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Abstract
We thank the editors for organizing the discussions and the discussants for
insightful comments. Our rejoinder provides results and comments to address
the questions raised in the discussions. Specifically, we present results showing
DICA largely demonstrates better or comparable stability as comparedwith stan-
dard ICA. We also validate the DICA in real fMRI application by showing DICA
generally shows higher reliability in reproducibly recovering major brain func-
tional networks as compared with the standard ICA. We provide details on the
computational complexity of themethod. The computational cost ofDICA is very
reasonable with the analysis of the fMRI andDTI data easily implementable on a
PC or laptop. Finally, we include discussions on several directions for extending
the DICA framework in the future.

1 INTRODUCTION

We thank the editor and associate editor for inviting discus-
sions of our article, and the discussants (Keeratimahat and
Nichols, 2021; Mejia, 2021; Moerkerke and Seurinck, 2021;
Shappell and Simpson, 2021) for insightful conversations
about our work. We summarize the major comments and
questions raised by the discussants as follows: (1) the stabil-
ity and robustness of the proposed DICA, (2) the computa-
tion time and memory requirements of DICA, (3) method
validation and further comparison with standard ICA in
real fMRI data, and (4) potential directions for extend-
ing the DICA framework. In the rejoinder, we provide
results and discussions to address these comments and
questions.
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2 STABILITY OF THE DICA

The discussants have raised the question about the stability
of results from DICA, considering the EM algorithm used
for mixture modeling at stage one of DICA is known to
be sensitive to the initial values (Mejia, 2021; Shappell and
Simpson, 2021); and the initial random initialization of the
mixingmatrix of the ICA at stage two of DICA also leads to
variation in ICA results (Keeratimahat and Nichols, 2021).
To address the question, we conduct additional analysis to
investigate the stability of DICA.
As Keeratimahat and Nichols (2021), we conduct sta-

bility analysis by running a method multiple times using
the example imaging data sets and evaluate the overlap in
the extracted spatial independent components (ICs) maps
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F IGURE 1 Stability of four variations of methods across 50 replicates for the fMRI and DTI example data sets. DICA-FI1: DICA with
fixed and random initialization at stage one and stage two, respectively; DICA-FI2: DICA with random and fixed initialization at stage one
and stage two, respectively; DICA-RI: DICA with random initialization at both stages; ICA-RI: standard ICA with random initialization

across runs with the Dice coefficient. We consider four
variations of methods: (1) DICA-FI1: DICA with fixed ini-
tialization for EM at stage one, and random initialization
of ICA at stage two; (2) DICA-FI2: DICA with random
initialization for EM at stage one and fixed initialization
for ICA at stage two; (3) DICA-RI: DICA with random
initialization for both EM and ICA; and (4) the standard
ICA with random initialization. As per the discussants’
request (Mejia, 2021), we provide additional details for the
implementation of DICA. In the DICA R package, we use
clustering methods such as k-means to generate initial
values for the EM algorithm at stage one. For the ICA
analysis at stage two, the DICA R package uses the Info-
max algorithm implemented via the function “icaimax”
from R package “ica” where random initiations can be
specified for the mixing matrix. Since the initial release
of our DICA R package that was used in Keeratimahat
and Nichols (2021), we have implemented an update for
the package that fixes a numerical underflow issue in the
original code when dealing with extremely small posterior
weights. The updated R package is available on Github at
https://github.com/benwu233/DICA.
To obtain a more reliable assessment on the stability,

we conduct the numerical experiments with 50 replica-
tions. In contrast, Keeratimahat and Nichols (2021) draw
their conclusions based ononly five replications.Wematch
the ICs across different replications using the same greedy
matching algorithm adopted by Keeratimahat andNichols
(2021). The overlap betweenmatched ICs ismeasuredwith
the multi-class Dice coefficient. As shown in the Figure 1,
for fMRI data, all the three variations of DICA have clearly
better stability than the standard ICA, which is consistent
with the findings in Keeratimahat and Nichols (2021). For
DTI data, DICA-FI1 provides more stable results than the
standard ICA while DICA-FI2 and DICA-RI show com-
parable or slightly lower stability as compared with stan-
dard ICA (Figure 1). It is worth noting the Dice coefficients

of the DICA methods in DTI data have demonstrated an
obvious improvement over those reported in Keeratimahat
and Nichols (2021) after we fix the numerical underflow
issue in the original DICA R package. Among the three
DICA variants, DICA-FI1 and DICA-FI2 that have fixed
initiation at either stage one or stage two have more stable
results than DICA-RI that has random initiation for both
the mixture modeling and ICA. In their discussions, Keer-
atimahat and Nichols (2021) expressed worry that random
initialization in mixture modeling and ICA may lead
to greater instability in DICA relative to standard ICA.
Our results show that DICA-RI actually demonstrates
better stability than standard ICA in fMRI data and
has only slightly lower Dice coefficients in DTI data.
These findings alleviate the concern raised in Keeratima-
hat and Nichols (2021). Furthermore, we want to point
out that the standard ICA of DTI data is using ICA
to decompose the six values of the tensors (Keeratima-
hat and Nichols, 2021), which means the standard ICA
of DTI can only extract up to six independent compo-
nents. This restriction would limit the ability of the stan-
dard ICA in discovering fine-scale latent components
in DTI data. In comparison, the proposed DICA poten-
tially provides a more powerful and flexible tool for DTI
decomposition.
Our results show that different initial values in the

EM mixture modeling contribute to the variations in
DICA results. Therefore, we recommend using cluster-
ing methods to generate informative initial values for
the EM algorithm to improve its convergence. Addition-
ally, we agree with the discussants (Mejia, 2021; Shap-
pell and Simpson, 2021) to consider multiple sets of ini-
tial values to improve the performance of the EM. Specif-
ically, one may consider multiple initialization strate-
gies such as the short EM, the multiple-repeated k-
means, and the REBIMX algorithm (Panić et al., 2020) in
practice.

https://github.com/benwu233/DICA
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3 COMPUTATIONAL COMPLEXITY

Another question from the discussants (Mejia, 2021; Shap-
pell and Simpson, 2021) is related to the computational cost
of DICA when applied to the imaging data and when the
number of ICs is large. In the Supporting Information of
our paper, we have included details and discussions on
DICA computation. Specifically, the user CPU time was
around 150 s for fMRI and 585 s for DTI on a MacBook
Pro laptop with a 3.1 GHz Dual-Core Intel Core i5 proces-
sor and 8 GB memory. The most computationally expen-
sive and memory-demanding component in DICA is the
mixture modeling at stage one since it involves the origi-
nal imaging data. The computational complexity in each
iteration of the EM algorithm is 𝑂(𝐽𝐾𝑇), where 𝑇 is the
dimension of the imaging measurements at each voxel, 𝐽
is the number of voxels, and 𝐾 is the number of compo-
nents in the mixture distribution. That is, the computation
time increases linearly with the number of mixture com-
ponents. In terms of memory requirements, since we uti-
lize an iterative algorithm for themixture modeling, DICA
does not require a large amount of memory to implement.
In addition to the original imaging data, we only need to
store the posterior weights and the distribution parame-
ters from the mixture modeling, which only need a small
memory space. DICA of the fMRI data and DTI data in
the paper can be easily implemented on a personal lap-
top. Mejia (2021) has a question about DICA’s scalability
to a large number of ICs. The mixture modeling at stage
one of DICA significantly reduces the dimension of the
inputs to the ICA that essentially decomposes the posterior
weights from stage one. Therefore, the computational cost
for DICA does not increase dramatically for large number
of ICs.

4 METHOD VALIDATION IN
IMAGING APPLICATIONS

Moerkerke and Seurinck (2021) andMejia (2021) raise very
good points on method validation of DICA in neuroimag-
ing applications. Moerkerke and Seurinck (2021) suggests
more evaluation criteria could be considered depending on
the ultimate goal of a study. Mejia (2021) comments that
DICA should be validated in real imaging data in compari-
sonwith the standard ICAwhich iswidely applied to fMRI.
In neuroimaging studies, ICA is mainly used to decom-
pose observed images to reveal underlying brain networks.
Therefore, an important evaluation criterion for validating
DICA inneuroimaging applications iswhether themethod
can generate reliable and reproducible findings regarding
brain networks. To this end, we evaluate the reliability of
the DICA in recovering functional networks using rs-fMRI

data obtained from the Philadelphia Neurodevelopmen-
tal Cohort (PNC) study. Based on the discussants’ com-
ments, we perform a comparison with the standard ICA.
Specifically, we apply DICA and the standard ICA to the
rs-fMRI data 50 times and evaluate the reproducibility of
the two methods in recovering brain functional networks.
We note that Keeratimahat and Nichols (2021) perform
5 runs of DICA and standard ICA on the rs-fMRI data
and presented the estimated visual network and auditory
network from the 5 runs. For more reliable and com-
prehensive assessment, we present reproducibility results
from 50 runs for six major resting-state functional net-
works. In Figure 2, we show the proportion of runs that
regions in the six resting-state functional networks are
reproducibly recovered by the methods. DICA generally
shows a noticeably higher reliability in recovering key
regions in the brain networks as compared with the stan-
dard ICA, especially for the occipital pole visual, lateral
visual, sensorimotor, auditory, and executive control net-
works. In particular, our analysis shows DICA demon-
strates an improved reliability in consistently recovering
the auditory network, which is different from the conclu-
sion in Keeratimahat and Nichols (2021). This is due to
the difference in the criterion and number of runs used
in assessing reliability in the two papers. Our finding is
obtained by evaluating the reproducibility rate that quan-
tifies the reliability of results across 50 runs, while Keera-
timahat and Nichols (2021) draw their conclusions based
on visual inspections of results from five runs. For the
default mode network, the performance of DICA and the
standard ICA is comparable with each method generating
slightly better results in different regions of the networks.

5 EXTENSION OF THE DICA
FRAMEWORK

As the discussants mentioned, there are several directions
we can extend the DICA framework. In the Discussion
section of our paper, we have pointed out various strate-
gies that can be taken to generate DICA to multi-subject
imaging data. For example, we can consider concatena-
tion of the imaging data and the posterior weights across
subjects in the two stages of DICA. Alternatively, we may
follow the hierarchical ICA framework (Guo and Tang,
2013; Shi and Guo, 2016; Wang and Guo, 2019) to develop
a multilevel modeling extension for DICA to first per-
form the individual-level ICA decomposition on the first
level of the group DICA and then model the individual-
level source signals in terms of population sources and
individual effects on the second level of the group DICA.
Another major extension of DICA is to adapt the method
for other imaging modalities such as EEG. The main task
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F IGURE 2 Reliability of DICA and standard ICA in recovering brain functional networks from a subject’s resting state fMRI data. The
presented values are the reproducibility rate across 50 runs

in extending to other imaging modalities lies in identify-
ing appropriate mixture distributions to model the imag-
ing data at stage one of DICA. The distribution model
should be suitable for the data characteristics (e.g., dimen-
sion and scale) of the specific imaging modality and can
effectively capture the variability in the imaging. Some
good-of-fit methods could potentially be applied to evalu-
ate the fit of variousmixturemodels and choose a desirable
distribution. Finally, to fuse information across imaging
modalities, it is of interest to extend the DICA to jointly
analyzing multiple imaging modalities. Since DICA rep-
resents a unified framework to decompose different
imaging modalities, it provides a great platform for multi-
modality analysis. We could apply modality-specific mix-
ture distributions at stage one of DICA for dimension
reduction. After obtaining the modality-specific posterior
weights from the mixture modeling, we can then develop
a joint DICA method to simultaneously decompose the
weights across the imaging modalities. There is a rich lit-
erature on joint ICA decomposition across imagingmodal-

ities, which provides a solid foundation for developing a
joint DICA method.

6 OTHER QUESTIONS AND
COMMENTS

The discussants have some questions regarding the tun-
ing parameters in DICA, such as the effects of the number
of mixtures 𝐾 at stage one. In Section 3 of the Supporting
Information of ourDICApaper, we have included sensitive
analyses in both the simulation studies and real data appli-
cations. The analyses show that results fromDICA remain
fairly stable for various choices of 𝐾 within a reasonable
range. In Keeratimahat andNichols (2021), the discussants
suggest dispensing with the tuning parameter in the PCA
step by avoiding the PCA dimension reduction for fMRI
and directly estimating the mixture distribution for the
full-size fMRI data. We respectfully disagree with this sug-
gestion. Based on our experience, direct mixture modeling



1126 WU et al.

of the original fMRI time series increases the challenges
and instability in the mixture modeling due to the large
dimension of the full-size fMRI and the high noise level in
the original data. The issue is especially serious for recent
fMRI studies that can acquire around a thousand of vol-
umes. PCA dimension reduction on the fMRI time series
has proven to be an effective dimension reduction and
denoising technique prior to standard ICA of fMRI. PCA
has also shown to improve the stability and robustness of
the mixture modeling for DICA. Hence, its inclusion is
beneficial to improving the performance of the method.
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