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Abstract
Microbiota are essential to normal immune development and there is growing recognition of its importance to human health 
and disease and deepening understanding of the complexity of host-microbe interactions in the human gut and other tissues. 
Commensal microbes not only can influence host immunity locally through impacts of bioactive microbial metabolites and 
direct interactions with epithelial cells and innate immune receptors but also can exert systemic immunomodulatory effects 
via impacts on host immune cells capable of trafficking beyond the gut. Emerging data suggest microbiota influence the 
development of multiple myeloma (MM), a malignancy of the immune system derived from immunoglobulin-producing 
bone marrow plasma cells, through the promotion of inflammation. Superior treatment outcomes for MM correlate with 
a higher abundance of commensal microbiota capable of influencing inflammatory responses through the production of 
butyrate. In patients with hematologic malignancies, higher levels of diversity of the gut microbiota correlate with superior 
outcomes after hematopoietic stem cell transplantation. Correlative data support the impact of commensal microbiota on 
survival, risk of infection, disease relapse, and graft-versus-host disease (GVHD) after transplant. In this review, we will 
discuss the current understanding of the role of host-microbe interactions and the inflammatory tumor microenvironment 
of multiple myeloma, discuss data describing the key role of microbiota in hematopoietic stem cell transplantation for treat-
ment of hematologic malignancies, and highlight several possible concepts for interventions directed at the gut microbiota 
to influence treatment outcomes.
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1  Introduction

1.1 � Microbiota in human health and disease

The human body is home to complex communities of 
microorganisms collectively called the human microbiota 
or microbiome, which live in and on the body and interface 
with the host in the mucosal tissues, lungs, skin, mammary 

glands, and the gastrointestinal tract [1]. High-throughput 
sequencing enabled us to observe microbial communities 
[2] without the bias of artificial culture systems [3]. We have 
learned that the intestinal microbiota plays a vital role in the 
normal physiology of the host [4], facilitates energy harvest 
from the diet, and provides crucial signals for the devel-
opment of the immune system. A recent report estimates 
the number of microbial cells is almost equal to that of the 
host, representing nearly 40 trillion cells [5]. For a particular 
individual, microbiota are transmitted vertically at birth and 
subsequently are shaped by diet and the microbiota of oth-
ers in the same household, and can vary by age, geography, 
and genetics [6]. Environmental factors weigh more heavily 
than inherited features in determining the content of an indi-
vidual’s microbiota [7]. Microbiota are relatively stable over 
time within the same individual. However, an individual’s 
microbiota can shift rapidly in response to dietary changes 
and exposure to antibiotics [8].
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Detrimental changes in the microbiota affecting the diver-
sity or community structure of the microbiota can negatively 
affect the host. Alpha diversity is a measure of the number of 
different microbes in a community and several states which 
negatively impact the microbiome lead to lower alpha diver-
sity. Gut dysbiosis is a state of disruption in the content or 
structure of a host’s community of commensal microbiota 
(e.g., an overabundance of pathogenic microbes or loss of 
beneficial taxa). Conversely, a balanced gut microbial com-
munity can be described as being in a state of gut eubiosis 
[9]. Dysbiosis, loosely defined, has been associated with 
inflammatory bowel diseases [10–12], other autoimmune 
disorders [13], metabolic diseases such as diabetes [14–16], 
and cancer [17–20]. Microbiota have been directly linked to 
the pathogenesis of gastrointestinal cancers (colorectal [21], 
hepatocellular [22, 23], pancreatic [24]), and breast cancers 
as well as with hematologic malignancies such as lymphoma 
[25, 26] and multiple myeloma [27, 28].

In addition to impacting host immune defense against 
microbial pathogens, commensal microbiota also influ-
ence immune responses against malignancy [20]. Several 
recent studies have shown that microbiota can influence the 
response to cancer immunotherapy [19, 29–32]. In addi-
tion to anti-tumor responses, microbial dysbiosis has also 
been associated with immune checkpoint inhibitor-related 
colitis [33]. Microbiota can modulate the immune tumor 
microenvironment [34], drive anticancer immune responses 
[35], and mediate immune cell recovery after hematopoietic 
stem cell transplantation [36]. Emerging data suggest key 
relationships for microbiota in both the pathogenesis and 
response to cancer therapy. In this review, we will discuss 
the importance of host-microbe interactions in the biology 
and treatment of multiple myeloma and review the impact of 
microbiota on treatment outcomes after hematopoietic stem 
cell transplantation for hematologic cancers.

1.2 � Microbiota and the development of the immune 
system

Host-microbe interactions are essential for the development 
of a functional immune system [37]. The critical role of 
microbiota in immune development has been established 
using germ-free (GF) animal models. GF mice are reared 
in isolators to prevent exposure to microbes and develop 
into adults without intestinal microbiota [38]. GF mice 
have multiple defects in mucosal immunity, including an 
absent mucous layer, reduced size and function of mesen-
teric lymph nodes and Peyer’s patches, and dysregulation 
of secreted immunoglobulin A (IgA) [39–41]. The absence 
of microbiota in GF mice leads to impaired tolerance medi-
ated by fewer regulatory T cells (Tregs) in the gut-associ-
ated lymphoid tissue. Moreover, the Tregs present in GF 
animals have reduced functional suppressive capacity, 

and this functional impairment may impair tolerance and 
promote local and systemic inflammation [42]. These GF 
experiments show a key example by which microbiota might 
affect immune tolerance, promote inflammation, and poten-
tially drive tumor cell growth in malignancies responsive to 
inflammation, such as multiple myeloma.

Commensal microbes provide necessary tonic stimulation 
to the host immune system and continuously challenge the 
immune system without eliciting an inflammatory response. 
Signaling from the commensal microbiota to the host is also 
thought to influence the activation threshold of innate immu-
nity against viral pathogens [43].

Gnotobiotic studies in which defined microbiota are 
introduced into GF mice have allowed for interrogation of 
the role of specific host-microbe relationships in immune 
development [44]. For example, induction of Th17 cells 
by segmented filamentous bacteria has been demonstrated 
[45]. Th17 cells produce IL-17, a cytokine with conflicting 
roles in oncology. IL-17 has been shown to have anti-tumor 
effects [46] and tumor-promoting effects [47–49]. IL-17 has 
been shown to promote the progression of myeloma in the 
Vk*-Myc mouse model of multiple myeloma [27] and IL-17 
producing lymphocytes also mediate lytic bone disease in 
myeloma [50].

1.3 � Metabolites as mediators of beneficial 
host‑microbe interactions: short‑chain fatty 
acids

A core way the microbiome and host affect one another 
is through metabolic interchange mediated by small mol-
ecules produced by the host tissues and the microbiome. 
For example, SFCA (butyrate, acetate, lactate, and propi-
onate) are created through anaerobic microbial metabolism 
and are waste products for the microbes’ anaerobic energy-
generating mechanisms. Butyrate is an SCFA produced by 
microbial fermentation of dietary fibers and has been of par-
ticular interest due to its biological properties and observed 
correlation of increased abundance of butyrate producers 
with favorable health outcomes [51, 52]. Several extracel-
lular receptors recognize butyrate, e.g. G-protein-coupled 
receptor (GPR) 41 (GPR41), also known as free fatty acid 
receptor 3 (FFAR3), GPR43 (FFAR3), and GPR109A [53, 
54]. Butyrate is an agonist of intracellular peroxisome pro-
liferator-activated receptor gamma (PPAR-γ) in colonic epi-
thelial cells and lymphocytes. PPAR-γ activation by butyrate 
promotes apoptosis in normal lymphocytes, lymphoma [55], 
and malignant plasma cells in multiple myeloma [56]. Sign-
aling induced by butyrate binding to its receptors leads to 
negative regulation of nuclear factor kappa B (NF-kB), a 
family of core transcription factors activated by a variety 
of canonical and non-canonical pathways which result in 
transcription of proinflammatory cytokines and which 



369Cancer and Metastasis Reviews (2022) 41:367–382	

1 3

are central coordinators of innate and adaptive immune 
responses [57–60]. NF-kB signaling plays an important role 
in cancer development and disease progression in multiple 
myeloma [61]. Furthermore, SCFA impacts immunologic 
tolerance in the gut mucosa by promoting the differentia-
tion of regulatory T cells (Treg) [62] and inhibiting immune 
effector cell activation through promoting TGF-β1 expres-
sion in epithelial cells [63]. Butyrate promotes host antibody 
responses [64], intestinal IgA secretion [65], and modula-
tion of CD8 + T cell responses [66]. SCFA are not the only 
microbial metabolite with broad effects on the host. Indoles, 
sphingolipids, and others have all been implicated as func-
tional mediators of host-microbe interaction in the gut.

1.4 � Stimulation of host immune responses 
from the microbiota

Host sensing of microbiota occurs through the binding 
of conserved microbial-associated molecular patterns 
(MAMPs) or pathogen-associated molecular patterns 
(PAMPs) with host pattern recognition receptors (PRRs) 
such as Toll-like receptors (TLR) and/or NOD-like recep-
tors (NLR). Binding of MAMPs to PRRs can induce 
inflammatory signaling processes to defend the host from 
invasive pathogens [67]. Inflammasomes are large cyto-
solic multiprotein complexes expressed in monocytes, 
macrophages, granulocytes, dendritic cells, and epithelial 
cell osteoblasts, which are activated by a variety of micro-
bial stimuli such PAMPs (e.g., lipopolysaccharide (LPS), 
flagellin) or host-derived danger-associated molecular pat-
terns (DAMPs) through binding to TLR or NLR [68, 69]. 
Inflammasome activation mobilizes host immune responses 
through caspase-1 mediated proteolytic cleavage of inac-
tive pro-cytokines pro-IL1-β and pro-IL-18 into their active 
forms and can induce a form of inflammatory cell death 
called pyroptosis [70]. IL-18 upregulates the production 
of antimicrobial peptides (AMPs) which are expressed by 
epithelial cells and mediate bacterial clearance [71], and 
AMP production is also promoted by SCFA [72]. IL-18 and 
IL-1β play an important role in host defense against micro-
bial pathogens, but these cytokines may have detrimental 
effects in malignancy. For example, IL-18 induces IFN-γ 
[73] by T helper 1 (Th1) cells and natural killer (NK) cells, 
but may also promote malignancy as it is now recognized 
that tumor-promoting inflammation is a hallmark of cancer 
(discussed below) [74]. Systemic inflammation driven by 
inflammasome-mediated sensing of microbiota may drive 
inflammation-related cancers such as multiple myeloma [75, 
76]. Impaired inflammasome activity due to mutations in 
NLR and reduced IL-18 production are each associated with 
dysbiosis, and both inflammasome dysfunction and activa-
tion by β-2-microglobulin have been linked to pathogenesis 
and progression of multiple myeloma [75–77]. Given the 

tumor-promoting nature of inflammasome-related cytokines 
IL-18 and IL-1 in multiple myeloma, it is possible certain 
microbiota may drive promotion of myeloma through activa-
tion of inflammasome (Fig. 1).

This shaping of the immune response can, in turn, affect 
the microbial community. Two core mechanisms are AMPs 
and the production of secretory immunoglobulin A (IgA). 
IgA is produced by plasma cells mostly residing within 
Peyer’s patches within the gut and is secreted into the human 
gut lumen in large quantities (40–60 mg/kg/day of body 
weight) [78]. Secreted IgA binds to both commensal and 
pathogenic microbes and coats approximately 20–50% of 
the gut microbiota. Defective IgA production or secretion 
can lead to dysbiosis, bacterial invasion, and inflamma-
tory disease [79, 80]. Inborn defects such as selective IgA 
deficiency or acquired hypogammaglobulinemia or second-
ary suppression of IgA production would also presumably 
impair the hosts’ ability to regulate its microbiota. Whether 
secretory IgA and microbiota bound by it are affected by the 
hypogammaglobulinemia caused by plasma cell dyscrasias 
is not known.

2 � Microbiota, inflammation, 
and the pathogenesis of multiple 
myeloma

Multiple myeloma (MM) is a chronic and currently incur-
able malignancy of clonal plasma cells more common in 
older adults, with a median age of diagnosis in the United 
States (US) of 69 years [81]. MM represents 1% of new 
cancer cases in the US, and there are approximately 32,000 
new diagnoses annually. All patients with myeloma evolve 
from a precursor state, monoclonal gammopathy of unde-
termined significance (MGUS), and smoldering multiple 
myeloma (SMM), which are prevalent in the population, 
affecting at least 3% of the general population over age 50. 
The incidence of myeloma increases with age. Although 
there are recurrent genomic events that play an important 
role in initiating and driving plasma cell neoplasms, similar 
events are found both in the malignant and premalignant 
states of the disease [82–84]. Chronic sterile inflammation 
associated with aging, also known as “inflammaging,” is 
correlated with cardiovascular disease [85] and the devel-
opment of cancer [86]. IL-1 family cytokines are critical 
mediators of this type of inflammation [87]. IL-1 has been 
implicated in microbiota-induced inflammaging of hemat-
opoietic stem cells in mice [88]. Clonal hematopoiesis (CH) 
driven by mutations in myeloid transcription factors such as 
DNMT3A and TET2 becomes more common with age and 
is associated with increased expression of pro-inflammatory 
cytokines and contributes to inflammaging [89]. Chronic 
inflammation associated with aging, CH, and the immune 
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tumor microenvironment may play a role in driving malig-
nant transformation in plasma cell neoplasia [90]. There is 
a great degree of unaccounted heterogeneity in the patho-
genesis of myeloma and several recent reports suggest the 
microbiota may be implicated in this process, at least indi-
rectly by modulating systemic inflammation. MM plasma 
cell growth and persistence are dependent upon the bone 
marrow tumor microenvironment which is both immunosup-
pressive and associated with inflammatory cytokines that 
promote malignant plasma cell growth, such as IL-6, IL-1β, 
IL-18, and IL-17 [91, 92].

Importantly, recent data suggest that microbiota-
driven proinflammatory cytokine expression can influ-
ence the pathogenesis of MM (Fig. 1). The genetically 

modified immunocompetent Vκ*Myc mouse model in which 
C57BL/6 mice reliably develop spontaneous MM has pro-
vided an avenue to study the role of microbiota and inflam-
mation in the pathogenesis of MM. Differences in the rate 
of progression of MM in this model in different geographic 
sites led to a subsequent investigation that demonstrated an 
association of certain microbiota with shorter time to pro-
gression in mice [27]. Calcinotto et al. demonstrated that 
higher abundance of Prevotella led to stimulation of T helper 
17 (Th17) cell differentiation in the gut, with subsequent 
trafficking of these cells to the bone marrow tumor micro-
environment where they release IL-17, which in turn both 
directly drives MM cell growth and stimulates eosinophils 
to produce IL-6 also driving MM progression [27]. In SMM, 

Fig. 1   Impacts of gut microbiota on systemic inflammation and the 
bone marrow microenvironment of multiple myeloma. CTL = cyto-
toxic T lymphocyte, DC = dendritic cell, Eos = eosinophil, IL = inter-
leukin, Glu = glutamate, HDACi = histone deacetylase inhibitor, 

MM = multiple myeloma, Mφ = macrophage. NK = natural killer cell, 
PC = plasma cell, SCFA = short-chain fatty acids, sIgA = secretory 
immunoglobulin A, Treg = regulatory T cell. Created with BioRen-
der.com
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increased bone marrow IL-17 levels are associated with a 
higher risk of progression to active MM. IL-17 production 
driven by microbiota is well-established, particularly by 
segmented filamentous bacteria in the setting of inflamma-
tory disorders [45], and butyrate has been shown to reduce 
IL-17 production in experimental colitis [93]. Methods to 
reduce inflammation may have therapeutic value in multi-
ple myeloma, but as of yet, have had limited clinical utility 
other than corticosteroids. Although IL-6 has been recog-
nized as a key paracrine and autocrine factor important for 
the growth and persistence of MM plasma cells, approaches 
to neutralize IL-6 have had limited success in clinical tri-
als [94, 95]. A preliminary signal of efficacy from a phase 
1 trial showed 2 of 13 patients with MM achieved com-
plete responses (CR) after treatment with siltuximab [96]. 
Use of anti-IL-6 antibody siltuximab in combination with 
a triplet regimen (bortezomib, melphalan, and prednisone) 
increased the rate of very good partial responses (VGPR) 
over the triplet regimen alone [95]. However, this trial did 
not meet its primary endpoint of efficacy (CR rate) and came 
at the cost of an increased trend toward more infections 
with use of siltuximab [95]. A phase 2 trial of siltuximab in 
relapsed/refractory MM used alone or in combination with 
dexamethasone showed no objective clinical responses [94]. 
Use of the monoclonal antibody drug anakinra (anti-IL-1Rα) 
in smoldering MM patients attenuated C-reactive protein 
(CRP) levels in a subset of patients in whom a significantly 
longer interval to progression to active MM was noted [97]. 
These data suggest it may be important to modify the inflam-
matory microenvironment to influence the disease biology of 
myeloma, but that this approach may have more value prior 
to the onset of advanced or treatment-refractory disease [97].

There are preliminary data to suggest a potential correla-
tion between certain microbial taxa and clinical outcomes 
to upfront treatment in multiple myeloma patients. Stool 
samples were collected to evaluate the gut microbiota in 
stool samples from MM patients who recently completed 
induction therapy with or without a stem cell transplant and 
a higher relative abundance of butyrate producers Faecali-
bacterium prausnitzii and Eubacterium hallii was noted in 
individuals with superior responses to therapy who were 
minimal residual disease (MRD) negative [98]. Follow-
up data from this cohort showed an association of a diet 
with increased seafood and plant protein intake with higher 
abundance of butyrogenic bacteria and butyrate levels in 
stool samples and with sustained MRD negativity at 1 year 
after starting lenalidomide maintenance [99]. Associations 
of butyrate-producing bacteria with therapeutic efficacy in 
myeloma are preliminary and warrant further study to evalu-
ate the impacts of diet and butyrate production on disease 
control, inflammation, and anti-tumor immunity in MM 
patients. Jian et al. compared microbiota in newly diagnosed 
myeloma patients at diagnosis (n = 19) and healthy gender 

and age-matched controls (n = 18), noting higher alpha 
diversity in MM patients, enrichment of nitrogen-recycling 
bacteria in the stool of MM patients, and lower abundance 
of SCFA-producing species in MM patients compared with 
healthy controls [100]. In this work, the authors noted that 
an increased relative abundance of Klebsiella spp. in newly 
diagnosed MM patients led to increased glutamate synthesis 
which promoted malignant plasma cell growth (Fig. 1).

Whether clinical approaches for modulation of the micro-
biota to reduce or impact inflammation, increase butyrate 
production, or eliminate possibly pathogenic microbiota 
would be feasible or efficacious as an approach has not 
yet been prospectively evaluated. Prophylactic antibiotics 
have been proposed as a method to reduce microbial-driven 
inflammation to impact the progression of MM. However, a 
higher rate of deaths from progressive MM in patients with 
newly diagnosed MM treated with 12 weeks of levofloxacin 
prophylaxis compared with placebo in the TEAMM study 
raises concern that microbiota injury caused by antibiotic 
prophylaxis may have unintended consequences and promote 
loss of immune control of myeloma [101–103]. Indeed, the 
importance of microbiota to responses to cancer immuno-
therapy and chemotherapy as demonstrated in other tumor 
types highlights that microbiota injury caused by antibi-
otic use could in theory adversely affect immune control of 
myeloma [30, 34, 104, 105]. The impact of other organisms 
beyond bacteria on myeloma pathogenesis and treatment 
outcomes such as commensal fungi or endogenous virii may 
also have relevance and may be assessed in future studies 
[106]. A plant-based dietary intervention in overweight and 
obese patients with the MM precursor conditions to reduce 
the risk of the progression to MM and evaluate its impacts 
on the microbiome is being evaluated in a prospective pilot 
phase clinical trial (NCT04920084).

3 � Microbiota and stem cell transplantation 
for hematologic cancers

3.1 � Allogeneic stem cell transplant

Evaluation of the microbiome and correlation with clinical 
outcomes was first noted in the field of stem cell transplanta-
tion. Before the development of immune checkpoint inhibi-
tors, historically, the most common type of immunotherapy 
for cancer therapy has been hematopoietic stem cell trans-
plantation for patients with hematologic malignancies, most 
commonly for leukemia and lymphoma and rarely in MM. 
Allogeneic hematopoietic stem cell transplantation (allo-
HSCT) can be a potentially curative treatment for hemato-
logic cancers. Prior to allo-HSCT, patients are treated with a 
conditioning regimen involving chemotherapy and/or radia-
tion followed by an infusion of hematopoietic precursor cells 
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from a donor who is matched for major histocompatibility 
complex antigens. Suppression of the recipient’s immune 
system allows for engraftment of the donor’s immune system 
to induce a graft-versus-tumor response to achieve durable 
immune control of the malignancy. A significant limitation 
of this approach is the potential for pathological recognition 
of the recipient tissues by the donor immune system, leading 
to graft-versus-host disease (GVHD), with potentially dev-
astating consequences. Relapsed disease after allo-HSCT, 
toxic effects on organs, and risk of infection are significant 
sources of morbidity and mortality for patients receiving 
allo-HSCT. Microbiota have been shown to have powerful 
impacts on each of these outcomes and overall survival in 
hematopoietic stem cell transplantation [107–118].

3.2 � Infection risk and antimicrobial prophylaxis: 
effects on the microbiome

Patients receiving allo-HSCT already have severely impacted 
gut microbiota with dramatically reduced alpha diversity at 
time of transplant. Iatrogenic dysbiosis, also referred to here 
as microbiota injury, worsens during the transplant course 
often when patients are exposed to antibiotics for treatment 
or prevention of infections [112, 118]. Patients treated with 
allo-HSCT are at high risk of bacterial infections during 
allo-HSCT due to a transient period of intense immunocom-
promise. Before transplantation, patients receive an intense 
conditioning regimen, which leads to neutropenia, injury to 
the oral and enteric mucosal lining, and an increased risk of 
bloodstream infections (BSI) [119–121]. Early in the history 
of transplant, approaches like gut decontamination with non-
absorbable antibiotics and laminar airflow isolation were 
used to reduce the negative impact of microbial pathogens 
[122]. For years, efforts to reduce the risk of BSI from trans-
located oral and bowel microbiota in cancer patients have 
led to trials of numerous antibiotics, including neomycin 
and polymyxin, trimethoprim-sulfamethoxazole, and fluo-
roquinolones [123–125]. Several studies showed that anti-
microbial prophylaxis led to a reduced rate of BSI in cancer 
patients without improving mortality rates [126–128]. A 
recent meta-analysis of 17 randomized trials of antimicro-
bial prophylaxis in 1,453 hematopoietic stem cell transplant 
recipients demonstrated prophylactic antibiotic use reduced 
incidence of febrile episodes, documented infection, and 
bacteremia but did not significantly affect all-cause mortal-
ity or infection-related mortality [129].

Using antibiotics to prevent or treat infections may have 
unintended consequences that may paradoxically increase 
the risk of secondary infections through multiple mecha-
nisms, including suppression of myelopoiesis, immune, and 
hematopoietic reconstitution. Antibiotic prophylaxis may 
promote the emergence of resistant organisms and other 
infections such as Clostridium difficile (CDI) [130–132]. GF 

or antibiotic-treated mice are at increased risk of infection, 
which can be reversed through fecal microbiota transplanta-
tion [130, 131, 133]. Nutritional support from microbiota is 
a critical factor that impacts hematopoietic reconstitution 
after bone marrow transplantation in mice [134]. Depleting 
microbiota increases intestinal permeability [129], which 
may increase BSI risk.

There can be impacts globally on microbiota during 
HSCT that affect the risk of infection via effects on com-
mensal microbial communities driven by specific organisms. 
Domination of the gut microbial community by a single 
organism (vancomycin-resistant enterococcus (VRE)) has 
been demonstrated to have a direct relationship to the risk 
of BSI in patients treated with allo-HSCT [108, 135], and 
can be precipitated by antibiotic use [115, 136]. During allo-
HSCT, microbiota diversity is markedly reduced, and domi-
nation of the gut microbial community by certain bacterial 
species can predict the onset of bloodstream infection [108]. 
Patients who received allo-HSCT who developed E. coli or 
Klebsiella BSI were colonized with these organisms in the 
gut, supporting that the gut microbiota may also serve as a 
reservoir for BSI in this population [137]. A diverse micro-
biota can prevent hospital-acquired infection from VRE by 
inhibiting colonization of the individual by the organism 
[138, 139]. Certain commensal groups of anaerobic bacteria 
prevent infection from pathogenic microbes; depletion of 
specific microbiota capable of bile acid metabolism impacts 
susceptibility to CDI and can be reconstituted, restoring 
resistance to CDI [140]. During the first 6 months after allo-
HSCT, 20–30% of patients develop a viral respiratory infec-
tion. Allo-HSCT recipient patients with higher abundances 
of butyrate-producing bacteria had a fivefold lower risk of 
viral lower respiratory tract infection in allo-HSCT [116].

Antibiotic exposure and microbiota injury may also 
affect outcomes after allo-HSCT through negative impacts 
on immune reconstitution [36]. Fecal microbial diversity 
at 3-month post-transplant was an independent predictor 
of CD4 T cell count after CD34-selected allo-HSCT, and 
higher relative abundance of microbes of the genus Staphy-
lococcus was associated with impaired CD4 T cell recov-
ery, suggesting an essential role of microbial diversity on 
immune recovery and potential negative impacts of specific 
microbiota on immune function [141].

Due to the concerns about potential harm from routine 
use of antibiotic prophylaxis, several groups, including the 
Centers for Disease Control and Prevention (CDC), Infec-
tious Disease Society of America (IDSA), and the American 
Society of Transplantation and Cellular Therapy (ASTCT), 
recommend restraint against routine antibiotic prophylaxis 
[142]. Despite these recommendations, institutional prac-
tices vary in the use of antimicrobials to prevent infection 
[143, 144]. Antibiotic sparing approaches to reduce the risk 
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of harm from infection while preserving the commensal 
microbiota are being considered at many transplant centers.

3.3 � Graft‑versus‑host disease

Graft-versus-host-disease (GVHD) is a common complica-
tion of hematopoietic stem cell transplantation with poten-
tially devastating consequences to the recipient, affecting 
30–70% of allo-HSCT recipients [145–147]. Immune cells 
engrafting in the recipient recognize host tissues as foreign 
and lead to acute and or chronic immune injury by donor T 
cells to multiple recipient tissues, commonly gut, skin, oral 
mucosa, liver, and others [148]. GVHD commonly affects 
tissues that interface with microbiota, including skin, oral 
mucosa, gut, and liver. Experimental models of allo-HSCT 
in animals and human studies have demonstrated strong evi-
dence that the gut microbiota affect the risk of GVHD and 
may directly contribute to the severity of GVHD. Enterococ-
cus expansion in the gut is a common phenomenon observed 
in patients receiving allo-HSCT and has been linked to the 
onset of GVHD and reduced survival after transplant. Recent 
work showed that expansion of Enterococcus exacerbates 
the severity of GVHD in gnotobiotic mouse models of 
allo-HSCT, and directly linked promotion of Enterococcus 
growth to dietary lactose [149]. Dietary lactose depletion 
attenuated the severity of GVHD in mice, speaking to a pos-
sible mechanism through which microbiota might directly 
drive GVHD through impact of the diet [149].

Earlier animal studies of HCT showed superior survival 
of germ-free mice compared with conventional animals 
[150] and that GF mice were protected from GVHD [151, 
152]. As GF mice are known to have aberrant immune devel-
opment, this raises an important question: is reduced risk 
of GVHD observed in GF animal models of HCT due to 
absence of direct effects of microbiota or due to the dysfunc-
tion of an immune system that developed in a GF environ-
ment [153–155], or both?

There are a number of potential mechanisms by which 
microbiota might influence GVHD [156]. There may be 
impacts of microbiota on stimulation of host inflammation 
through host-sensing of MAMPs across epithelial tissues 
injured by conditioning chemotherapy or radiation [157].

Broad spectrum antibiotic use is associated with trans-
plant-related mortality and GVHD-related mortality [112, 
158]. A retrospective analysis of allo-HSCT patients who 
received the non-absorbable antibiotic rifaximin vs. prophy-
laxis with ciprofloxacin and metronidazole found those on 
rifaximin had lower rates of gastrointestinal GVHD-related 
treatment related mortality [159]. Antibiotic exposure in 
early peri-transplant period is associated with higher GVHD-
associated treatment-related mortality [158]. Prolonged 
suppression of butyrate-producing microbiota is associated 
with a higher risk of acute GVHD and transplant-related 

mortality after allo-HSCT. Concentrations of human fecal 
SCFA butyrate and propionate may be decreased after HSCT 
and are likely influenced by antibiotic exposure and impact 
the incidence of GVHD [160]. In a retrospective case–con-
trol study, patients with higher systemic concentrations of 
microbial-derived SCFAs butyrate and propionate are asso-
ciated with protection from GVHD [161]. It is important to 
note that although butyrate producers are associated with 
reduced rate of GVHD, in those with established GVHD, 
butyrate can have mixed effects. In GVHD, damaged crypts 
allow for butyrate to impair healing of the gut by inhibiting 
the regenerative function of intestinal stem cells [162]. Clini-
cally, this manifests as an association of butyrate-generating 
microbes in the gut after the onset of severe GVHD with 
treatment-refractory GVHD [163]. This may suggest that a 
targeted antibiotic approach to inhibit butyrate production 
may have an initial benefit for steroid-refractory GVHD to 
allow gut healing, and perhaps could be followed with the 
restoration of microbiota using fecal microbiota transplanta-
tion. Associations of microbiota with GVHD in transplant 
have driven efforts to explore the modulation of the micro-
biota as a way to treat steroid-refractory GVHD and poten-
tially prevent GVHD through preserving microbial commu-
nity structure in the peri-transplant period.

3.4 � Relapse

Collateral damage in the form of injury to the commensal 
microbiota caused by broad-spectrum antibiotic use not only 
impacts infection and GVHD but also affects an individual’s 
risk of disease relapse [114, 164]. Patients with hematologic 
malignancies already have marked alterations in their com-
mensal microbiota at the time of transplant. Several groups 
have reported that adverse outcomes in hematopoietic cell 
transplant recipients are associated with microbiota injury 
caused in part by antibiotic exposure, manifested by expan-
sions of potentially pathogenic microbiota and dramatic 
alterations in the diversity and content of microbes present in 
stool samples collected from these patients. Lower diversity 
in the intestinal microbiota is associated with worse mortal-
ity after allo-HSCT [110].

Concerning possible impacts of immune modulation of 
the host by microbiota, there are data to suggest important 
effects of the microbiota both on immune-mediated toxicity 
and immune control of the disease after allo-HSCT. Addi-
tionally, butyrogenic microbes may impact disease control in 
allo-HSCT, with patients with a higher relative abundance of 
Eubacterium limosum having a lower rate of disease relapse 
and longer overall survival after allo-HSCT [107]. In a large 
study evaluating microbiota and treatment outcomes after 
allo-HSCT, a higher relative abundance of Eubacterium 
limosum post-transplant was associated with a lower rate of 
disease relapse and increased overall survival, indicative of 
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the role that butyrogenic microbes have in disease control 
after allo-HSCT [114].

In conclusion, it is becoming clear that microbiota are a 
key factor to consider in optimizing outcomes in allo-HSCT 
for hematologic cancers to minimize treatment-related mor-
tality (TRM), prevent morbidity and mortality from infec-
tions, and reduce the incidence and severity of GVHD.

3.5 � Autologous stem cell transplant

The use of autologous stem cells transplanted for recon-
stitution of bone marrow function after administration of 
high-dose chemotherapy allows for dose intensification for 
the treatment of hematologic malignancies. Autologous 
hematopoietic stem cell transplantation (auto-HSCT) using 
myeloablative high-dose melphalan conditioning is a stand-
ard approach used for the treatment of multiple myeloma 
which prolongs overall survival and progression-free sur-
vival compared with patients who do not receive this therapy 
[165, 166]. Comparable to the experience of patients receiv-
ing allo-HSCT, treatment outcomes from auto-HSCT cor-
relate with changes in microbiota which may impact host 
immunity. Several groups have noted significant and reliable 
reductions in microbial diversity (microbiota injury) in lym-
phoma and myeloma patients treated with auto-HSCT dur-
ing and after transplant [167, 168]. Additionally, lower peri-
engraftment diversity in fecal samples of patients treated 
with auto-HSCT with lymphoma and multiple myeloma 
is associated with worse overall and progression-free sur-
vival [167]. It is unclear whether decreased microbial diver-
sity may be a surrogate marker of other factors that could 
impact patient outcomes, or whether decreased microbial 
diversity is directly impacting patient outcomes. The exact 
mechanisms of how microbial diversity affects auto-HSCT 
outcomes also remain unclear. Although the mechanism 
of action of auto-HSCT has generally been thought to be 
related primarily to the cytotoxic effects of the conditioning 
regimen on tumor cells, there is evidence of immunological 
anti-tumor effects of auto-HSCT that may be impacted by 
microbiota injury. Auto-HSCT in a MM animal model leads 
to an augmentation of autologous T-cell-mediated control 
of MM [169], and in patients, reductions in regulatory T 
cell populations in the early post-transplant period may sup-
port antitumor immunity and use of immunotherapy for MM 
[170]. Melphalan has been shown to augment the effects of 
adoptive immunotherapy using CD4 + T cells [171]. These 
data further support possible beneficial effects of commen-
sal microbes, including regeneration of the protective gut 
barrier and reduction of systemic inflammation, and raise 
questions about whether the microbiota may be a modifi-
able characteristic for patients receiving autologous-HSCT 
for MM.

4 � The microbiome as prognostic marker 
and therapeutic target: future directions

As summarized above, the structure (e.g., alpha diversity), 
composition (specific microbes), and metabolic function of 
the gut microbiome (e.g., SCFA production) as estimated 
by techniques like 16S rRNA sequencing have been asso-
ciated with outcomes for cancer patients, including MM 
and patients treated with stem cell transplantation. The 
microbiome relates to disease onset, progression, treatment 
response, and overall outcomes for people with hematologic 
malignancies, including MM. A remaining challenge is how 
to turn this insight into the improved determination of prog-
nosis (e.g., the gut microbiome as a clinically relevant bio-
marker) and to use the microbiome to improve outcomes.

4.1 � Limitations of microbiome analysis

Providing patients with a more accurate prognosis of their 
disease using personalized microbiome data is an enor-
mous unrealized opportunity but is one currently limited 
by fundamental biological and technical challenges. The 
dominant technique for microbiome science has been 16S 
rRNA gene variable region amplicon sequencing. This tech-
nique is mature, cost-effective, and effective at being able 
to characterize metrics like alpha diversity and composition 
(i.e., a lack of typical butyrate-generating microbes), but 16S 
rRNA gene variable region sequencing is highly sensitive to 
specific technical details (which PCR primers are selected, 
PCR conditions, sequencing library preparation) as well as 
batch effects (even with all technical details the same, one 
can achieve different results from the same underlying com-
munity from different batches of reagents and/or sequenc-
ers used). This technical variability has limited the clinical 
applicability of 16S rRNA gene variable region amplicon 
sequencing. WGS is moderately less subject to technical 
variance (e.g., primer selection is less of a concern) but is 
complicated by increased cost, increased computational 
challenges, and reduced sensitivity for rarer organisms. The 
underlying person-to-person variance in the microbiome 
adds another layer of complexity. Targeted metabolomics 
may end up the most tractable technique. Measurement of 
SCFA levels (particularly butyrate) in the stool and serum 
may be a viable approach to improve prognostic accuracy 
for a patient.

4.2 � The gut microbiome as a therapeutic target 
in MM and HCT

Beyond using the microbiome to improve our prediction of 
outcomes for MM and HCT patients, there is an opportunity 
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to improve outcomes by directly affecting the microbiome. A 
combination of doing less harm to the gut microbiome and 
direct manipulations of the composition and metabolic out-
put of the gut microbiome are all promising avenues based 
on our knowledge to date.

Doing less harm with careful antibiotic use and selec-
tion is a core opportunity to improve outcomes. In hemat-
opoietic stem cell transplantation, judicious antibiotic use 
or antibiotic-sparing approaches to reduce microbiota injury 
may limit GVHD and infectious risk, and potentially reduce 
the risk of relapse. Although strategies that limit microbiota 
injury during treatment of patients with hematologic cancers 
undergoing treatment with immunotherapies could reduce 
harmful treatment outcomes, increased general risk of infec-
tions in this population makes some injury through broad-
spectrum antibiotic use unavoidable; thus, methods to repair 
or replenish a healthy microbial community are needed.

Efforts to directly manipulate the microbiota through 
nutrition, prebiotic, or probiotic approaches may optimize 
the microbiome for improving treatment outcomes. Patients 
with MM with a diet that contains specific nutrients may 
impact clinical outcomes diets [172], suggesting a possible 
role for dietary intervention to impact the disease course. 
Reduction of inflammation through modulation of the 
microbiota by various methods may impact malignancies 
such as MM which are driven by inflammatory cytokine 
signaling. Additionally, hematopoietic stem cell transplan-
tation remains an integral part of the treatment paradigm 
for patients with hematologic cancers. Transfer of healthy 
microbiota through fecal microbiota transplantation is an 
established therapy for the treatment of Clostridium diffi-
cile infection [173]. Fecal microbiota transplantation has 
been evaluated as a method to restore the diversity of the 
gut microbiota after injury associated with allo-HSCT [174, 
175] and as a therapy for patients with steroid-resistant 
acute GVHD [176–178]. The potential risk of the trans-
fer of drug-resistant pathogens is a complicating feature 
of fecal microbiota transplantation [179] and underscores 
the need for rigor in selecting and screening stool donors. 
Targeted transfer of engineered microbial communities is 
another approach aimed at reducing the risk of transmis-
sion of antibiotic-resistant pathogens in the preclinical stage 
of development. Multicenter studies show a strong nega-
tive effect of microbiota injury, and avenues to address this 
important problem may have significant benefits for patients 
with hematologic cancers.

An under-addressed challenge with any microbiome 
manipulation is the complexity and contextuality of host-
microbe interactions. Even for the relatively well-charac-
terized effects and mechanisms by which butyrate produced 
by microbes affects cancer outcomes, we have discovered 
some conflicting effects (i.e., reduced risk of developing 
GVHD, but perhaps increased treatment-refractory GVHD 

with butyrate). Embracing and acknowledging the contextual 
and complex effects of the microbiome during MM treat-
ment will be key to the successful development of novel 
microbiome-oriented therapies.

5 � Conclusions

In summary, the microbiota are essential to immune func-
tion and several studies have shown a potential role for the 
microbiota in the pathogenesis of hematologic malignan-
cies such as multiple myeloma through impacts on inflam-
matory signaling pathways and host metabolism. Microbial 
metabolites can impact immunity and influence outcomes 
in patients with myeloma and hematologic malignancies. 
In patients, increased microbial diversity in allogeneic and 
autologous stem cell transplantation is associated with 
superior outcomes. The evaluation of potential strategies to 
impact the microbiota to improve outcomes for patients with 
hematologic malignancies is underway.
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