trained models show similar accuracy in the 

Leve-1 (Figure 5a) and Level-2 (Figure 8a) inference pipelines. However, in the presence of 

relatively high weight variations, the accuracies are consistently lower in the Level-2 

inference pipeline. This is likely because Level-1 trained models are not optimized for the 

Level-2 inference pipeline when additional hardware details are introduced that are not 

incorporated during training, but the errors may not be large enough to cause accuracy 

degradation when there is no weight variation. In the presence of weight variations, the effects 

are amplified and lead to much worse accuracy degradation when training is not matched with 

the inference conditions. 
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Figure 8.WRN-16-8 models for the CIFAR-10 dataset. a) Accuracy of Level-1 trained model 
in Level-2 inference pipeline. b) 75th percentile accuracies of Level-1 trained models in Leve-
2 inference pipeline, normalized to Level-1 inference pipeline accuracies of coresponding 
training and inference variation. 
 
 

 
Figure 9.Effects of learning rates. a) Device-aware models trained with a learning rate of 
0.0002, evaluated in tiled inference pipeline. b) 75th percentile accuracies in Figure 9a 
normalized to that of models trained with learning rate schedule (Figure 5b). c) 75th percentile 
tile-aware models evaluated in the tiled pipeline with an on/off ratio of 10. d) Accuracies in 
Figure 9c normalized to that of models trained with learning rate schedule (Figure 5d).  
 
 
5.3. Impact of Learning Rate  
When a simple learning rate of 0.0002 is used in the fine-tuning process instead of the 

learning rate schedule described in Section 2.2, models achieved similar accuracies with no 

weight variation. When weight variation is introduced, device-aware trained models (Level 2) 

showed no clear pattern between the two different learning rates, while tile-aware trained 
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(Level 3) models with a learning rate of 0.0002 are more sensitive to weight variations 

compared to ones obtained with the learning rate schedule (Figure 9). It is well known that 

selecting suitable learning rates is critical in the training process for neural network models to 

converge to optimal states, and learning rate schedules are often superior to constant learning 

rates[34]. In this particular case, the learning rate schedule showed an advantage in Level-3 

training but not in Leve-2 training. We believe the addition of array size and ADC limitations 

at Level-3, analogous to weight quantization, results in models with less smooth input-

mapping, thus illuminating the difference between models produced by the different learning 

rates. 

 

6. CIFAR-100 Results and Discussions 

We also considered the WRN-16-8 model for the more complex CIFAR-100 dataset. The 

results showed a similar general trend to the results for the CIFAR-10 dataset, while models 

are much more sensitive to variations across the board with significant accuracy degradation 

at as low as 2% variation (Figure 10). This, again, illustrate that larger-scale networks, as well 

as more complex tasks, are more sensitive to weight variations during inference, and as neural 

networks and tasks become more complicated, further improvements in DNN model 

robustness and device performance may be required.  

 

Other than improving the intrinsic precision of memory devices, two main methods have been 

proposed to improve weight storage precision. The first is using multiple cells to encode 

different bits of one weight[21,35], and the second is to use closed-loop, write-verify 

programming schemes[36,37]. Using multiple cells drastically decreases memory density and 

incurs additional peripheral circuit overhead, thus resulting in decreases in computing 

efficiency in terms of both area and energy. Closed-loop programming processes have already 

been widely implemented, but have not been able to yield programming precision high 
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enough for 8bit or even 4bit weights. As shown in Figure 10, even 2% variation can lead to 

significant accuracy degradation for complex tasks. 

 

Here we provide another possibility for future device and programming algorithm design. 

Neural networks are generally sparse, where weights close to zero constitute a large portion of 

all weights. This means programming variations at low conductance states have much higher 

impacts, and non-uniform device programming variation characteristics can be engineered to 

minimize the effect at low conductance value. In particular, most resistive switching memory 

technologies have a limited analog dynamic range where conductance can be changed 

continuously, compared to the entire dynamic range. For weights close to zero, the 

corresponding memory devices can be hard reset, where conductance is set to the lowest 

possible value beyond the analog range. This would greatly reduce weight variation for 

weights close to zero because the absolute variation at the lowest conductance state is 

generally much lower compared to that inside the analog range. Although hard reset can have 

an impact on endurance in some memory technology, programming is expected to be 

infrequent, and endurance is unlikely to be the primary limiting factor. 
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Figure 10.Variation effect under different inference pipeline for WRN-16-8 network on 
CIFAR-100 dataset. 
 

7. Conclusion 

In this work, we took a systematic look at the weight variation effect caused by memory 

device programming in analog IMC systems, which appears to be the most difficult error 

source to mitigate. We show proper noise injection can improve model robustness against 

weight variations. However, in the presence of moderate to high variations and for complex 

tasks and models, these methods may not be able to fully recover the accuracy drop. Thus, 

further developments in algorithms to produce neural networks that are more robust against 

weight variations could be critical for practical deployment for analog IMC systems for neural 

network workload. 
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