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1. Introduction

It is now well-established that the human 
microbiome, the community of microbes 
that inhabit nearly every organ in the 
human body[1,2] but particularly the skin, 
mouth, and gut,[3,4] is linked to numerous 
facets of human health and disease 
including inflammatory bowel disease, 
asthma, obesity, dental caries, atopic der-
matitis, type 1 and 2 diabetes, cancer, 
and even mental health or neurological 
conditions such as schizophrenia and 
Parkinson’s disease.[3,5,6] Diet, geography, 
medication, hygiene, housing, and phys-
ical activity each shape the structure and 
diversity of the community, but the ear-
liest effects that create our baseline micro-
biome begin at birth.[3,7,8]

Birthmode, antibiotic exposure, gesta-
tional age, and feeding are each known 
to impact the development of the infant 
gut microbiome through extensive 

The first week after birth is a critical time for the establishment of micro-
bial communities for infants. Preterm infants face unique environmental 
impacts on their newly acquired microbiomes, including increased incidence 
of cesarean section delivery and exposure to antibiotics as well as delayed 
enteral feeding and reduced human interaction during their intensive care unit 
stay. Using contextualized paired metabolomics and 16S sequencing data, the 
development of the gut, skin, and oral microbiomes of infants is profiled daily 
for the first week after birth, and it is found that the skin microbiome appears 
robust to early life perturbation, while direct exposure of infants to antibiotics, 
rather than presumed maternal transmission, delays microbiome development 
and prevents the early differentiation based on body site regardless of delivery 
mode. Metabolomic analyses identify the development of all gut metabolomes 
of preterm infants toward full-term infant profiles, but a significant increase 
of primary bile acid metabolism only in the non-antibiotic treated vaginally 
birthed late preterm infants. This study provides a framework for future multi-
omic, multibody site analyses on these high-risk preterm infant populations 
and suggests opportunities for monitoring and intervention, with infant antibi-
otic exposure as the primary driver of delays in microbiome development.
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Premature birth correlates with disparities in the metabolomic 
and microbial compositions in infant microbiomes,[47–49] with 
delayed colonization of “traditional” bacteria in very-low birth 
weight preterm (VLBW) infants.[50] Establishment of the micro-
biome in the first days to weeks after birth can have important 
implications later in life, due to the far-reaching health asso-
ciations. Infants born late preterm (LP) and with VLBW are at 
higher risk for infant mortality, sepsis, hypoglycemia, feeding dif-
ficulties, and long-term neurodevelopmental impairment[47,48,51,52] 
compared to infants born at full-term (FT), yet the mechanisms 
for these risks are poorly understood. Their higher incidence of 
delivery by cesarean section, routine administration of antibi-
otics to both mothers and preterm infants and frequent use of 
formula places them at high risk for developing an abnormal or 
delayed gut microbial community.[19,33,45] Furthermore, although 
differences in the microbiome have been observed in the gut 
communities of FT compared to those of preterm or VLBW 
infants,[17,53,54] few studies have examined the development and 
diversification of distinct, body-site specific (e.g., skin, oral, nares, 
and stool) infant microbiomes, and only on the order of weeks 
and months.[12,15,54] Distinct oral and gut communities were not 
observed until 15 d after birth in a small cohort of six preterm 
infants (five without antibiotic exposure), or as late as six weeks 
in a larger cohort of 162 FT infants,[15] while disparities between 
the gut, oral, and skin microbial communities and metabolomes 
between preterm and VLBW infants in the neonatal intensive 
care unit (NICU) remains largely unexamined.

To provide additional resolution and further this under-
standing, we conducted 16S rRNA gene amplicon sequencing 
and untargeted metabolomic analyses on gut, oral, and skin 
samples collected daily for the first week after birth from LP 
infants born either via cesarean section or vaginally in San 
Diego and who were fed mother’s milk supplemented with 
either donor human milk (DHM) or formula. We also exam-
ined the impact of birthweight in shaping the development of 
the microbial community in VLBW infants born via Cesarean 
section who were housed in the NICU during this same period 
of collection. Together these cohorts enabled us to characterize 
the effect of early life exposures, including delivery mode, anti-
biotics and type of milk on the initial colonization and differen-
tiation of their gut, oral, and skin microbiota and metabolomes 
during this critical window of holobiont development. We show 
that although the microbiome at each body site changed over 
the first week of life, robust differentiation among these micro-
biomes was only observed in non-antibiotic exposed late pre-
term infants regardless of delivery mode. In addition, we find 
that the metabolomic profile of each body site is dominated 
initially by host chemistry, but microbial influence begins to 
appear within the first week after birth, with a stronger impact 
in non-antibiotic exposed infants.

2. Results

2.1. Study Groups and Exclusion Criteria

Eighty-five preterm infants (60 LP and 25 VLBW) were 
recruited from the UC San Diego NICU for approximately 
daily sampling of the oral, skin, and feces during the duration 
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characterization by 16S rRNA gene amplicon sequencing.[9–15] 
Infants born via Cesarean section are initially colonized by skin 
microbiota from their mothers and other adults, whereas infants 
born via vaginal delivery primarily receive a mix of vaginal 
and stool microbes.[12,16,17] This difference is reported to delay 
gut colonization by common adult-associated microbes,[12,18,19] 
and is associated with adverse health effects,[20–22] but the pre-
cise mechanisms remain unclear. Gestational age at birth also 
profoundly impacts development of the infant gastrointestinal 
tract, and is associated with additional short and long-term 
health outcomes,[23,24] perhaps partly attributable to altered gut 
microbiome development.[21,25] However, studies of gestational 
age are often confounded by birthmode and antibiotic expo-
sure because lower gestational age is associated with birth by 
cesarean section and high antibiotic use.[26–28] Studies of the 
impact of antibiotics rarely examine proximal effects, and there 
is likely considerable under-reporting of antibiotic exposure in 
infants born via vaginal delivery,[29,30] and over-reporting of anti-
biotic exposure in infants born via Cesarean section, because 
studies typically assume infants born via Cesarean section are 
either exposed to antibiotics via their universally antibiotic-
treated mothers or otherwise affected by antibiotic effects  
(e.g., alteration in breast milk microbiota or metabolite compo-
sition of breast milk).[31,32]

After birth, infants are exposed to their first forms of food: 
colostrum, breast milk (either from their mother or a donor), 
and/or formula.[18,33] Breast milk is a complex mixture including 
micronutrients, macronutrients, and bioactives, such as human 
milk oligosaccharides (HMOs), along with immune factors and 
breast milk microbiota, which change in composition with infant 
age and differ between mothers based on maternal characteris-
tics.[34–36] HMOs, a group of diverse compounds unique to each 
mother,[37] cannot be metabolized by human cells but are con-
verted into other metabolites including short-chain fatty acids 
(SCFA), a primary energy source, by gut microbes.[38] Although 
formulas contain HMOs, these HMOs are less complex than in 
breast milk; formula also lacks diverse immune factors found in 
breast milk.[39] Different types of infant diet and feeding prac-
tices, including differences between direct and indirect breast-
feeding,[40] have been shown to correlate with the gut microbiome 
and later health implications.[33,41–44] However, the reported  
relationships between the type of milk (breast milk versus for-
mula) an infant receives and their microbiomes vary among 
studies. Over larger time scales, taxonomic groups change based 
on diet such that gut samples in a longitudinal study were more 
similar to each other in the first sample than the final sample 
collected at age 2.5 years,[45] with developmental milestones such 
as the introduction of solid foods or the weaning off of breast 
milk resulting in a specific decrease in Bifidobacteria, the bacteria 
that reduce the conversion of HMOs to SCFA.[46]
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of their stay, resulting in a total of 1799 samples (Figure 1A). 
Untargeted metabolomics data were generated for 1682 sam-
ples and 16S rRNA gene amplicon sequencing was performed 
on 1654 samples, with paired data generated for 1547 samples. 
For this investigation, we focused on changes in the microbial 
community and metabolome as a function of birth weight, 
delivery mode and antibiotic use in the first 7 d after birth, 
resulting in the exclusion of 482 16S and 495 metabolomic sam-
ples. Insufficient samples were available for examining VLBW 
infants born via cesarean section without antibiotic administra-
tion, or born vaginally over time resulting in the exclusion of 
an additional 100 16S and 107 metabolomic samples. Finally, 
130 samples with fewer than 500 16S sequencing reads were 
excluded (Figure 1A, Table 1). A total of 1080 samples remained 
for metabolomic analyses and 942 samples remained for 16S 
analyses from 75 infants, consisting of three cohorts: 29 late 
preterm infants born via cesarean section (LP-C), 28 late pre-
term infants born vaginally (LP-V), and 18 very low birth weight 
preterm infants born via cesarean section (VLBW-C) (Figure 1B) 
with samples available from at least 30 infants across all three 
cohorts for each body site for each day of sampling (Figure S1, 
Supporting Information).

2.2. Determination of Significant Drivers of Microbial  
Community Separation

Stepwise redundancy analysis (RDA)[55] of robust Aitchison 
distances between all samples from the 16S sequencing data, 

which account for the compositional nature of these data,[56] 
revealed that as expected, individual had the strongest impact 
on microbial community composition (stepwise ANOVA,  
R2 = 0.196, F = 4.8, p = 0.002) (Table S1, Supporting Informa-
tion). To better parse out the more subtle effects on composition,  
we removed the individual from the model and re-ran the step-
wise redundancy analysis. Body site had the next strongest 
impact on the microbial community (stepwise ANOVA,  
R2 = 0.170, F = 97.14, p = 0.002), followed by antibiotic exposure 
(R2 = 0.095, F = 121.59, p = 0.002), age (day after birth) (R2 = 0.043,  
F  = 59.16, p  = 0.002), birth weight (R2  = 0.016, F  = 23.04,  
p = 0.002), and delivery mode (R2 = 0.014, F = 20.51, p = 0.002). 
Using stepwise RDA within body sites (again removing individual 
from the formula) revealed significant effects for all primary vari-
ables of interest. In stool, the strongest effect on the microbial 
community was delivery mode (R2 = 0.141, F = 50.05, p = 0.002)  
followed by significant effects from antibiotic exposure, age, 
and delivery weight (Table S1, Supporting Information). LP 
infants were also randomized into two groups that received 
either supplemental donor breast milk or supplemental for-
mula (Table  1, Experimental Section). This randomization 
group had a small, but significant effect on the stool micro-
bial community (R2  = 0.013, F  = 3.69, p  = 0.002). Within the 
oral community, antibiotic exposure had the strongest effect  
(R2 = 0.249, F = 104.35, p = 0.002) followed by age, birth weight, 
and delivery mode (Table S1, Supporting Information). For skin, 
age had the strongest effect (R2  = 0.114, F  = 43.11, p  = 0.002),  
followed by birth weight and delivery mode (Table S1, Sup-
porting Information).

Figure 1.  Sample counts and workflow diagram for 16S rRNA gene amplicon and untargeted metabolomics data. a) Sample filtering steps displaying 
the remaining samples after each filtering criterion. b) Sample data density for each infant over the first week after birth for stool, oral, and skin. Each 
column represents one infant and fill color indicates presence of 16S and/or metabolomics data. Infants divided by birth mode and birth weight.
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2.3. Alpha and Beta Diversity Changes over the First  
Week after Birth

The microbiome of each infant is influenced by their ini-
tial exposures outside the womb, and our multibody-site 
analyses enabled us to assess the differentiation of each 
body site over time in our cohorts. As previous reports have 
detailed the impact of antibiotics and delivery mode on the 
infant gut community,[12,54,57] we subdivided individuals into 
five groups for comparison: LP-V/Abx(+/−), LP-C/Abx(+/−), 
and VLBW-C/Abx(+); too few VLBW-C subjects were not 
administered antibiotics to enable adequate comparisons in 
the VLBW cohort. No differences in alpha diversity of the 
microbes (Shannon index) were found across any of the 

groups over time, with a contraction in alpha diversity of all 
microbiomes to a similarly-restricted community over the 
first week after birth (Figure S2, Supporting Information). 
We then compared changes within each body site by com-
paring robust Aitchison distances over time to the earliest 
available samples (day 0 for LP infants and day 1 for VLBW 
infants) within each infant. Skin microbiomes changed 
significantly in all cohorts over time (linear mixed effects 
models, p = 0.001 for LP-V; p = 0.003 for LP-C; and p = 0.032 
for VLBW-C). Oral microbial communities significantly 
changed in all cohorts (linear mixed effects models p = 0.001 
for LP-V; p  = 0.002 for LP-C; p  = 0.002 for VLBW-C). The 
stool microbiome was only significantly changed in the LP-C 
and VLBW-C groups (linear mixed effects models p = 0.0001 

Table 1.  Demographics of preterm infant cohorts. Group significance determined by chi-square test when appropriate.

LP-Vaginal LP-C-section VLBW-C-section Group significance

Number of infants 28 29 18

Birth gestational age (weeks) 35.0 (0.86) 35.0 (0.85) 28.4 (2.06) 1.45 × 10−29

Birth weight (grams) 2548.8 (471.49) 2555.2 (557.49) 1079.2 (280.3) 4.22 × 10−17

Maternal age (years) 32.9 (5.27) 32.8 (5.69) 31.5 (7.78) n.s.

% Female 39.3 41.4 55.6 n.s.

Ethnicity

White 28.6 44.8 44.4 n.s.

Hispanic 42.9 31 33.3 n.s.

African American 3.6 17.2 22.2 n.s.

Other 25 6.9 0 0.013124

Randomization

Donor breast milk 15 15 n/a

Formula 13 14 n/a

16S Samples

Stool n 101 119 85

% antibiotics exposed 31.7 20.2 100

Oral n 117 126 87

% antibiotics exposed 29.9 20.6 100

Skin n 116 136 102

% antibiotics exposed 25 20.6 100

Metabolomics samples

Stool n 131 140 89

% antibiotics exposed 29 20 100

Oral n 114 142 109

% antibiotics exposed 29.8 21.1 100

Skin n 108 139 108

% antibiotics exposed 32.4 20.1 100
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for LP-C; p  = 0.025 for VLBW-C), however, the LP-V infant 
stool at day 1 already had relatively high distance from day 
0 samples.

2.4. Changes in Infant Microbiome Differentiation

As clear changes occurred in most body sites and groups rela-
tive to their origins, we tested whether these changes were 
reflective of niche differentiation by body site. Robust Aitch-
ison principal components analysis (PCA) revealed a pattern 
wherein the microbiomes were significantly differentiated at 
1 d since birth in both LP/Abx(−) groups (V and C), but not in 
the VLBW-C/Abx(+) group (Figure 2a,b). Over the first week 
after birth, differences emerged in the degree of separation 
among the three body sites, as assessed by PERMANOVA 
pseudo-F score. Increased body site separation was seen 
only in the Abx(−) groups while the Abx(+) groups were not 
significantly differentiated or were significantly differentiated 
at fewer time points with a low pseudo-F score (Figure  2b). 
Classifying samples by maternal exposure to antibiotics 
showed a stark difference between infants receiving antibi-
otics compared to those assumed to be exposed via maternal 
antibiotic administration perinatally (Figure S4, Supporting 
Information). However, stratification of the data after 
applying the principle of metabolome-informed microbiome 
analyses[58] to provide empirical evidence of maternal anti-
biotic transfer demonstrated a pattern most similar to the 
classification of direct infant exposure only (Figure S5, Sup-
porting Information).

2.5. Comparison of Infant Microbiomes to Adult Microbiomes

As clear differentiation occurred over the first week after birth 
in the Abx(−) groups, we evaluated the proportion of each micro-
biome in our analytical groups that could be attributed to their 
more mature equivalents and potential sources. We trained 
a Bayesian microbial-source tracking algorithm on 16S data  
from the gut (n  = 4434), oral (n  = 2550), skin (n  = 1975), and 
vaginal (n = 427) communities from 11 public studies of adults 
age 20–80, stool samples from a cohort of FT infants age  
0.5–4 months (n  = 87) (list of studies and details in Table S2, 
Supporting Information[3,59–63]) and determined the percent-
ages of each community that could be assigned to the expected 
body site or source of origin. Approximately half of the skin 
microbial community in the LP-V and VLBW-C groups was 
attributable to adult skin from the first day after birth, while 
this fraction exceeded 75% in the LP-C groups (Figure 3, right 
columns). By 6 d after birth, this proportion increased to nearly 
100%, after an initial period of attribution to the vaginal micro-
biome in LP-V groups. The oral microbiome of all infants 
except LP-V/Abx(−) was primarily attributable to skin for all 
infant samples for the first 3 d since birth, however by day 4, 
Abx(−) infant samples were almost entirely attributable to the 
adult oral community while the Abx(+) infant samples remained 
primarily attributable to skin (Figure 3, center columns) with a 
trend towards increased oral attribution near the end of sam-
pling for the LP-V/Abx(+) group. The brief dominance of oral 
attribution at day 4 in LP-C/Abx(+) was driven by a large relative 
abundance of Streptococcus in a minority of samples at that time 
point (Figure  3b, center panel). Attribution to adult stool was 

Figure 2.  Impact of antibiotics exposure on the differentiation of the microbial community of preterm infants over the first week after birth. a) Robust 
Aitchison principal components analysis (PCA) based on 16S V4 amplicon sequence variants (ASVs) of the gut (blue), oral (green), and skin (orange) 
microbiomes collected at day 1, 4, and 7 after birth from late preterm infants (LPs) born vaginally (LP-Vaginal) or by cesarean section (LP-C-section) 
and very-low birth weight (VLBW) preterm infants (VLBW-C-section), with samples from children exposed to antibiotics as reported by clinical metadata 
(Infant Abx(+); triangles) and those without exposure to antibiotics (No Abx(−); circles) differentiated. b) PERMANOVA for differences in sample type 
(stool, oral, skin) based on Aitchison distances between all within-group samples for LP-Vaginal, LP-C-section, and VLBW-C-section preterm infants 
daily over the first week after birth, separated by Abx exposure. Diamonds above points indicate significant Permdisp tests (p < 0.05) which indicate 
significantly different dispersion among body sites. Refer to Table S3 (Supporting Information) for sample sizes in each comparison.
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highest in the gut microbiome of LP-V/Abx(−) samples with a 
slight increase over time, though never exceeding 25% attribu-
tion (Figure 3a). Instead, the gut microbiome of these infants 
rapidly increased to resemble the gut of FT non-antibiotic 
exposed infants born vaginally (FT-V/Abx(−)) with delayed and 
reduced pattern of increasing attribution observed in LP-C/
Abx(−) samples (Figure  3a, left panels). In contrast, while the 
gut microbiome of LP-V/Abx(+) samples initially resembled 
FT-V/Abx(−) stool, it quickly declined and the microbiome of all 
three groups of Abx(+) samples was <50% attributable to FT-V/
Abx(−) stool at day 7 (Figure  3b, upper left panel). Grouping 
samples based on maternal, rather than infant antibiotic 
administration, obscured these differences and a universal pat-
tern of increasing attribution to the expected body site for all 
infant groups (Figure S6, Supporting Information).

2.6. Differentially Abundant Microbes due to Age, Antibiotics, 
and Breast Milk Supplementation

To identify specific changes in microbial abundances associated 
with differentiation and development, we used Songbird,[64] a 
tool that overcomes the compositionality of microbiome data by 
ranking features based on log-fold changes with respect to vari-
ables of interest. We constructed models for each body site sep-
arately using only non-antibiotic exposed LP infants using age, 
delivery mode, and randomization (i.e., breast milk or formula 
supplementation) as explanatory variables (Figure 4). Each of 
these models resulted in a Q2  > 0, indicating that the model 
including the variable attained higher predictive accuracy than 
the baseline model not including the variable. Bifidobacteria 
in stool and Rothia in oral samples were most highly associ-
ated with increased age, while the common urinary tract genus  
Ureaplasma, was strongly associated with oral and stool samples 

from younger infants. The genera Aggregatibacter and Serratia 
were most associated with formula supplementation and Staph-
ylococcus was most associated with donor human milk sup-
plementation (Figure S7, Supporting Information) in stool. In 
contrast, no microbial taxa were found to be highly associated 
with these factors in skin (Songbird Q2 > 0).

To identify differentially abundant microbes associated with 
infant antibiotic use, separate models were constructed by body 
site including both the antibiotic-exposed LP and VLBW infants 
with antibiotic exposure as the explanatory variable (Figure 4c). 
In stool, Corynebacterium and an unidentified genus in the class 
Bacilli were most associated with antibiotic exposure, while the 
genera Serratia, Neisseria, Actinobacullus, and Bifidobacterium 
were most associated with non-antibiotic exposed samples. In 
skin samples, Ureaplasma and the common vaginal microbe 
Gardnerella were most associated with antibiotic exposure.

2.7. Metabolomic Changes in the First Week after Birth

Given the major microbiome changes observed during the 
first week after birth, we sought to examine whether there was 
evidence of these changes in the metabolomic profiles of each 
body site within each infant for our cohorts. PCoA of the com-
position of unique metabolites, assessed by Jaccard distance, 
revealed that each body site within each cohort was significantly 
different throughout the first week after birth as expected for 
unique host compartments (Figure S8, Supporting Informa-
tion). However, when comparing Jaccard distances over time 
to the earliest available samples (day 0 for LP infants and day 
1 for VLBW infants) within each infant, a different pattern 
emerged. While changes were not significantly different in 
any cohort for the skin profile (linear mixed model p  > 0.05) 
the profile of oral samples was significantly different with time 

Figure 3.  Antibiotics and delivery mode alter maturation of microbial communities over the first week after birth. SourceTracker2 analysis showing 
proportion of LP and VLBW infant microbial communities attributed to adult or full term (FT) infant microbiomes based on 11 public studies in Qiita 
and a cohort of 87 FT infants not exposed to antibiotics aged 0.5–4 months (Experimental Section). Lines represent the mean (+/− SEM) proportion 
of the microbial profile attributed to a specific source for all samples from preterm infants within each cohort displayed by birth-mode (rows) and 
body site (column). a) Preterm infant samples not exposed to antibiotics. b) Preterm infant samples after exposure to antibiotics. Refer to Table S3  
(Supporting Information) for sample sizes of the lP and VLBW infants at each time point.
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for the LP-C cohort (linear mixed model p = 0.001; Figure 5a). 
In contrast, the stool metabolome of each infant changed sig-
nificantly over the first week after birth in all cohorts (linear 
mixed model p  = 0.003 for LP-V, p  = 0.018 for LP-C, and  
p = 0.001 for VLBW-C; Figure 4a). Differential abundance anal-
ysis via Songbird revealed that several metabolites increased 
with time including diet-related metabolites such as oleic acid 
and conjugated linoleic acid, while several primary conju-
gated bile acids, such as taurocholic acid and glycocholic acid, 
decreased over time (Figure 5b).

2.8. Bile Acid Changes in Stool Metabolome

We further investigated the changes in the log ratio of the rela-
tive abundances of non-microbially modified primary bile acids 
versus secondary, i.e., microbially modified, bile acids in infant 
stool samples over time. As primary bile acids are transformed 
into secondary bile acids through microbial metabolism, the 

ratio of these should give a measure of changes in microbial 
metabolism in our groups. We observed a significant change 
in the ratio of secondary to primary bile acids in stool samples 
over the first week after birth only in the LP-V/Abx(−) group 
(linear mixed effects, p  = 0.001, slope = 0.188; Figure  5c). The 
LP-C infants show a similar increasing trend, but had a high 
ratio at day 0 for unknown reasons. The log-ratio for LP-C/Abx(+) 
infants mostly remained constant, while the LP-V/Abx(+) infants 
showed an increasing trend, but the model was not significant 
due to low sampling density and higher variance. This data sup-
ports the idea that in the absence of antibiotic exposure, the gut 
microbiome of LP infants differentiates and gut-specific micro-
bial metabolism occurs within the first week after birth.

2.9. Microbe-Associated Changes in Stool Metabolome

Given our observation of increasing microbial differentiation by 
body site over the first week after birth, we hypothesized that 

Figure 4.  Top differentially abundant microbes based on Songbird differentials. Top 5 genera positively and negatively associated with a) age and  
b) delivery mode in non-antibiotic-exposed samples from LP infants in stool and oral microbial communities based on 16S sequencing. The songbird 
model fit for stool (Q2 = 0.072) and oral (Q2 = 0.014). Top 5 genera positively and negatively associated with c) antibiotics based on stool, oral, and skin 
samples from LP and VLBW infants based on 16S sequencing. The Songbird model fit for stool (Q2 = 0.222), oral (Q2 = 0.316), and skin (Q2 = 0.038). 
Results for skin are not shown in (a) and (b) because the Songbird model was unable to fit to data. Songbird differential values describe the log-fold 
change of genera with respect to the metadata category given.
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microbes would have an increasing effect on the infant metabo-
lome over that time. We compared the composition of matched 
16S and metabolomic samples from LP infants using Mantel 
tests with data divided by infant day after birth, antibiotic expo-
sure, and delivery mode, each observed to be major factors 
influencing the microbial profile. Mantel tests for the first 4 d 
after birth were largely nonsignificant, however, days 5, 6, and 
7 in LP-V/Abx(−) infants were significant with an increasing 
trend in the Mantel correlation. Furthermore, the microbial 
community and metabolome were significantly correlated in 
all LP groups except LP-C/Abx(+) infants (Figure S9, Supporting 
Information).

3. Conclusion

Research regarding the development of the human micro-
biome has increased dramatically in the last decade, and will 
increase as researchers and clinicians identify new methods of 
intervention and establish best practices during critical early 

windows of microbial community niche differentiation. LP and 
VLBW infants represent two of the most at-risk populations for 
adverse impacts of early life exposures, and even a brief NICU 
stay may increase these risks via inadequate exposure to the 
necessary milieu of microbes, exposure to antibiotics, and/or 
delays in feeding.[65] Early life provides a unique opportunity for 
potential microbiome-directed interventions and for observing 
microbiomes with few exposures compared to adults,[8,21,45] 
although key factors in early development such as antibiotic 
use and diet play a significant role for the gut microbiome 
regardless of age.[3]

Here, by implementing daily sampling, and a multi-omic, 
multi-body site analysis in the context of publicly available 
human data from infants and adults in Qiita[66] and publicly 
available information in GNPS,[67] we were able to examine 
the impact of these factors on the developing microbiomes of 
preterm infants in the first week after birth. The skin micro-
biome in all infants appeared to develop a resemblance to 
adults regardless of exposure or delivery mode, suggesting that 
at least one niche may be resilient to these effects. The lack of 

Figure 5.  Metabolomics profiles change over the first week after birth. a) Within-infant metabolome distance to first sample over time. For each infant, 
the Jaccard distance to the first sample (day 0 for LP infants, day 1 for VLBW infants) is plotted over time for each body site. Boxplots show median 
and interquartile range with whiskers extending to the furthest value within 1.5 times the edge of the interquartile range. Red lines show the fitted 
linear mixed effect model with individual as a random effect and age as a fixed effect. P-value and slope of the age variable shown. Stool samples for 
all cohorts (LP-Vaginal, LP-C-section, VLBW C-section) and oral samples for LP-C-section infants have a significant increasing slope, corresponding 
to increased distance from the first time point over the first week after birth. All data points are shown with shape indicating infant antibiotic expo-
sure. b) Top 5 identified metabolites positively and negatively associated with age based on Songbird model including LP infants. Songbird model fit  
(Q2 = 0.017. c) Log ratios of secondary bile acids over primary bile acids, identified using GNPS annotations to structural family matches. Linear mixed 
effects models were run in the same way as panel (a). Refer to Table S3 (Supporting Information) for sample sizes in each comparison.
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oral versus stool microbiome differentiation and development 
in the VLBW infants, who are typically both born via Cesarean 
section and administered antibiotics, is of concern, and sug-
gests that these infants may be able to benefit most from any 
interventions, e.g., vaginal-seeding,[68] or compensatory actions. 
Crucially, by separating the effects of presumed intrapartum 
antibiotic exposure from clinically reported direct antibiotic 
administration, we demonstrate that only the latter form of 
exposure appears to have a significant impact on the differen-
tiation of the microbial communities and the establishment of 
the normal stool and oral microbial communities. While we 
saw empirical evidence that antibiotic exposure was occurring 
in infants from maternal use and/or other sources, reclassi-
fying antibiotic-exposed samples per body site did not impact 
these results. Together these data suggest that future studies 
should separate these groups to better elucidate differential 
impacts of antibiotics on the infant microbiome via maternal 
versus direct exposure when examining short or long-term 
impacts of delivery mode.

Using compositionally aware methods enabled us to identify 
specific taxa enriched in infants supplemented with formula 
or DHM. Our observation that members of the Staphylococcus 
genus were associated with DHM supplementation is perhaps 
unsurprising given the source. Staphylococcus infections remain 
a leading cause of infections in the NICU, and it is poorly 
understood what promotes this vulnerability, though removal 
of S. aureus in particular appears to reduce the risk of infection. 
This suggests the need to consider treating upstream sources 
of milk[69,70] (the human milk donor, or screening of human 
milk for S. aureus), which may mitigate the need for this vul-
nerable preterm population to directly receive antibiotic treat-
ment that would disrupt microbiome development. In addition, 
the increased ratio of Aggregatibacter in formula-supplemented 
infants, observed previously,[33] may indicate an early risk expo-
sure for the later development of caries[71,72] as well as local-
ized aggressive periodontitis[73–75] which may require treatment 
with antibiotics. Limiting antibiotics to a local application may 
ameliorate the global dysfunctional differentiation observed 
with systemic antibiotic exposure in our cohorts. Together, our 
results suggest that there is opportunity for treatment options 
specific to the type of feeding supplementation for preterm 
infants in the NICU.

An organ-specific metabolomic profile dominated in oral, 
stool, and skin samples in the first week after birth. However, 
the increasing correlation between the microbial community 
and metabolome of stool samples over the first week after 
birth, especially in the LP-V/Abx(−) group, suggests that as the 
microbial community expands and establishes itself, a greater 
degree of influence is exerted on the metabolomic profile, as 
also described in Bittinger et  al.[76] The late preterm infant 
cohort reflects a low microbial biomass host, mirroring condi-
tions explored in Quinn et al.,[77] where germ-free and specific 
pathogen free mice were used to demonstrate that microbes 
profoundly reshaped the metabolomic profile of each organ. In 
addition, an increasing trend in the ratio of secondary to pri-
mary bile acids, again primarily in the LP-V/Abx(−) group pro-
vides further evidence that the microbial community is actively 
engaged in modifying this axis early in human development. 
The lack of this trend is most evident in the LP-C/Abx(+) group, 

suggesting that the combination of antibiotics and birth by 
Cesarean section may result in not just delayed microbiome 
development, but metabolomic development as well. Microbes 
enriched for producing secondary bile acids may therefore be a 
key component of successful seeding efforts to ameliorate the 
impact of early antibiotic exposure and birth mode.

Ultimately, the microbes living both on and in humans and 
their corresponding metabolites are influenced by and, in turn, 
influence the holobiont’s collective health. Future studies into 
the causes of health disparities and potential interventions 
should ensure that this critical window of development is cap-
tured for the oral and stool microbiome, including the metabo-
lome, rather than solely focusing on the gut microbial commu-
nity, to ensure robust clinical interpretation. As the identifica-
tion of metabolites continues to improve through the public 
sharing, curation, and aggregation of data using tools such as 
ReDU[78] and MASST,[79] the data in this study will remain avail-
able for providing context for future studies. Our study adds 
to the body of knowledge of preterm infant development and 
provides a model for future investigations as we continue to 
modify and improve our standard of care of preterm infants to 
optimize their long-term health.

4. Experimental Section
Cohorts: The data presented in this study originate from three 

independent cohorts: LP, VLBW, and FT infants (included for 
comparison), including birth by both vaginal delivery and cesarean 
section. For all analyses, the gut, oral, and skin microbiome samples 
were separated by sample type as well as by delivery mode, in order to 
prevent possible confounding effects. Due to independent collection 
efforts, some methods are data set specific, as described below.

Recruitment: For each study participant, a parent provided a written 
informed consent, and the study was approved by the Institutional 
Review Board at the University of California, San Diego [LP cohort: IRB 
approval number 151713; VLBW cohort: IRB approval number 151689] or 
the University of Michigan Institutional Review Board [FT: University of 
Michigan IRB HUM00103575].

LP: Pregnant English and Spanish speaking women at 34–36 6/7 weeks  
gestation who were expected to, or had delivered, prior to 37 weeks 
gestation were approached by a member of the research team. Infants 
outside of the gestational age criteria were excluded, as well as infants 
with major congenital anomalies including gastrointestinal anomalies, 
known or suspected metabolic disorder requiring a specialized diet, and 
infants who had received any formula prior to randomization.

Seventy-seven families representing 86 babies (seven sets of twins, 
one set of triplets) were approached regarding the study. Of those 
approached, 57 of the families consented, resulting in enrollment of 
60 infants including one set of triplets, and four sets of twins. There 
were two infants consented but not randomized in error and one infant 
consented who was not randomized due to delivery after 37 weeks 
gestation.

VLBW: English or Spanish speaking mothers who were likely to 
deliver an infant prematurely were approached by a member of the 
research team from June 2016 until May 2017. Consent and enrollment 
in the study were finalized if the infant birth weight was 500–1500  g 
and between 23 and 34 weeks gestational age. Infants with medical 
problems incompatible with life or birth weight <500 g were excluded as 
the outcomes for these infants are poor. Most consents with the mother 
were initialized before the birth of their infant, however occasionally they 
were consented shortly after the delivery if the birth was imminent and 
unexpected. The first 25 patients from Hillcrest Medical Center were 
enrolled prior to establishment of a consistent oral colostrum care policy 
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and the latter 25 patients were enrolled from the Jacobs Medical Center 
after the oral colostrum care policy was put into place.

FT: Infant–mother dyads were recruited from the community when 
infants were between two weeks and two months of age. Mothers 
provided written informed consent for themselves and their infants. 
Inclusion criteria were: Child was born at 37.0–42.0 weeks gestation, with 
weight appropriate for gestational age, and no significant perinatal or 
neonatal complications. Exclusions were: 1) non-fluency in English in the 
parent; 2) foster child; 3) mother <  18 years old; 4) medical problems 
or known diagnosis affecting current or future eating, growth, or 
development; 5) child protective services involvement in the neonatal 
period; 6) infant does not consume at least two ounces in one feeding 
from an artificial nipple and bottle at least once per week.

Sample Collection: All samples were collected using sterile dual-tip 
swabs (BD Swube; (Becton, Dickinson and Company, Sparks, MD). One 
swab was used for 16S sequence analysis and the other for untargeted 
metabolomics analysis.

LP: Gloves and a mask were worn while collecting the samples to try 
to prevent contamination. Three double-tip swabs were used to gently 
swab the inside of the cheek, the skin of the axilla, and stool from the 
diaper. Once the collection was completed, the swabs were placed in 
the freezer, typically within 15–30 min of collection, and stored at −80 °C 
until analysis. Swabs were collected once daily until the infant was 
discharged or had reached 21 d after birth. Mother’s breast milk and 
donor milk from the LP cohort were collected into 2  mL cryovials and 
stored at −80 °C until analysis.

VLBW: For sample collection a research team member or RN working 
with the infant used one double-tip swab to gently swab the inside of the  
cheek, the skin of the axilla, and stool from the diaper each day for  
the first 7 d after birth. Once the collection was completed, the swabs 
were stored at −80 °C until analysis.

rRNA Gene Sequencing: DNA was extracted using the MO BIO 
PowerSoil DNA extraction kit according to Earth Microbiome Project 
(EMP) standard protocols[80] (http://www.earthmicrobiome.org/emp-
standard-protocols/). PCR targeting the V4 region of the 16S rRNA 
bacterial gene was performed with the 515F/806R primers, using the 
protocol described in ref. [81]. Amplicons were barcoded and pooled in 
equal concentrations for sequencing. The amplicon pool was purified 
with the MO BIO UltraClean PCR Clean-up kit and 2×150 bp sequencing 
was performed on the MiSeq sequencing platform at the Institute for 
Genomic Medicine at UCSD.

Amplicon Sequencing Data Processing and Analysis: Raw sequencing data 
were deposited in Qiita[66] and processed using the default parameters. 
Briefly, forward reads were demultiplexed and quality control filtered, 
followed by trimming to 150  bp and then processed with deblur[82] and 
filtered to remove amplicon sequence variants (ASVs) with a total count 
below 10 across all samples. The resulting ASVs were inserted into the 
Greengenes tree[83] via SEPP (SATé-Enabled Phylogenetic Placement using 
q2-fragment-insertion in QIIME2.[84,85] The feature table was collapsed to 
the genus level for use in differential abundance testing.

Metabolomics Data Acquisition: Swab tips were transferred to 96-well 
deep well plates, cutting or breaking the wooden swab handle slightly 
above the cotton swab. Breast milk samples were extracted in a final 
concentration of 80% MeOH:20% water (Optima LC-MS grade; Fisher 
Scientific, Fair Lawn, NJ).

Untargeted mass spectrometry data for VLBW sample sets were 
collected using a ultrahigh performance liquid chromatography 
system (Vanquish, Thermo) coupled to an orbitrap mass spectrometer 
(Q-Exactive, Thermo). Reverse chromatographic separation was 
accomplished using a Kinetic C18 column. The column compartment 
was held at 40  °C with a flow rate of 500  µL min−1. Mobile phase 
composition was (A) 0.1% formic acid in water and (B) 0.1% formic 
acid in acetonitrile. The elution gradient used was: 0–1.0  min isocratic 
at 5% B, 1.0–9.0  min 100% B, 9.0–11.0  min isocratic at 100% B,  
11.0–11.5 min 5% B, and 11.5–12.5 min isocratic at 5% B. Data-dependent 
acquisition for Full MS: Resolution set at 35000, AGC target 5e4, scan 
range 100–1500 m/z. For dd-MS/MS: Resolution at 17500, AGC target 
2e4, loop count 5, and (N)CE/stepped (N)CE 20, 30, 40. Data-dependent 

acquisition settings were set at: minimum AGC target 2.00e4, and Apex 
trigger 3–15 s.

LP data were collected using the data-dependent acquisition method 
outlined in Gauglitz et al.[58] Extracts were dried down using centrifugal 
evaporation (Labconco) and resuspended in 50% MeOH:50% water 
(Optima LC-MS grade; Fisher Scientific, Fair Lawn, NJ,), with 1 × 10−6 m  
sulfadimethoxine. Untargeted metabolomics was carried out using an 
ultrahigh-performance liquid chromatography system (UltiMate 3000, 
Thermo Scientific, Waltham, MA) coupled to a Maxis Q-TOF (Bruker 
Daltonics, Bremen, Germany) mass spectrometer with a Kinetex C18 
column (Phenomenex Torrance, CA, USA). A linear gradient was applied: 
0–0.5 min isocratic at 5% B, 0.5–8.5 min 100% B, 8.5–11 min isocratic 
at 100% B, 11–11.5  min 5% B, 11.5–12  min 5% B, where mobile phase 
A is water with 0.1% formic acid (v/v) and phase B is acetonitrile 0.1% 
formic acid (v/v) (LC-MS grade solvents, Fisher Chemical). Electrospray 
ionization in positive mode was used.

MS1 Feature Finding and Data Processing: qToF files (.d) were exported 
using DataAnalysis (Bruker) as .mzXML files after lock mass correction 
using hexakis (1H, 1H, 2H-difluoroethoxy)phosphazene (Synquest 
Laboratories, Alachua, FL), with m/z 622.029509. Data quality was 
assessed by qualitatively evaluating the m/z error and retention time 
of the LC-MS standard solution (i.e., mixture of six compounds), which 
was analyzed at least once in every 96-well plate.

MS1 feature finding was performed on the .mzXML files in MZmine2 
(version MZmine-2.37.corr16.4).[86] The mzMINE parameters used for 
feature finding are as follows: mass detection (centroid; ms1: 1.5E3; 
MS2: 90); ADAP Chromatogram builder (min group size in # of scans: 
4; group intensity threshold: 5E3; min highest intensity: 2E3; m/z 
tolerance: 0.001 m/z to 20  ppm); chromatogram deconvolution (LMS: 
chromatographic threshold of 96%, search minimum in RT range (min) 
of 0.03, minimum relative height of 5%, minimum absolute height of 
2E3, min ratio of peak top/edge of 1 and peak duration range (min) of 
0–2; m/z center calculation set to auto; m/z range for MS2 scan pairing 
(Da) of 0.02 and RT range for MS2 scan pairing (min) of 0.15); isotope 
peaks grouper (m/z tolerance set to 0.0015 m/z or 10  ppm; retention 
time tolerance of 0.05, maximum charge of 3 and representative isotope 
set to most intense); order peak lists; join aligner (m/z tolerance set at 
0.0015 m/z or 15 ppm; weight for m/z of 2; retention time tolerance of 
0.2  min; weight for RT of 1). A filter was used such that only features 
present in at least two samples were included. The output was a data 
matrix of variables (i.e., MS1 features that triggered MS2 scans) by 
samples, exported for GNPS (.mgf and .csv quant table). Tables were 
normalized by sample wherein metabolite relative abundances were 
determined by dividing the integrated intensity for each feature by the 
sum of the intensities across all features for that sample.

MS2 Molecular Networking: The resulting .mgf and .csv quantification 
table produced by MZmine2 were imported into the GNPS interface 
for use in the feature based molecular networking workflow.[67,87] The 
parameters were set at: Precursor Ion Mass Tolerance 0.02 Da, Fragment 
Ion Mass Tolerance 0.02  Da, Minimum Pairs Cosine 0.7, Minimum 
Matched Fragment Ions 6, Maximum shi between precursors 500  Da, 
Network TopK 10, Maximum Connected Component Size (Beta) 100, 
Library Search Min Matched Peaks 6, Score Threshold 0.7. The resulting 
annotations fall under the Metabolomics Standards Initiative metabolite 
identification levels 1–3.[88]

Diversity Analyses: Alpha diversity was measured by Shannon 
diversity after rarefying the ASV table to a depth of 1250 sequences.[89] 
Beta diversities for ASVs were calculated using robust Aitchison 
distances.[90,91] PCA of these distances were plotted and distances 
were used to calculate body site differentiation by PERMANOVA as 
implemented by skbio. To determine the overall contribution of metadata 
factors to microbial diversity, stepwise redundancy analysis was run 
using the ordistep function from the vegan package in R. The data used 
in the analysis were the robust Aitchison distances on samples from 
each body site separately. The metadata factors included in the ordistep 
formula were antibiotic use, age, and delivery mode.

Metabolomics Analysis: Beta diversity of normalized metabolite 
intensities was calculated with Jaccard distances. Metabolite profile 
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change over time was determined by calculating the Jaccard distance of 
each infant sample to the sample from the same body site at day 0 for LP 
infants and day 1 for VLBW infants. These distances to the earliest time 
point over time were split by birth-weight, delivery-mode, and antibiotic 
exposure and used to calculate linear mixed models using individual as 
a random effect and age as a fixed effect. Slopes and p-values of the age 
variable in linear mixed models were reported.

Differential Abundance Testing: Differential abundances of microbes 
and metabolites were determined by Songbird. Songbird takes in a 
feature table, sample metadata, and a formula to calculate differential 
scores for each feature as a measure of differential abundance depending 
on metadata variables specified in the formula. Songbird also supplies a 
Q2 that behaves similar to an R2. Following advice from the Songbird 
creators, only models with positive Q2 values were included in results. 
The genus collapsed table was used for differential abundance testing of 
microbes. Songbird was run separately for each body site. To determine 
differential abundances due to delivery-mode, age, and formula/donor 
breast milk supplementation, only non-antibiotic exposed LPI infant 
samples were included. The formula in this case was “age + delivery-
mode + milk_supplementation”. To determine the effect of antibiotics, 
all LP and VLBW infant samples were included and the formula “age 
+ delivery-mode + milk_supplementation + antibiotics” was used. 
Songbird differentials for metabolite abundances were calculated using 
normalized metabolite abundances with all LP infant samples using 
the formula“age + delivery-mode + milk_supplementation.” Log ratios 
of secondary to primary bile acids were calculated using Qurro.[92] 
Linear mixed effects models (age as fixed variable and individual as 
random variable) were run on these log ratios split by delivery mode 
and antibiotic exposure over time and the slope, and p-value of the age 
variable in these models were reported.

SourceTracker 2: To compare infant microbiomes to healthy adult 
microbiomes, 16S-V4 sequencing data from healthy adults, including 
4434 stool, 2550 oral, 1975 skin samples, and 427 vaginal samples 
were downloaded (https://msystems.asm.org/content/5/1/e00630-19). 
All samples that indicated exposure to antibiotics within the last year 
were excluded. The LP and VLBW infants were compared to healthy 
FT infants, using the cohort of 100 FT vaginally born infants from a 
publicly available data set in Qiita. Only stool samples were available 
from FT infants, not skin or oral samples. All data were processed 
in the same manner as for preterm infants described above, with 
an additional filtering to remove all ASVs present in less than 1% of 
samples to reduce complexity. All adult samples from all three body 
sites and stool samples from FT infants were merged into a single 
database that was used as a source for Sourcetracker2[93] analysis on 
each preterm infant sample. The relative contribution of each source 
(adult stool, adult oral, adult skin, and FT infant stool) was determined 
for each preterm infant sample. Preterm infant samples were grouped 
by delivery mode, birth weight (LP vs VLBW), and antibiotic status, and 
the mean and standard error was calculated for each group over time 
and plotted.

Mantel Test: Correlation between microbe abundances and metabolite 
intensities were calculated using a Mantel test as implemented by skbio. 
The genus collapsed feature table and normalized metabolite profile 
were subsampled to only include samples present in both datasets. 
Samples from all three body sites were included in this analysis. Samples 
were divided by age, delivery-mode, and antibiotic exposure, and then 
the Mantel test was run on each data set independently. The Mantel 
correlation and p-value were plotted over time for each sample set.

Statistical Analysis: The methods used for each specific component of 
the analyses outlined above are detailed in those respective sections, but 
a general summary follows.

Preprocessing: Amplicon sequencing data were quality and noise-
filtered within Qiita using recommended settings, removing low 
abundance ASVs (<10 across the data set). Sequences were further 
rarefied to 1250 reads per sample for calculation of alpha diversity, but 
no other analyses used a rarefied data set. Metabolomic feature relative 
abundances determined by MS1 feature finding using mzMINE were 
calculated using per-sample normalization.

Data presentation: Tabular data were summarized in Microsoft Excel, 
manipulated using the Pandas package in Python, and plotted using 
the Python packages matplotlib and plotnine, a Python implementation 
of the R package ggplot2. For within-individual distances, boxplots 
were generated showing the median and interquartile range with 
whiskers extending to the furthest value within 1.5 times the edge of 
the interquartile range. For PCA or PCoA plots, confidence ellipses were 
calculated in matplotlib showing the boundary of 3 standard deviations 
from the centroid. For alpha diversity and SourceTracker 2 analysis 
results, line graphs were generated showing the mean with shaded areas 
indicating the standard error of the mean.

Sample size: From 85 infants enrolled in the study, 1799 samples 
were obtained, 942 16S amplicon sequencing tables (from 61 infants) 
and 1080 metabolomic feature tables (from 75 infants) across 3 body 
sites and 7 days of life were analyzed. The exact sample sizes per body 
site, per day varied considerably and a detailed breakdown of subgroups 
compared for clinical characteristics can be found in Table  1, while the 
subgroups analyzed for metagenomic and metabolomic attributes are 
listed in Table S3 (Supporting Information) and shown in the flowchart 
and heatmaps in Figure 1.

Statistical methods: Permutational multivariate analysis of variance 
(PERMANOVA), stepwise redundancy analysis (RDA), linear mixed 
models, and Mantel tests were all performed with a testing value of  
p  = 0.05 to determine significance (https://github.com/ucsd-cmi/
preterm_infant/tree/master/results/tables). Multiple test correction was 
not required for the analyses conducted.

Software: PERMANOVA, linear mixed models, and Mantel tests were 
performed using the scikit-learn and skbio Python libraries. Stepwise 
redundancy analysis was run in R using the ordistep function in the 
vegan package.

Supporting Information
Supporting Information is available from the Wiley Online Library or 
from the author.

Acknowledgements
This work was supported by a Seed Grant from the Center for 
Microbiome Innovation. The authors would like to thank Gregory 
Humphrey, Christine Aceves, Caitriona Brennan, Lindsay DeRight-
Goldasich, A. Cole Heale, Morgan Panitchpakdi, Karenina Sanders, and 
Tara Schwartz for sample processing, Gail Ackermann for assistance with 
metadata curation, and Jeff DeReus for data handling and processing. 
The authors gratefully acknowledge the following funding sources: 
NIH R01HD084163, EIA14660045, an American Heart Association 
Established Investigator Award to Julie Lumeng. The authors gratefully 
acknowledge conversations with C. Martino, Y. Vasquez-Baeza, and  
S. Miller-Montgomery. This work was supported in part by an Emerald 
Foundation Distinguished Investigator Award (R.K.). This work was 
supported in part by the Chancellor’s Initiative in the Microbiome and 
Microbial Sciences (R.K., A.D.S.) and by Illumina, Inc. through reagent 
donation in partnership with the Center for Microbiome Innovation at 
UC San Diego.

Conflict of Interest
J.H.K. is a medical advisor for Evolve BioSystems and a consultant 
for Nutricia. R.K., A.D.S., and S.J.S. are directors at the Center for 
Microbiome Innovation at UC San Diego, which receives industry 
research funding for various microbiome initiatives, but no industry 
funding was provided for this study. All other authors declare no conflict 
of interest.

Adv. Biology 2022, 6, 2101313

https://github.com/ucsd-cmi/preterm_infant/tree/master/results/tables
https://github.com/ucsd-cmi/preterm_infant/tree/master/results/tables


www.advancedsciencenews.com

2101313  (12 of 14) © 2022 Wiley-VCH GmbH

www.advanced-bio.com

Author Contributions
S.B.O., J.M.G., and S.W. contributed equally to this work. All authors 
contributed to the final version of the manuscript. S.O., M.D., K.S., J.L., 
K.R., S.J.S., J.H.K., and A.D.S.: Conceptualization; S.O., J.M.G., S.W., 
S.H., K.W., F.V., S.J.S., M.D., K.S., and A.D.S.: Data curation; S.O., J.M.G., 
S.W., S.H., and K.W.: Formal analysis; R.K., PC.D., J.L., K.R., J.H.K., and 
A.D.S.: Funding acquisition; S.O., J.M.G., S.W., K.W., M.D., K.S., F.V., 
J.L., K.R., J.H.K., and A.D.S.: Investigation; J.M.G., S.W., K.W., S.J.S., and 
A.D.S.: Methodology; S.J.S. and A.D.S.: Project administration; P.C.D., 
R.K., J.L., K.R., J.H.K., and A.D.S.: Resources; J.M.G., S.W., and K.W.: 
Software; J.M.G., S.W., S.H., and K.W.: Validation; S.O., J.M.G., S.W., and 
K.W.: Visualization; S.O., J.M.G., and A.D.S.: Writing—Original draft; All: 
Writing—Review and editing.

Data Availability Statement
All raw and processed sequencing data are publically available in 
Qiita study 11712 (https://qiita.ucsd.edu/study/description/11712) and 
in EMBL-EBI project ERP122936 for the LP cohort, Qiita study 11713 
(https://qiita.ucsd.edu/study/description/11713) and EMBL-EBI project 
ERP122952 for the VLBW infant cohort. Mass spectral data files are 
available on MassIVE (http://massive.ucsd.edu) under the following 
IDs: MSV000083559 (VLBW infant stool, oral, skin), MSV000083462 
(LP stool, oral, skin) and MSV000083463 (LP mother breast milk/
donor breast milk). All code, feature tables, QIIME2 artifacts, and 
tables containing results used to generate figures and visualizations 
used in these analyses are available at https://github.com/ucsd-cmi/
preterm_infant.
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