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Abstract
Recent advances in neuroimaging technologies have provided opportunities to
acquire brain images of different modalities for studying human brain organiza-
tion from both functional and structural perspectives. Analysis of images derived
from various modalities involves some common goals such as dimension reduc-
tion, denoising, and feature extraction. However, since these modalities have
vastly different data characteristics, the current analysis is usually performed
using distinct analytical tools that are only suitable for a specific imaging modal-
ity. In this paper, we present a Distributional Independent Component Analy-
sis (DICA) that represents a new approach that performs decomposition on the
distribution level, providing a unified framework for extracting features across
imaging modalities with different scales and representations. When applying
DICA to fMRI images, we successfully recover well-established brain functional
networks in neuroscience literature, providing empirical validation that DICA
delivers neurologically relevant findings. More importantly, we discover several
structural network components when applying DICA to DTI images. Through
fiber tracking, we find these DICA-derived structural components correspond
to several major white fiber bundles. To the best of our knowledge, this is the
first time these fiber bundles are successfully identified via blind source separa-
tion on single subject DTI images. We also evaluate the performance of DICA as
compared with existing ICA methods through extensive simulation studies.
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1 INTRODUCTION

With the advancement of neuroimaging techniques, it has
become increasingly common for neuroscience studies to
collect multimodal brain imaging data in order to obtain a
more comprehensive understanding of brain function and
structure. For example, functional magnetic resonance
imaging (fMRI), which is currently the most prominent
functional neuroimaging modality, measures the hemody-
namic response related to neural activity in the brain; diffu-

sion tensor imaging (DTI), an increasing important struc-
tural imaging modality, maps white fiber tract structure
by measuring water diffusion in the brain. Data collected
from these different imaging modalities offer complemen-
tary views on the brain organization and could potentially
provide new insights into the relationship between brain
function and structure (Guye et al., 2008). For example,
the structural connections revealed by DTI can help
understand and verify the functional networks identified
based on fMRI and also provide useful information for
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constructing biologically plausible models for brain func-
tional networks (Ramnani et al., 2004). It has become
increasingly clear that utilizing information from diverse
imaging modalities leads to more effective neuroscience
research.
Analyzing data derived from different imaging modali-

ties is a challenging task. One of the major difficulties is
that imaging measurements across these modalities have
different data representations. For example, fMRI records
a time series of blood-oxygen-level-dependent (BOLD) sig-
nals reflecting the hemodynamic responses at a voxel, that
is, the volume element within fMRI data. DTI data are
represented by a 3D tensor matrix at each voxel repre-
senting the local water diffusion pattern. Furthermore,
thesemodalities have different noise levels and intensities.
Given these issues, existing methods have to adopt differ-
ent analytical approaches that are specific to each modal-
ity (Calhoun and Sui, 2016). This often causes challenges
for integrating information and results across modalities.
Therefore, it is desirable to develop a general analytical
framework that can accommodate different types of imag-
ing data.
Some common objectives in analyzing data from dif-

ferent imaging modalities include dimension reduction,
denoising and extraction of latent features such as the
functional networks from fMRI data and white matter
structural networks from DTI data. A useful computa-
tional tool that can achieve these goals is independent
component analysis (ICA). ICA is one of the most widely
applied blind source separation methods for recovering
latent features underlying multivariate observations. This
rapidly evolving technique has found successful applica-
tions in a wide range of scientific areas such as biomedical
imaging (e.g., neuroimaging and optical imaging), visual
receptive fields, signal processing, and machine learning
(Hyvärinen et al., 2001; Bartlett et al., 2002; Beckmann
et al., 2005) Essentially, ICA is a computational method
for decomposing observed multivariate data into additive
components that are statistically as independent as possi-
ble. The problem is typically expressed as follows. Let 𝐘

be the observed multivariate data matrix with the dimen-
sion of 𝑇 × 𝐽 that contains 𝑇 mixed signals of length 𝐽

each. The classical noise-free ICAmethod decomposes the
observed data into a linear combination of latent indepen-
dent sources as

𝐘𝑇×𝐽 = 𝐀𝑇×𝐿𝐒𝐿×𝐽, (1)

where 𝐀 is a mixing matrix, 𝐒 represents non-Gaussian
source signals, and 𝐿 is the number of latent indepen-
dent sources that is smaller than 𝑇. The 𝐿 source sig-
nals are assumed to be statistically independent. ICA has
been shown to be a highly effective tool for dimension

reduction, denoising and extraction of latent source sig-
nals (Hyvärinen et al., 2001). ICA has several appealing
properties that make it a popular tool in many fields. For
example, compared with methods such as PCA and factor
analysis that are based on the second-order statistics of the
data, ICA exploits information from higher order statistics
that are relevant for non-Gaussian data. Additionally, the
key assumption of ICA, that is, statistical independence
across components, is often supported by large-scale data
with sparse signals (Beckmann et al., 2005). Diverse algo-
rithms have been developed for ICA over the past decades.
For example, the well-known traditional ICA algorithms
include Infomax (Bell and Sejnowski, 1995) and FastICA
(Hyvarinen, 1999). More advanced methods were devel-
oped soon in engineering, statistical and computer sci-
ence societies, such as maximum likelihood estimations
(e.g., Hastie and Tibshirani (2003)), rank-based estima-
tions (e.g., Hallin andMehta (2015)), and estimations using
deep learning techniques (e.g., Ngiam et al., 2010; Le et al.,
2011). Of note, although the non-Gaussianity of sources
is one of the assumptions used in many ICA algorithms,
the ICA optimization can be achieved in various ways in
addition to maximizing the non-Gaussianity. For exam-
ple, non-Gaussianity and sample dependence have been
considered together to achieve better performance (Adali
et al., 2014). Furthermore, recent work demonstrates that
statistical independence and sparsity can be considered
simultaneously in ICA in order to achieve sparse signal
decomposition (Boukouvalas et al., 2018).
In neuroscience research, ICA has become one of the

most commonly applied tools for identifying brain func-
tional networks based on fMRI data (McKeown et al., 1998;
Calhoun et al., 2001; Beckmann and Smith, 2005; Guo,
2011; Guo and Tang, 2013; Shi and Guo, 2016; Wang and
Guo, 2019). The classical ICA model in (1) can be read-
ily applied to decompose a subject’s fMRI data (McKe-
own et al., 1998). Specifically, 𝐘 is the 𝑇 × 𝐽 matrix of
observed fMRI signals where 𝑇 is the number of fMRI
scans acquired, each row of 𝑌 is a concatenated 3D brain
image acquired during each scan and 𝐽 is the number of
voxels of an image. 𝐒 is the spatial source signal matrix
where each row represents a concatenated 3D map of an
independent source signal.𝐀 represents the temporal mix-
ing matrix that mixes the 𝐿 spatial sources to generate
the observed time series of fMRI images. For fMRI data,
each independent component (IC) potentially corresponds
to a brain functional network where each row of 𝐒 and
the corresponding column of 𝐀 characterizes the spatial
distribution and temporal dynamics for a functional net-
work, respectively. ICA naturally has advantages applied
to fMRI data. The spatial independence assumption of
ICA corresponds well to the sparsity of fMRI signals, and
thus ICA can identify brain functional networks without
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constraining the temporal dynamics (Calhoun et al., 2009).
In addition, the non-Gaussianity assumption of ICA
means we may capture the structured noise of fMRI data
with noise components simultaneously, and thus denoise
the data. Existing studies have found that ICA can be suc-
cessfully applied to either resting-state or task-based fMRI
analysis, single-subject or multi-subject studies.
Although ICA has been widely applied to fMRI data

analysis, its applications to other imagingmodalities, espe-
cially DTI data, have been very limited. Onemain reason is
that the classical ICA was mainly developed to decompose
multivariate observations, such as fMRI time series, but is
not applicable to the diffusion tensor matrices in DTI. In a
few caseswhere ICAwas applied toDTI data (Li et al., 2012;
Ouyang et al., 2015), investigators first obtained at each
voxel the fractional anisotropy (FA) (Basser et al., 1994;
Koay et al., 2006) that is a scalar summary statistic derived
from the estimated tensormatrix and then applied the clas-
sical ICA model to decompose multi-subject FA data. This
FA-based ICA application has several major limitations.
The diffusion tensor matrix from DTI data characterizes
both the shape and orientation of the diffusion ellipsoid
at each voxel where the eigenvectors of the tensor matrix
represent the diffusion directions and the eigenvalues are
associated with the speed of diffusion in these directions.
The FA, which is a scalar summary statistic derived based
on the differences among the eigenvalues, only captures
the degree of anisotropy in the diffusion ellipsoid but does
not use information from the eigenvectors. Consequently,
the FA-based ICA does not take into account the orien-
tation of the diffusion tensors, which is a crucial piece of
information in DTI data. Furthermore, the FA-based ICA
method requires multi-subject FA values and is not appli-
cable to single subject DTI analysis.
To help address these challenges, we propose a new

Distributional Independent Component Analysis (DICA)
method to provide a unified framework for extracting
source signals from diverse types of data from different
imaging modalities including but not restricted to fMRI
and DTI. We note that the aforementioned limitations of
the classical ICA mainly relate to the fact that the classi-
cal ICA aims to decompose the observed data. Hence the
ICA model and associated estimation methods need to be
tailored to the specific imaging modality. The proposed
DICA represents a fundamentally different approach of
source separation. Instead of separating the observed data,
DICA aims to separate the characterizing parameters in
the distribution function of the observed data as a mix-
ture of source signals. Specifically, in theDICA framework,
we first model the observed data with a mixture distribu-
tion model where the component distributions are chosen
appropriately based on the data representations from the
specific imaging modality. The mixture distributionmodel

is characterized by the component distributions and a set
of weight parameters that is a probability vector represent-
ing the loading on each component distribution. At the
second stage of DICA, we perform the ICA decomposition
on the posterior weights by separating them as a linear
mixture of independent latent source signals. In this new
framework, the component distributions of the mixture
distributionmodel at the first stage of DICA can be viewed
as a set of bases in the distribution space of the imag-
ing data. The posterior weights of the mixture distribution
can be viewed as the set of coordinates of the observed
data on the bases of component distributions. For diverse
types of data from different modalities, the basis compo-
nent distributions are specific to each imaging modality
while the weights are comparable across modalities. For
example, in DTI analysis, the first stage of DICA models
the whole tensor using the mixture of Wishart distribu-
tions, allowing us to take into account information from
both eigenvalues and eigenvectors of the tensor matrices.
The voxel-specific posterior weights derived from the first-
stage DICA contain both the shape and direction infor-
mation of a representative diffusion tensor. DICA is also
able to decompose single-subject DTI data. Therefore, the
proposed DICA addresses the major limitations in existing
ICA analysis of DTI data. Our goal of the proposed DICA
is to provide a unified platform to decompose diverse types
of data derived fromdifferent imagingmodalities. Building
on this unified platform, future research can be conducted
to extend the DICA method to performing joint decompo-
sition across multiple imaging modalities.
We applied DICA to decompose fMRI data and DTI data

from the Philadelphia Neurodevelopmental Cohort (PNC)
study (Satterthwaite et al., 2014). For fMRI data, DICA suc-
cessfully recovered well-known resting state brain func-
tion networks that have been consistently identified in
fMRI studies. This demonstrates the validity of the pro-
posed DICA for fMRI data. For DTI data, the DICA
extracted independent components that are composed of
white matter regions that correspond to major fiber bun-
dles in the brain. The results demonstrate the applicability
of DICA for revealing structural networks related to white
matter pathways. To the best of our knowledge, the pro-
posed DICA is the first ICA framework that can achieve
this goal for single subject DTI data.
The rest of this paper is organized as follows. In

Section 2, we introduce the DICA framework and its
estimation procedure, and discuss the connection and dis-
tinction between DICA and the classical ICA model. In
Section 3, we include the results obtained by applying
DICA to the fMRI and DTI imaging data from the PNC
study. Section 4 presents simulation studies to evaluate
the performance of DICA for separating data generated
from different underlying mechanisms, compared with
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two popular classical ICA algorithms. We conclude with
a discussion in Section 5.

2 THE DISTRIBUTIONAL ICA

The DICA method is a general decomposition method
that can be applied to data collected from diverse imag-
ing modalities such as fMRI and DTI. These modalities
measure different aspects of brain function and structure.
For instance, fMRI measures the blood-oxygenation-level-
dependent (BOLD) signal as a correlate of neural activ-
ity. Series of BOLD signals are captured across time to
investigate the temporal dynamics of the neural process-
ing in response to experimental stimuli or during resting
state. From fMRI data, we can infer brain functional net-
works consisting of brain regions demonstrating coherent
BOLD temporal dynamics. DTI is another MRI modality
that maps white matter fiber tracts in the brain by mea-
suring the diffusion of water molecules within brain tis-
sues. Specifically, DTI models local water diffusion using a
zero-mean 3D Gaussian distribution. The 3 × 3 covariance
matrix of the Gaussian distribution, known as the diffu-
sion tensor matrix, characterizes the water diffusion pat-
tern in 3D space. From diffusion tensors, we can infer local
white fiber orientation and subsequently construct brain
structural networks consisting of major white matter fiber
bundles.

2.1 A two-stage method

Let 𝕀 represent the imaging data space where we collect
data from. Denote by 𝐘𝑗 ∈ 𝕀 the imaging measurement
obtained at voxel 𝑗 (𝑗 = 1, … , 𝐽). The imaging data space
𝕀 is specific to an imaging modality. For fMRI, 𝐘𝑗 repre-
sents the BOLD signal series measured over 𝑇 time points
at voxel 𝑗. Hence, 𝕀 = ℝ𝑇 is a 𝑇-dimensional Euclidean
space. For DTI, 𝐘𝑗 represents the diffusion tensor matrix
at voxel 𝑗 that is visualized as an ellipsoid characterizing
the diffusion pattern of water molecules in local brain tis-
sue. Hence, 𝕀 = 𝑃𝐺3 represents the space of 3 × 3 symmet-
ric positive definite matrices.
The proposed DICA consists of two stages. At stage one,

DICA models the observed data using a mixture distribu-
tion model and projects the data onto a space of proba-
bility vectors containing posterior weights of the mixture
distribution. At stage two, DICA decomposes the posterior
probability weights to extract latent source signals. Please
see Figure 1 for a schematic illustration of the DICA. We
present some detailed introduction in the following.
At stage one, we model the probability distribution of

imaging measurements using a mixture distribution of 𝐾

components:

𝐘𝑗 ∼

𝐾∑
𝑘=1

𝜋𝑘(𝚯𝑘), for 𝑗 = 1, … , 𝐽,

where 𝜋𝑘 is the weight of the component 𝑘 in the mixture
distribution and(𝚯𝑘) specifies the distribution of compo-
nent 𝑘, which is chosen according to the specific imaging
modality. For fMRI data,(𝚯𝑘) can be specified as a mul-
tivariate Gaussian distribution with 𝚯𝑘 = (𝜽

𝑓𝑀𝑅𝐼

𝑘
, 𝝉

𝑓𝑀𝑅𝐼

𝑘
)

where 𝜽
𝑓𝑀𝑅𝐼

𝑘
and 𝝉

𝑓𝑀𝑅𝐼

𝑘
are the mean and covariance of

the multivariate Gaussian. For DTI data, (𝚯𝑘) can be
specified as a Wishart distribution with𝚯𝑘 = (𝜽

𝐷𝑇𝐼
𝑘 , 𝝉𝐷𝑇𝐼

𝑘
),

where 𝜽
𝐷𝑇𝐼
𝑘 represents the expected tensor shape and 𝝉𝐷𝑇𝐼

𝑘
is the degree of freedom. From the definition of Wishart
distribution on the space 𝑃𝐺3, we require that 𝝉𝐷𝑇𝐼

𝑘
> 2.

To simplify presentation, for the rest of the paper, we use
the generic notation 𝚯𝑘 = (𝜽𝑘, 𝝉𝑘) when related computa-
tions are generally applicable to bothmodalities. When we
discuss scenarios that are specific to a modality, we use
the notation 𝚯

𝑓𝑀𝑅𝐼

𝑘
= (𝜽

𝑓𝑀𝑅𝐼

𝑘
, 𝝉

𝑓𝑀𝑅𝐼

𝑘
) for fMRI data and

𝚯𝐷𝑇𝐼
𝑘

= (𝜽
𝐷𝑇𝐼
𝑘 , 𝝉𝐷𝑇𝐼

𝑘
) for DTI data.

For each voxel, we obtain the posterior probability𝐰𝑗 =

(𝑤1𝑗, … , 𝑤𝐾𝑗)T as follows:

𝑤𝑘𝑗 =
𝜋𝑘

(
𝐘𝑗; 𝚯𝑘

)
𝐾∑

𝑘′=1

𝜋𝑘′
(
𝐘𝑗; 𝚯𝑘′

) , 𝑘 = 1, … , 𝐾, (2)

where (⋅; 𝚯𝑘) is the probability density function for
component 𝑘. Given the component distributions, the
probability vector 𝐰𝑗 provides a re-representation of the
measurements 𝐘𝑗 . The mixture model has been widely
used for T1 brain image segmentation (Greenspan et al.,
2006) where the component distributions model voxels
from various tissue types and the posterior probability
characterizes which tissue type a voxel is associated with.
Similarly, at stage one of DICA, the component distribu-
tions model brain voxels with various types of characteris-
tics within the specific imagingmodality (e.g., fMRI BOLD
series patterns or DTI diffusion ellipsoid patterns), and
the posterior probability characterizes a voxel’s association
with the different types of characteristics (Figure 1).
At stage two,we decompose𝐰𝑗 into𝐿 independent com-

ponents as follows:

𝑔(𝐰𝑗) =

𝐿∑
𝑙=1

𝒂𝑙𝑆𝑙𝑗.

Here, 𝑔(.) is a link function for the probability vec-
tor that provides a mapping from ℙ𝐾 to ℝ𝐾−1,
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F IGURE 1 The schematic representation of the DICA method

where ℙ𝐾 = {𝐱 ∈ ℝ𝐾 ∶ 𝐱T𝟏 = 1, 𝐱 > 0}. For exam-
ple, we can specify the mlogit link function with
𝑔(𝐱) = (log{𝑥1∕𝑥𝐾}, … , log{𝑥𝐾−1∕𝑥𝐾}). The term 𝑆𝑙𝑗 ∈ ℝ

represents the latent source signal of the 𝑙th independent
component at voxel 𝑗. The parameters 𝒂𝑙 = (𝑎1𝑙, … , 𝑎𝐾𝑙)

are the mixing coefficients that mix the independent
source signals to generate the mixture weights 𝐰𝑗 that are
related to the observed images. At stage two, we have the
same assumptions as the classical ICA. That is, the source
signals 𝑆𝑙𝑗(𝑙 = 1, … , 𝐿) are statistically independent; the
number of sources 𝐿 is less than the number of mixtures
𝐾; and the source signals 𝑆𝑙𝑗 follow a non-Gaussian
distribution. Our ICA model is spatial ICA with statistical
independence assumed in the spatial domain. Previous
work has shown that the spatial independence assump-
tion is well suited to the sparse distributed nature of the

spatial pattern for brain functional networks (McKeown
and Sejnowski, 1998). Similar observations have also been
made for structural networks derived from DTI data.
Therefore, ICA applications with fMRI and DTI data are
predominantly performed as spatial ICA (Calhoun et al.,
2001; Beckmann and Smith, 2005; Guo and Pagnoni, 2008;
Li et al., 2012; Ouyang et al., 2015; Shi and Guo, 2016).
Here we provide an intuitive explanation of the ratio-

nale for the DICA. In the distributionmodel, the collection
of the component distributions {(𝚯𝑘)}𝐾

𝑘=1
may be viewed

as a set of bases characterizing the distributional space of
the mixture model for 𝐘𝑗; and the posterior weights 𝐰𝑗

represent the coordinates of the observed data 𝐘𝑗 on this
set of distributional bases. It is worth noting that only the
distributional bases, that is, {(𝚯𝑘)}𝐾

𝑘=1
, depend on the

data characteristics of specific imaging modalities while
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the posterior weights 𝐰𝑗 have common representations
across different modalities. DICA uses the mixture distri-
bution model to capture modality-specific data character-
istics, extracts posterior weights 𝐰𝑗 as re-representations
of the imaging measurements and conducts ICA source
separation on 𝐰𝑗 that are free of specific modality char-
acteristics. The ICs extracted from the posterior weights
are assumed to be spatially independent with each other
based on the fact that different brain networks usually have
limited spatial overlaps. Under such an assumption, each
IC potentially corresponds to a brain functional or struc-
tural network.
In neuroimaging literature, the number of ICs 𝐿 can be

chosen either using quantitative methods such as Laplace
approximation (Minka, 2000) or based on the biological
interpretations of brain networks. Previous work (Smith
et al., 2013) has shown that the extracted brain networks
are largely robust to the selection of the number of ICs
within a range. For 𝐿 corresponding to qualitatively differ-
ent model orders, results show that the low model orders
lead to large ICs representing networks responsible for
very broad sets of similar functions, while high model
orders give rise to small ICs representing sub-networks
with more specific functions under the same umbrella.
Our experiments show that the choice of 𝐿 has similar
effects onDICA. In practice, the choice of 𝐿 depends on the
established knowledge in neuroimaging literature and also
the scale of brain networks investigators are interested in
identifying.

2.2 Computation

In this section, we present computation details of the
DICA method. At stage one, we fit the mixture distri-
bution model using the Expectation-Maximization (EM)
algorithm. Specifically, for fMRI data, we fit the mixture of
Gaussian distributions using the standard EM algorithm.
For DTI data, we fit the mixture of Wishart distributions
using k-MLE proposed by Nielsen (2012), which can be
regarded as a hard membership clustering version of the
EM algorithmwith a higher efficiency.We obtain theMLE
of eachWishart component using the method proposed by
Saint-Jean and Nielsen (2014). The number of components
in the mixture model is chosen according to the Bayesian
information criteria (BIC). At stage two, we transform the
estimated posterior mixture weights 𝐰̂𝑗 using the mlogit
function, that is, 𝑚𝑙𝑜𝑔𝑖𝑡(𝐰̂𝑗). A standard ICA algorithm
such as Infomax (Bell and Sejnowski, 1995) is then applied
to decompose 𝑚𝑙𝑜𝑔𝑖𝑡(𝐰̂𝑗) to estimate the mixing matrix
𝐀 = {𝑎𝑘𝑙} and the source signal 𝐒 = {𝑆𝑙𝑗}.

2.3 Connection between the DICA and
the classical ICA

The proposed DICA method is closely connected to
the classical ICA model. The posterior probability of
mixture component 𝐰𝑗 is a re-representation of the
imaging measurements 𝐘𝑗 , that is, a mapping 𝐩(𝐲) =

{𝑝1(𝐲), … 𝑝𝐾−1(𝐲)} defined by Equation (2) with 𝐩(𝐲) ∶

𝕀 → ℙ𝐾 . Here, the 𝐩(𝐲) maps the imaging measurements
𝐘𝑗 from their modality-specific space 𝕀 to a probability
vector space ℙ𝐾 that is free of modality characteristics.
Then a link function 𝑔(.) is applied to 𝐰𝑗 = 𝐩(𝐘𝑗) for the
ICA decomposition, that is, 𝑔(𝐰𝑗) =

∑𝐿

𝑙=1
𝒂𝑙𝑆𝑙𝑗 . The clas-

sical ICA model can be represented using a similar pro-
cedure with a different mapping and link function. Sup-
pose 𝐘𝑗 is an 𝑅 dimensional vector. The classical ICA can
be viewed as a two-stage procedure that applies the iden-
tity mapping 𝐩∗(𝐲) = 𝐲 at stage one and the identity link
𝑔∗(𝐲) = 𝐲 at stage two followed by ICA decomposition,
that is, 𝑔∗(𝐩∗(𝐘𝑗)) =

∑𝐿

𝑙=1
𝒂𝑙𝑆𝑙𝑗 . Some dimensional reduc-

tion steps prior to ICA such as PCA also can be consid-
ered as special mappings at stage one of classical ICA. The
main distinction betweenDICA and classical ICA is that at
stage one, DICA performs a mapping 𝐩(𝐲) ∶ 𝕀 → ℙ𝐾 that
transforms imaging measurements with various types of
representations into a probability vector space that is free
of modality characteristics. This makes DICA a unified
source separation framework that can be applied to decom-
pose diverse imagingmodalities. Furthermore, unlike clas-
sical ICA that mainly separates linear mixtures, DICA is
potentially capable of separating nonlinearmixtures on the
original scale of the data because of the nonlinearity of the
mapping, which we demonstrate in Section 4.

3 APPLICATION TO REAL IMAGING
DATA

3.1 Data description

We applied theDICA to the rs-fMRI andDTI data obtained
from a subject from the Philadelphia Neurodevelopmental
Cohort (PNC) study. All images from the PNC study were
acquired on a Siemens Tim Trio 3 Tesla scanner. The rs-
fMRI scans were acquired with 124 volumes each contain-
ing a 3D brain image of 64 × 64 × 46 voxels with the reso-
lution of 3.0 × 3.0 × 3.0 mm. DTI data were derived based
on diffusion-weighted imaging (DWI) scans using a twice-
refocused spin echo (TRSE) single-shot EPI sequence.
The sequence consisted of 64 diffusion-weighted directions
with 𝑏 = 1000𝑠∕𝑚𝑚2, and 7 scanswith 𝑏 = 0𝑠∕𝑚𝑚2. More
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details about image acquisition can be found in Satterth-
waite et al. (2014).

3.2 Analysis of rs-fMRI data

To preprocess the rs-fMRI data, skull stripping was per-
formed on the T1 images to remove extra-cranial mate-
rial, then the first four volumes of the functional time
series were removed to stabilize the signal, leaving 120 vol-
umes for subsequent preprocessing. The anatomical image
was registered to the eight volume of the functional image
and subsequently spatially normalized to the MNI stan-
dard brain space. These normalization parameters from
MNI space were used for the functional images, which
were smoothed with a 6 mm FWHM Gaussian kernel.
Motion corrections were applied on the functional images.
A validated confound regression procedure was performed
on each subject’s time series data to remove confound-
ing factors including motions, global effects, white matter
(WM) and cerebrospinal fluid (CSF) nuisance signals. The
confound regression contained nine standard confound-
ing signals (six motion parameters plus global / WM /
CSF) as well as the temporal derivative, quadratic term,
and temporal derivative of the quadratic of each. Fur-
thermore, motion-related spike regressors were included
to bound the observed displacement. Finally, the func-
tional time series data were band-pass filtered to retain
frequencies between 0.01 and 0.1 Hz that is the rele-
vant frequency range for rs-fMRI. Prior to ICA analysis,
we performed additional preprocessing steps including
centering and dimension reduction. Specifically, we per-
formed a PCA and reduced the dimension of the fMRI
BOLD response at each voxel by projecting the fMRI time
series onto the first 30 principal component (PC) direc-
tions, where the number of PCs was chosen based on the
scree plot.
We then applied DICA to the preprocessed fMRI data.

We considered a mixture of Gaussian (MoG) distribution
with 20 Gaussian components for the first stage of DICA.
In our experiments, we also considered MoG distribution
models with a different number of Gaussian components
ranging from 18 to 30. We found that the results from
the second stage of DICA are fairly robust to the selec-
tion of the number of mixtures at stage one. At stage two
of DICA, we extracted 𝐿 = 14 ICs from the rs-fMRI data.
The choice of 𝐿 was motivated by the selection of the
number of ICs in the existing neuroimaging ICA (Shi and
Guo, 2016; Guo and Tang, 2013) that leads to neurobiologi-
cally interpretable ICs. Among the extracted components,
we identified several well-known resting state functional
networks such as the occipital pole visual network, lat-
eral visual, default mode network, sensorimotor network,

auditory network, and executive control network. Figure 2
presents the DICA estimates of these networks. The maps
were thresholded showing activated voxels whose z-scores
based on the estimated source signal exceeding 95th per-
centile. These DICA-based rs-fMRI networks have been
consistently identified in large sample rs-fMRI studies in
the literature using the standard ICAmethods (Smith et al.,
2009). The fact that DICA successfully recovered these net-
works using a single subject fMRI data demonstrates the
applicability of DICA for extracting brain functional net-
works from fMRI. To evaluate the reliability of the results,
we performed the DICA analysis for additional subjects
from the PNC study. Web Appendix A in the Supporting
Information presents results for the additional subjects.
We obtained largely consistent brain functional networks
across subjects, which are similar as the results reported in
Figures 2.

3.3 Analysis of DTI data

The DWI scans were preprocessed using the DWI pipeline
in FSL. The procedure includes brain extraction to remove
nonbrain regions, phase reversal distortion correction, and
aligning diffusion-weighted images to the average nondif-
fusion weighted image by a rigid body affine transforma-
tion to remove motion artifact and also correction of Eddy
current distortions. We then estimated the directional dif-
fusion at each voxel based on a diffusion tensor model
implemented via the Diffusion Toolbox (FDT) in FSL.
At stage one of DICA, we considered a mixture of

Wishart distributions with 20 component distributions.
We also considered distributions with a different num-
ber of components and the findings of the second stage
DICA remained similar. At the second stage of DICA, we
extracted 14 ICs. Among the extracted components, we
identified several ICs that are found to correspond tomajor
white matter fiber pathways via fiber tracking. These ICs
were also identified when we extracted different number
of ICs. Figure 3 presents the DICA estimates of the spatial
source signals of the extracted ICs. The maps were thresh-
olded showing significant voxels whose z-scores based on
the estimated source signal posterior distribution exceed-
ing 95th percentile. We also required a minimum activa-
tion cluster size of at least of 3000 voxels to improve the
reliability of the voxels selected into the thresholded map.
To demonstrate the white fiber pathways that each IC is
associated with, we applied the DTI tractography to recon-
struct the fiber tracts passing through the spatial regions
of each IC (Figure 3). In addition, we illustrate the main
DTI diffusion ellipsoid associated with each IC in Fig-
ure 3. The first IC corresponds to the corpus callosum
and contains a major fiber bundle that connects left and
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F IGURE 2 Brain functional networks estimated from a subject’s resting state fMRI data from the PNC study using DICA. The IC maps
are thresholded showing significant voxels with z-scores derived from the estimated source signal posterior distribution exceeding 95th
percentile. The DICA successfully recovered well-known brain functional networks that have been consistently identified in fMRI studies

right cerebral hemispheres (Catani and Thiebaut de Schot-
ten, 2008). We can see the main diffusion ellipsoid associ-
ated with this IC demonstrates diffusion between left and
right in the brain that is consistent with the major fiber
tract direction of the corpus callosum. The second IC is
mostly located symmetrically in both hemispheres of the
brain and mainly contains projection fiber tracts passing
through the internal capsule and corona radiata that con-
tains ascending fibers from the thalamus to the cerebral
cortex and descending fibers from the frontoparietal cor-
tex to subcortical nuclei (Catani and Thiebaut de Schot-
ten, 2008). The main diffusion ellipsoid associated with
this IC demonstrates inferior–superior diffusion pattern
that is consistent with the direction of the projection tracts.
The third IC represents cingulum, a medial associative
fiber bundle that runs an antero-posterior course within
the cingulate gyrus around the corpus callosum. Corre-
spondingly, the main diffusion ellipsoid of this IC demon-
strates antero-posterior diffusion pattern. The fourth IC
contains corticoponto-cerebellar tracts that create com-
munications between the cerebellum and the controlat-
eral cerebral hemisphere (Catani and Thiebaut de Schot-
ten, 2008). The diffusion ellipsoid of this IC demonstrates
inferior–superior diffusion pattern that corresponds to the
projection tracts that pass through this IC. Similar as in
the analysis of fMRI data, we also present results for addi-
tional subjects in the Web Appendix A in the Supporting
Information. We obtained largely consistent brain struc-

tural networks across subjects, which are similar as the
results reported in Figures 3.

4 SIMULATION STUDIES

We conducted several simulation studies to evaluate the
performance of the proposed DICAmethod. We generated
data from three distinct underlying models including a
model that favors DICA where observed data are linear
mixtures of source signals on the distribution level, the
classical linear ICA model, and a nonlinear ICA model
where observed data are nonlinear mixtures of latent
source signals. Among the three settings, the first case is
based on the DICA model while the latter two represent
models that deviate from the DICA. In particular, the
classical linear ICA is the underlying model of infomax
and FastICA. Following previous work (Beckmann and
Smith, 2005; Guo and Pagnoni, 2008), we evaluated the
performance of each ICAmethod based on the correlation
between the true and estimated source signals. Also, we
evaluated the AUC of the estimated source signals for Sim-
ulations II and III where there were categorical definition
of activated/nonactivated voxel in generating the sources.
Since ICA recovery is invariant to permutations, each
estimated IC was matched with the original source with
which it had the highest spatial correlation (Beckmann
and Smith, 2005). In comparison to DICA, we considered
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F IGURE 3 Brain structural networks estimated from a subject’s DTI data from the PNC study using DICA. DICA discovered
components corresponding to major white fiber pathways in the brain. (a) The estimated IC spatial maps, which are thresholded based on the
z-scores derived from the estimated source signal posterior distribution, (b) tractography-reconstructed fiber tracts passing through the spatial
regions of each IC, and (c) the main DTI diffusion ellipsoid associated with each IC

two commonly applied ICA algorithms: Infomax (Bell
and Sejnowski, 1995) and FastICA (Hyvarinen, 1999). In
addition, we considered two advanced and more recent
ICA developments: SparseICA (Boukouvalas et al., 2018)
and nonlinear ICA (Almeida, 2003). The SparseICA was
implemented with the SparseICA-EBM algorithm (Bouk-
ouvalas et al., 2018). The nonlinear ICA was implemented
with a MATLAB toolbox “MISEP” for Simulation III.

4.1 Simulation study I: Data from a
model that aligns with DICA

In the first simulation study, we considered data derived
from amodel that aligns with the DICA procedure. Specif-
ically, we generated 𝐘𝑗 as 10 × 1 vectors for 𝑗 = 1, … ,

𝐽 = 6400:

𝐘𝑗 ∼

𝐾∑
𝑘=1

𝑤0
𝑘𝑗
 (𝜽𝑘, 𝝉𝑘), 𝑗 = 1, … , 𝐽. (3)

Here, data were generated from a mixture of multivari-
ate Gaussian distribution with the dimension of 𝑑 = 10

and the number of mixture 𝐾 = 6. The mean and covari-
ance for each component were specified as 𝜽𝑘 = (𝑘 −

(𝐾 + 1)∕2)𝟏𝑑 and 𝝉 = 0.1𝐈𝑑×𝑑. The weights 𝑤0
𝑘𝑗
were the

posterior weights derived from a mixture of multivariate

Gaussian with the same mean and covariance as (3) and
prior weights 𝑤𝑘𝑗 = 1∕6, 𝑘 = 1, … , 𝐾, 𝑗 = 1, … , 𝐽. The true
source signals 𝑆𝑙𝑗 and the mixing matrix 𝑎𝑘𝑙, 𝑙 = 1, … , 𝐿

with 𝐿 = 3 were obtained by decomposing 𝑤0
𝑘𝑗
as at stage

two of DICA.
We applied the proposed DICA, FastICA, Infomax, and

SparseICA to decompose the simulated data 𝐘𝑗 . Table 1
provides the means (standard deviations) of the correla-
tions between the true and estimated source signals across
100 simulation runs based on each of the three ICA meth-
ods. The results show the proposed DICA demonstrated a
much better accuracy in recovering the true source signals
as compared with the other methods when the data are
generated in this process that align with the DICA model.
FastICA, Infomax and SparseICA only captured one of the
true signals while DICA successfully recovered all of them.
The significant difference in the performance between the
methods demonstrates that when data are mixed on
the distribution level, the standard ICA that decomposes
the observed data may yield poor results.

4.2 Simulation study II: Data from the
classical linear ICA

In the second simulation study, we generated data from
the classical linear ICA model where the observed data
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TABLE 1 (A ) Mean(standard deviation) of the correlations between the true and estimated source signals based on different ICA
methods with 100 simulation runs in the three simulation studies

Simulation I: Distributional ICA
DICA FastICA Infomax SparseICA

Source 1 0.993(0.000) 0.800(0.001) 0.800(0.001) 0.793(0.034)
Source 2 0.991(0.000) 0.019(0.013) 0.018(0.012) 0.043(0.050)
Source 3 0.948(0.001) 0.021(0.014) 0.021(0.012) 0.035(0.008)
Simulation II: Linear ICA

DICA FastICA Infomax SparseICA
Source 1 0.817(0.085) 0.859(0.025) 0.859(0.025) 0.862(0.025)
Source 2 0.593(0.107) 0.683(0.050) 0.683(0.050) 0.689(0.040)
Source 2 0.654(0.109) 0.736(0.040) 0.736(0.040) 0.738(0.046)
Simulation III: Nonlinear ICA

DICA FastICA Infomax SparseICA nonlinear ICA
Source 1 0.979(0.008) 0.869(0.010) 0.869(0.009) 0.807(0.043) 0.377(0.349)
Source 2 0.963(0.014) 0.523(0.011) 0.523(0.011) 0.529(0.034) 0.164(0.219)

TABLE 1 (B ) Mean(standard deviation) of the AUCs of the estimated source signals based on different ICA methods with 100
simulation runs in Simulations II and III

Simulation II: Linear ICA
DICA FastICA Infomax SparseICA

Source 1 0.898(0.039) 0.912(0.012) 0.912(0.012) 0.917(0.013)
Source 2 0.862(0.047) 0.893(0.019) 0.893(0.019) 0.900(0.016)
Source 3 0.880(0.049) 0.907(0.016) 0.907(0.016) 0.912(0.016)
Simulation III: Nonlinear ICA

DICA FastICA Infomax SparseICA non-linear ICA
Source 1 1.000(0.000) 1.000(0.000) 1.000(0.000) 0.978(0.014) 0.718(0.228)
Source 2 1.000(0.000) 0.853(0.008) 0.853(0.008) 0.862(0.024) 0.585(0.173)

are a linear mixture of the source signals via the mixing
coefficients plus a noise term, that is,𝐘𝑗 =

∑𝐿

𝑙=1
𝒂𝑙𝑆𝑙𝑗 + 𝛜𝑗 .

Specifically, we generated image data from three ICs. For
each IC,we generated a 2D spatialmapwith the dimension
of 100 × 100 and the activated signals in the ICs are dis-
played in Figure 4. This spatial maps were generated using
MATLAB toolbox simTB (Erhardt et al., 2012), which sim-
ulates spatial maps that mimic brain networks. The mix-
ing coefficient vector 𝒂𝑙 was a time series of the length
𝑇 = 40 based on i.i.d standard Gaussian random variables.
We considered a Gaussian noise term added to the linear
mixtures with zeromean and standard deviation of 0.8.We
tried multiple noise levels with different standard devia-
tions and obtained similar conclusions.
We applied theDICA, Infomax, FastICA, and SparseICA

to decompose the data. We specified 𝐾 = 10 and 𝐿 = 6 for
the DICA. Other specifications of 𝐾 and 𝐿 were also inves-
tigated and the results were found to be similar. We evalu-
ated the methods with the AUCs of the estimated source
signals as well as the correlations between the true and

the estimated signals. As shown in Table 1, the Infomax,
FastICA, and SparseICA performed better than DICA in
both AUCs and correlations for this data. This is expected
given that the data were generated from the classical lin-
ear ICA that is the underlying model of the three meth-
ods. The accuracy of DICA was acceptable as compared
with the three linear ICA methods. Results from Figure 4
show thatDICA successfully recovered the true underlying
source signals. The fact that DICA demonstrated reason-
able accuracy indicates that the DICA can be an effective
decomposition method for data that conform to the classi-
cal ICA model assumption.

4.3 Simulation study III: Data from
nonlinear mixtures

In the third simulation study, we compared the perfor-
mance of the methods for recovering sources when the
observed data are nonlinear mixtures of source signals,
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F IGURE 4 True source signals and the estimated ICs based on
different ICA methods in simulation study II for data simulated
from the classical ICA model (averaged over 100 runs)

which represents a scenario that deviates from both the
DICA and classical linear ICA models. We considered two
source signals each with a 50 × 50 spatial map. The true
maps are presented in Figure 5(B), which were generated
from the following functional forms added Gaussian
noise with the standard deviation of 0.1 to each pixel,
𝑠1(𝑥1, 𝑥2) = 0.95 𝐼[ (𝑥1 − 0.3)2 + (𝑥2 − 0.3)2 ≤ 0.32 ] and
𝑠2(𝑥1, 𝑥2) = 0.95 𝐼[ |𝑥1 − 0.7| + |𝑥2 − 0.7| ≤ 0.3 ], where
(𝑥1, 𝑥2) ∈ [0, 1]2 represents the location. We have con-
sidered different noise levels, which led to consistent
conclusions. The observed data 𝐘 were then generated
by performing a nonlinear mixing of the source signals

via a nonlinear mixing function, that is, 𝐘 = 𝑓(𝐬) with
𝑓(𝐬) = 𝑓1(𝐬) + 𝑓2(𝐬) + 𝑓3(𝐬) (Figure 5A), where the
functions were specified as

𝑓1(𝐬) =

⎡⎢⎢⎢⎣
tanℎ(4𝑠1 − 2) +

2𝑠1 + 𝑠2

2
)

tanℎ(4𝑠1 − 2) +
2𝑠1 + 𝑠2

2
)

⎤⎥⎥⎥⎦ ,

𝑓2(𝐬) =

⎡⎢⎢⎣tanℎ
( 𝑠2

2

)
+

2𝑠1 + 𝑠2
2

2

𝑠3
1

− 𝑠1 + tanℎ(𝑠2)

⎤⎥⎥⎦ , 𝑓3(𝐬) =

[
𝑠3
2

+ 𝑠1

tanℎ(𝑠2) + 𝑠3
1

]
.

Figure 5(B) presents the true source signals and the recon-
structed sources using DICA, FastICA, Infomax, Sparse-
ICA, and nonlinear ICA, and the estimation results were
evaluated as shown in Table 1. In DICA, we specified
𝐾 = 12 and 𝐿 = 4, where other specifications yielded simi-
lar results.We observe that the proposedDICA showed sat-
isfactory performance in recovering the sources from the
nonlinear mixtures. In comparison, the three linear ICA
methods, that is, FastICA, Infomax, and SparseICA, failed
to separate the two underlying source signals. The nonlin-
ear ICA implemented with MISEP did not perform well
either in this case and failed to identify the true source pat-
terns in many simulated data sets. Specifically, the nonlin-
ear ICA only successfully identified the true source 1 and
2 with correlation greater than 0.5 in 41 and 15 simulation
runs out of 100 runs, respectively. Inmost of the simulation
runs, the nonlinear ICA could only identify one of the two
sources. We also compared the nonlinear ICA and DICA
in other simulation settings by generating nonlinear mix-
tures following the example provided by the MISEP tool-
box itself. The performance of the proposed DICA is com-
parable or better than the nonlinear ICA in that scenario
aswell. This result indicates thatDICA can potentially pro-
vide a useful decomposition tool for data derived frommix-
ing mechanisms that are more complicated than the clas-
sical linear mixture model.

5 DISCUSSION

In this paper, we propose a distributional ICA procedure
to provide a general analysis tool for decomposing diverse
types of imaging modalities. Compared with the classi-
cal ICA, the proposed DICA represents a new approach
that aims to separate the observed data on the distribu-
tion level. We develop a two-stage estimation for the DICA
procedure. We apply the DICA model to real-world fMRI
and DTI data. Our analyses have generated scientifically
meaningful and insightful findings. For fMRI data, DICA
successfully identifiedwell-known resting-state functional
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F IGURE 5 Simulation III: (a) the nonlinear mixing function and (b) the true and estimated source signals (averaged over 100 runs)
using DICA, FastICA, Infomax, SparseICA, and nonlinear ICA to separate the data from nonlinear mixtures

networks. ForDTI data, DICAdiscovered components that
correspond to major white fiber pathways in the brain.
To the best of our knowledge, the proposed DICA is the
first ICA method that can perform source separations for
diffusion tensors based on single subject DWI scans and
our findings are not obtainable using the existing ICA
methods. The extensive simulation studies conducted in
the paper further demonstrate satisfactory performance
of the DICA for recovering source signals from data
that were generated from different underlying mixture
models.
In recent neuroimaging studies, investigators often need

to deal with multimodal neuroimaging where measure-
ments have different forms and dimensions. Methods
have been proposed to jointly model features extracted
frommultimodality data. For example, some ICAmethod-
ologies (Eichele et al., 2008; Franco et al., 2008) were
developed to jointly analyze multi-subject and multi-
dimensional features extracted from fMRI, ERP, and
genetic data. Methods based on the graph Laplacian have
been proposed for joint modeling of multi-subject multi-
modal network features extracted from fMRI and DTI
(Dodero et al., 2014; Abdelnour et al., 2018). Deep learning
techniques such as auto-encoder, U-net, and GAN are also
widely employed in feature extraction and image synthe-
sis (Wang et al., 2020). Compared to the existing methods,
our DICA has a different goal that is to provide a unified
ICA method to decompose images obtained using differ-

ent imaging modalities to identify underlying source sig-
nals. DICA is applicable to both single subject as well as
multi-subject imaging data. The term “unified” is in the
sense that DICA can be applied to diverse modalities, such
as fMRI or DTI. In future research, this unified decompo-
sition framework could be extended to performing joint
decomposition across multiple modalities. Another use-
ful application of the DICA is that it can potentially sep-
arate both linear and nonlinear mixtures on the original
scale of the data, while the classical ICA mainly sepa-
rates linear mixtures. DICA can be used as an alternative
blind source separation tool that may provide new find-
ings that complement the outputs from the standard ICA
algorithms.
For future research, we plan to extend the current DICA

model to decompose multi-subject imaging data. For fMRI
data, a straightforward extension of DICA is to follow
the temporal concatenation ICA (TC-GICA) framework
(Calhoun et al., 2001; Guo and Pagnoni, 2008; Guo, 2011)
by concatenating the fMRI data on the temporal domain
across subjects and then apply DICA. An alternative way
for multi-subject extension is to adopt the hierarchical
ICA framework (Guo and Tang, 2013; Shi and Guo, 2016)
and develop multilevel DICA models. As another future
research topic, we plan to investigate on other distribution
models such as the matrix Langevin distributions on the
Stiefel manifold to model the DTI data and multivariate
Laplacian to model fMRI data.
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