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1. XRD Analysis of the AlScN/SiC/Si Heterostructure 

Single-crystal n-type 3C-SiC (100) thin film with the thickness of 900 nm is grown on the Si 

(100) substrate by low pressure chemical vapor deposition (LPCVD) process.  1µm-thick 

AlScN with 20% Sc is then sputtered on the 3C-SiC/Si substrate.  After the growth process, x-

ray diffraction (XRD) analysis of the grown film is carried out to confirm the crystal structure.  

Figure S1 shows the XRD measurement results of the AlScN/3C-SiC/Si heterostructure 

obtained in conventional θ-2θ scan mode.  We observe the peaks corresponding to the (100) 

plane for the SiC thin film, which indicates that single-crystal 3C-SiC (100) is grown on Si 

(100).  Three peaks are observed for AlScN, which confirms the polycrystalline nature with the 

preferred orientation along the c-axis, i.e., AlScN (002) peak. 

 

Figure S1.  XRD analysis of the AlScN/3C-SiC/Si heterostructure. 

 

2. TEM Imaging of the AlScN/SiC Interface 

Figure S2a shows the transmission electron microscopy (TEM) image of the AlScN/SiC 

interface, which shows the columnar growth of AlScN.  Grain boundaries are not observed in 

the 3C-SiC thin film; and the only defects are stacking faults.  The selected area electron 

diffraction (SAED) pattern (Figure S2b-e) reinforces the XRD results and confirms that the 3C-

SiC thin film is single-crystalline, and the AlScN thin film is polycrystalline.   
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Figure S2.  (a) TEM crosssectional image of the AlScN/3C-SiC interface.  SAED patterns of (b) Si, (c) 

3C-SiC, (d) 3C-SiC/Si, and (e) 3C-SiC/AlScN in the [110] orientation.   

 

3. Temperature Coefficient of Resonance Frequency (TCf) of Circular Diaphragm 

The multimode resonance frequency of circular diaphragm resonators can be expressed as [1] 
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where n denotes the mode number, ρ is the material mass density, t is the device thickness, 

(knr)2 is the numerically calculated modal parameter, r is the radius of circular diaphragm, γ 

refers to the built-in tension (in [N/m], or stress [N/m2 or Pa] times thickness), and D is the 

flexural rigidity, D=EYt3/[12(1-ν2)] in which EY and ν are Young’s modulus and Poisson’s ratio, 

respectively.  Equation S1 yields a mixed elasticity model, in which both flexural rigidity 

(dominated by the thickness and elastic modulus) and built-in tension (stress) play key roles in 

determining the resonance frequency.   

3.1 Tension Dominant Limit 

When γr2/D is very large and dominates in Equation S1, Equation S1 goes in the membrane 

regime, in which the frequency is dominated by the built-in tension, 
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where =  t , and mass m=r2t.  Both stress  and thickness tare temperature dependent.  To 

simplify the calculation, we assume the numerically calculated modal parameter, (knr)2, is 

independent of temperature. We ignore the effect of temperature change on the Young’s 

modulus.  Thus, Equation S2 can be expressed as 
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where T indicates the change of temperature, 0 and 0t are the stress and thickness of the 

diaphragm at the initial reference temperature, α is the thermal expansion coefficient, and EY0 

is the Young’s modulus at reference temperature.  We can obtain nf T  as 
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TCf of tension dominant limit case can be derived as 
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Because 1T   and 0 0YE T   , we can approximately obtain  
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Thus, the TCf is determined by the thermal expansion coefficient, Young’s modulus at 

reference temperature, and built-in stress for the tension dominant limit. 

 

3.2 Flexural Rigidity Dominant Limit 

As γr2/D goes very small and negligible in Equation S1, flexural rigidity dominates the 

frequency, i.e., and the model approaches the plate regimes. 
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where D=EYt3/[12(1-ν2)].  We assume the numerically calculated modal parameter, (knr)2, is 

independent of temperature.  When the temperature changes by T , Equation S6 can be 

expressed as 
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where TCEY is the temperature coefficient of Young’s modulus. nf T   can be expressed as 
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TCf in the flexural rigidity dominant limit can be derived as 
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Because 1T   and 1YTCE T  , we can approximately obtain  
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Thus, the TCf is determined by the thermal expansion coefficient and temperature coefficient 

of Young’s modulus for the flexural rigidity dominant limit. 

 

4. Temperature Calibration Based on Silicon Raman Thermometry 

We regulate the temperature by using a customized heating and sensing system.  First, the 

devices are tested from room temperature up to 600℃ in 50℃ intervals for the ramp up cycle.  

Subsequently, we gradually decrease the temperature in 50℃ intervals back to room 
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temperature.  At each temperature point, we wait ~20 minutes for the temperature to stabilize 

and then take the resonance measurements.  Figure S3 shows the relationship between set 

temperature and the actual temperature of the heater over time. 

 

Figure S3.  Temperature regulation measurement and calibration. 

 

We utilize different clamps, including Ruthenium (Ru) probes, SUS340 clamping jig, and a 

ceramic piece, with enhancing thermal insulation for the sample, to mount the sample chip and 

calibrate the temperature based on the center position of Si Raman peak.  The center peak 

position of Si Raman mode as a function of temperature for both heating and cooling cycles 

using different clamping methods are shown in Figure S4 to Figure S6. 
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Figure S4.  The center peak position of Si Raman mode as a function of temperature for both heating 

and cooling processes with the chip clamped by Ru probes. 

 

Figure S5.  The center peak position of Si Raman mode as a function of temperature for both heating 

and cooling processes, with the chip mounted on heater and clamped by a SUS340 jig.  
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Figure S6.  The center peak position of Si Raman mode as a function of temperature for both heating 

and cooling processes, with the chip clamped by a SUS340 jig and a ceramic piece onto the heater.  
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ceramic piece and the chip; the considerably large effective contact area does not help minimize 

the heat transfer through the ceramic piece and the clamping jig, thus making the temperature 

of the chip and the devices lower than that of the heater (substrate).   

 

Figure S7.  Temperature calibration based on Si Raman thermometry measured from the same chip 

mounted on the heater and clamped by Ru probes, SUS340 clamping jig and ceramic, respectively.  The 

inset shows the diagram of the chip anchored by the SUS340 clamping jig and a ceramic piece.   
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5. Raman Spectroscopy Measurement with Varying Temperature 

Figure S8 and Figure S9 show the Raman spectroscopy results of the suspended AlScN/SiC 

measured with varying temperature, with the chip mounted on the heater and clamped by a 

SUS340 clamping jig alone, and by the SUS340 clamping jig with ceramic piece, respectively.  

 

Figure S8.  Raman spectroscopy results of suspended AlScN/SiC measured with varying temperature, 

with the chip clamped by a SUS340 clamping jig.  Temperature dependence of the peak position of (a) 

E2-AlN mode, (b) A1(LO)-AlN mode, (c) TO-SiC, and (d) LO-SiC with temperature increasing from 25℃ to 

600℃.  Temperature dependence of the peak position of (e) E2-AlN mode, (f) A1(LO)-AlN mode, (g) TO-SiC, 

and (h) LO-SiC with temperature decreasing from 600℃ to 25℃. 

Figure S9.  Raman spectroscopy results of suspended AlScN/SiC measured at varying temperatures 

with the chip mounted by SUS340 clamping jig and ceramic piece.  Temperature dependence of the 

peak position of (a) E2-AlN mode, (b) A1(LO)-AlN mode, (c) TO-SiC, and (d) LO-SiC with temperature 

increasing from 25℃ to 600℃.  Temperature dependence of the peak position of (e) E2-AlN mode, (f) 

A1(LO)-AlN mode, (g) TO-SiC, and (h) LO-SiC with temperature decreasing from 600℃ to 25℃.   
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