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Abstract 

Radiation therapy is a major component of cancer treatment pathways worldwide. The 

main aim of this treatment is to achieve tumour control through the delivery of ionising 

radiation while preserving healthy tissues for minimal radiation toxicity. Since radiation 

therapy relies on accurate localisation of the target and surrounding tissues, imaging 

plays a crucial role throughout the treatment chain. In the treatment planning phase, 

radiological images are essential for defining target volumes and organs-at-risk, as well 

as providing electron-density information for radiation dose calculations. At treatment, 

onboard imaging informs patient set-up and could be used to guide radiation dose 

placement for sites affected by motion. Imaging is also an important tool for treatment 

response assessment and treatment plan adaptation. MRI, with its excellent soft tissue 

contrast and capacity to probe functional tissue properties, holds great untapped 

potential for transforming treatment paradigms in radiation therapy. The MR in Radiation 

Therapy ISMRM Study Group was established to provide a forum within the MR 

community to discuss the unmet needs and fuel opportunities for further advancement 

of MRI for radiation therapy applications. During the summer of 2021, the study group 

organised its first virtual workshop, attended by a diverse international group of 

clinicians, scientists, and clinical physicists, to explore our predictions for the future of 

MRI in radiation therapy for the next 25 years. This article reviews the main findings 

from the event and considers the opportunities and challenges of reaching our vision for 

the future in this expanding field. 
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1. Introduction 

Radiation therapy (RT), prescribed to approximately 50% of cancer patients, is a major 

component of cancer treatment pathways.(1,2) The aim of RT is to deliver a sufficiently 

high dose of ionising radiation to the tumour to control disease while limiting the dose to 

healthy tissues for minimal radiation toxicity. The most common RT modality, external-

beam RT, delivers megavoltage beams of x-rays via a linear accelerator (Linac) 

mounted on a gantry that rotates around the patient. Carefully optimised treatment 

plans tailor beam profiles and photon intensities to focus the prescribed dose to the 

target volume(s) and minimise exposure to surrounding healthy tissue.(3,4) Typically, 

an RT course is run over 5–30 treatment sessions, called fractions, that span 1–9 

weeks. This article focuses on external-beam RT, but some aspects are also applicable 

to other forms of RT, such as brachytherapy and proton therapy. 

Imaging is performed at multiple points in the RT treatment chain with multiple 

objectives, which can be broadly categorised as: “Delineation and Dosing”, “Guidance 

and Targeting”, and “Response and Adaptation”.(5) Delineation and Dosing goals are 

met by acquiring computed tomography (CT) simulation (CT-Sim) images, often with 

complementary magnetic resonance imaging (MRI) or positron emission tomography 

(PET) scans. Using these images, radiation oncologists delineate targets and 

radiosensitive normal tissues. Delineated targets and critical structures inform the 

treatment planning process that simulates and optimises the planned dose distribution. 

Imaging is also used to inform Guidance and Targeting during treatment delivery. 

Onboard imaging is a vital component of modern Linac systems, which typically employ 

mounted x-ray systems capable of planar images and cone-beam CT (CBCT) to align 

the tumour target with the position specified in the treatment plan through rigid couch 

adjustments each day of treatment.(6) In some cases, imaging may also be used to 

adjust the radiation beams to compensate for internal anatomical changes,(7) a process 

referred to as adaptive therapy. Because courses of RT span multiple fractions, there is 

room for tumour response assessment with CT, MRI, or PET to inform online or offline 



treatment plan adaptation.(8,9) These imaging techniques for Response and Adaptation 

objectives are active areas of clinical development. 

While x-ray and CT-based technologies currently dominate imaging in RT, MRI is 

quickly growing in this application and has significant untapped potential to improve the 

field. Figure 1 illustrates conventional, state-of-the-art, and our vision for the future of 

RT workflows. MRI’s superior soft-tissue visualisation in comparison to CT will improve 

Delineation and Dosing, allowing for reduced uncertainty in target localisation and, 

therefore, more accurate treatments with the ability to safely deliver higher doses.(10–

14) The availability of functional MRI, or quantitate MRI (qMRI), techniques, such as 

diffusion-weighted imaging (DWI) and oxygen-enhanced MRI (OE-MRI) could add 

useful contrasts and may be able to identify high-risk regions of the target that would 

benefit from dose boosts.(15) New standards for Guidance and Targeting have been 

created by the recent availability of commercial MR-linac systems that allow concurrent 

imaging during treatment for MRI-guided RT (MRgRT).(11,16–19) Lastly, Response and 

Adaptation could be advanced through MRI’s potential for quantifying tumour radiation 

sensitivity.(20) Adapting dosing to treatment response between fractions may improve 

patient outcomes and could be achieved either using diagnostic MR systems(21) or 

MR-linacs.(22) 

This article is a summary of the findings from a 2021 workshop held by the ISMRM MR 

in RT study group on the future of MRI in RT. The aim of the workshop was to explore 

study group members’ predictions for the future of this expanding field in 25 years’ time. 

An international assembly of MRI and RT scientists, clinicians, and clinical physicists 

met virtually to discuss the long-term opportunities and challenges of this expanding 

field of research. Given the nature of this topic, some predictions are based on current 

literature, but we also consider the consensus of expert opinions at the workshop, for 

which limited literature is available to cite. Here, we reach out to the MR community to 

elucidate the unmet needs that must be addressed for our vision in Figure 1 to become 

a reality. 



It should be noted that due to the tremendous flexibility of machine learning 

approaches, these will often be at the core of this article’s suggestions for overcoming 

the limitations of MRI in RT. However, where machine learning is applied in future 

clinical workflows, a consensus should be established on the validation, testing, and 

quality assurance (QA) of the techniques.(23) Despite its great potential, machine 

learning should not be thought of as a silver bullet. It is well documented that machine 

learning solutions can behave poorly, for instance, when input data are out of 

distribution.(24,25). It is therefore important we are prepared to address this secondary 

set of challenges for clinical implementation. 

2. Delineation 

Delineation, or contouring, is performed by radiation oncologists using a combination of 

CT-Sim and co-registered MRI or PET scans to outline a set of 3D contours (i.e., 

treatment targets and critical structures). These contours are defined by ICRU(26) 

guidelines, and include the gross tumour volume (GTV), clinical target volume (CTV), 

planning target volume (PTV), and selected normal tissues, termed the organs at risk 

(OARs).(27) As illustrated in Figure 2, the GTV represents the extent of the primary 

tumour revealed by imaging and is outlined manually. The CTV extends the GTV to 

account for invisible, sub-clinical spread. A predefined GTV-to-CTV margin is typically 

used, although, depending on the treatment site, the CTV may instead be manually 

contoured or defined by the entire involved tissue (e.g., the prostate). The purpose of 

the PTV is to ensure CTV coverage, and it is built by adding additional margins that 

account for uncertainties in delineation, patient setup, physiological motion, and 

treatment delivery. 

Autocontouring 

Despite being labour-intensive(28,29) and frequently resulting in large inter- and intra-

observer variations,(30,31) delineation of target volumes and OAR structures is 

conventionally performed manually. Machine learning-based, automated contouring 

(autocontouring) is one popular solution(32,33) that is currently being introduced in daily 



practice. It promises greater reproducibility and accuracy of delineated structures, with a 

substantial reduction in clinical burden. Today, the feasibility of autocontouring 

treatment targets(28,34–39) and OARs(34,40–42) using MRI has been demonstrated 

and commercial solutions are rapidly being released. However, the success of 

autocontouring over the coming years will rest on balancing clinical, industrial, and 

regulatory interests.(43) 

Automated contouring must be robust and flexible for clinical implementation to be 

feasible. For instance, autocontouring models should be able to rapidly adapt to new 

imaging protocols, without the need to obtain and annotate a new training set. Future 

solutions may include generating large sets of synthetic data with the desired contrast 

for training using generative adversarial networks (GANs) (41,44–46) and/or employ 

protocol-agnostic networks.(47,48) Autocontouring tools should also be able to handle 

inter-scanner differences, such as model, field strength, vendor, etc. Such flexibility 

would allow inter-institutional cooperation and access to vast heterogeneous training 

data across multiple centres. Therefore, federated learning, a technique for training 

deep neural networks in a decentralised fashion without exchanging original data 

between sites, could provide an invaluable resource in developing autocontouring 

solutions.(49) 

For MRgRT on the MR-linac, the need to achieve low-latency autocontouring for mid-

treatment tumour tracking presents another set of challenges. Because adapting targets 

to real-time changes make clinician approval infeasible, automated QA tools will be 

needed. Machine learning-based techniques for detection of erroneous or anomalous 

delineations(50) or delineation uncertainty maps offer solutions here.(51,52) State-of-

the-art, online planning assisted with these tools could augment human review in 

treatment planning and allow smaller treatment margins by reducing inter-observer 

variation. 

New contouring paradigms 

An inherent limitation of RT delineation is that treatment volumes depend on the 

imaging modality or contrast employed. Specifically, GTVs extend only as far as what 



can be revealed by the imaging and GTV-to-CTV margins must provide a conservative 

estimate of undetected microscopic expansion, sometimes several cm in 

magnitude.(53) In the future, advanced application of cutting-edge MRI methods (see 5 
Quantitative MRI) may hold the key to safely reducing GTV-CTV margins through 

improved visualisation and/or understanding of the underlying biology. These advances 

might allow novel contouring concepts to be implemented clinically, such as probabilistic 

margin optimisation(54) or even contourless planning. With changes in delineation 

concepts (including autocontouring), new methods for performing clinical evaluation of 

contours will also be needed. Geometric measures for evaluating contours (e.g., Dice 

similarity index) will no longer be clinically relevant.(55) Alternatively, dosimetric 

comparisons could be made compared with plans generated with ground truth reference 

contours (55–58). 

The clinical implementation of new contouring paradigms relies on histopathological 

validation and large clinical trials so that standards and guidelines may be 

developed.(59) In transitioning to new contouring paradigms, the MR and RT 

communities will need to first determine target definitions by asking what should be 

delineated and why. Second, we must establish whether a delineation task can reliably 

be achieved. Third, how new contours are employed for dose prescription must be 

addressed. All three aspects would ideally form one consistent and robust clinical 

strategy. 

Unmet needs 

• Development and optimisation of autocontouring methods that are robust with 

heterogeneous inter-institutional data 

• Clinical QA solutions for safe autocontouring for mid-treatment tumour tracking 

• A re-examination of how target delineations are defined in collaboration with the 

RT community 



3. Dose Calculation 

Dose calculation is the computation of energy deposited by ionising radiation in the 

patient (i.e., radiation “dose”). Following delineation, treatment planning software is 

used to simulate the interaction between the patient and the planned treatment x-ray 

beams. An iterative process is used to update the beams to optimise the calculated 

dose in tumour targets and OARs. To model photon scatter and absorption within the 

patient, information is needed on the tissue elemental composition, where this is 

conventionally derived from dedicated CT imaging. In state-of-the-art RT and in the 

future, so-called synthetic CT (sCT)—CT-like images derived from MRI—will facilitate 

MRI-only workflows(60) and adaptive replanning on MR-linac systems(61) by providing 

up-to-date sCT maps free from registration errors. In addition, hybrid PET/MR systems 

give rise to a similar need for attenuation correction (62), where the culmination of 

research in both areas advances sCT generation techniques.(63) 

While MRI cannot directly measure x-ray attenuation, many techniques for generating 

sCT have been proposed in the literature(64) and vendor-provided solutions already 

exist for sites such as brain and pelvis.(65–67) However, commercial sCT solutions are 

not available for more complex anatomies, such as the thorax, or tumour sites close to 

abnormal bony anatomy.(68) Where most vendor solutions are based on bulk density 

overrides or atlases, recent sCT research approaches employ machine learning 

architectures, such as GANs(63,69–72) that may provide solutions for more challenging 

datasets and anatomical sites. As discussed in the previous section, successful clinical 

implementation of machine learning-based methods for use in treatment planning will 

depend upon their robustness to clinical variability, such that they meet the quality 

standards defined by consensus guidelines,(12) and the development of suitable QA 

phantoms for end-to-end testing. 

Today, sCT image volumes are designed to match the resolution and axial orientation of 

CT image volumes that are anticipated by the treatment planning software. Planning 

systems may soon be adapted to more conveniently handle other orientations that are 

facilitated by MRI(73) and, later, four-dimensional (4D) sCT or MRI-based motion 



signals may inform the simulation software for more advanced treatment planning in 

moving anatomies.(74) 

Looking further ahead, sCT may be only a steppingstone on the way to a new RT 

paradigm. One day, sCTs may never be directly reconstructed or seen by operators but, 

instead, k-space data fed to the planning system algorithm to generate a treatment plan 

using predefined library matching or machine learning approaches. On the other hand, 

reconstruction of synthetic electron density images might never leave treatment chains 

totally as intermediate representations may be key for optimal performance.(75) 

Moreover, human supervision of key intermediate steps will be needed for QA purposes 

and so is likely to remain desirable for years to come.  

Unmet needs 

• 4D-sCT methods suitable for adaptive MRgRT in complex anatomies, such as 

thoracic sites  

4. Image Guidance 

Image guidance is the process of using imaging at the treatment phase to inform up-to-

date localisation of tumour targets and healthy tissues. Modern Linacs typically house 

onboard CBCT to facilitate alignment of the targets to the treatment plan model at the 

start of each fraction.(6) However, conventional image guidance is limited by poor soft 

tissue contrast and lack of online motion characterisation.(76) Residual targeting errors 

are generally accounted for by CTV-to-PTV margins, although large margins limit the 

dose that can be safely delivered while sparing nearby OARs.(77) Hybrid MR-linac 

systems promise to reduce PTV sizes through the superior localisation and targeting 

afforded by onboard MRI.(78) Accurate, low-latency motion characterisation will 

facilitate gated treatment,(79) tumour tracking during irradiation,(80–84) and could 

enable real-time adaptive replanning. Such precise treatments, delivered to smaller 

PTVs, will permit safe dose escalation(85,86) and hypofractionation(87) to improve 

patient outcomes and clinical efficiency. Moreover, management of bulk patient motion 

with real-time MRI could remove the need for uncomfortable immobilisation devices. 



4D-MRI  

In the RT context today, 4D-MRI generally refers to respiratory-correlated 3D-MRI, with 

image volumes acquired over several breathing cycles and retrospectively binned into 

respiratory phases.(88) Potential applications of motion characterisation using 4D-MRI 

include onboard treatment plan adaptation and retrospective dose calculations, where 

4D-MRI serves as a precursor to volumetric real-time imaging.(79) 

In the future, respiratory-correlated 4D-MRI could be replaced by truly time-resolved 4D-

MRI (i.e., volumetric real-time imaging(88)), with potential applications in tracking, 

gating, and real-time dose monitoring. Current developments include employing motion 

models built from prospectively acquired 4D-MRI(89) to rapidly generate synthetic 4D-

MRI updated by 2D imaging of the motion perpendicular to the treatment beam.(83) 

Alternatively, the use of higher-order surrogate signals(90) can resolve signal 

characteristics beyond respiratory motion,(91) enabling simultaneous resolution of 

peristaltic motion(92) or cardiac motion to aid cardiac gating for MRgRT of ventricular 

tachycardia.(93) 

Real-time MRI 

To fully realise the potential of motion management for MR-guided adaptive targeting, 

low-latency, high-fidelity data for precise spatial-temporal localisation is desirable. 

However, low-latency goal differs for each motion type. For instance, cardiac motion is 

on the sub-second scale, while organ filling extends over minutes.(76) 

Recommendations have been made for MRI latencies of 200-500 ms for respiratory 

motion,(94) although how fast this could be and still make a clinical impact is an open 

question that must be revisited as research progresses. Currently, when mid treatment 

adaptation is desired, time-resolved 2D MRI images are often obtained, rather than 4D-

MRI. 

Real-time adaptive image processing for MRI is an area of ongoing research.(95) To 

minimise latency, the amount of acquired data per frame must be reduced, which could 

be aided by accurate spatiotemporal motion models.(96,97) An alternative could be the 



use of suitable low-rank subspace constraints,(98) or sparsely sampled k-space data 

interpreted by compressed sensing.(91) However, most of these accelerated MRI 

acquisition techniques, the gain in acquisition time results in longer reconstruction 

times. Fortunately, machine learning approaches that transfer computational processing 

to offline training of a network(99–102) may overcome long reconstruction times of 

accelerated acquisitions. In the future, latency may be further reduced when patient 

representations for treatment planning and image guidance may be composited from 

models that extract various representative states and their probabilistic variations. 

Tighter integration will gradually lift the need to exchange information between MRI 

scanners and Linacs in the form of images, opening opportunities for reducing latency 

through direct contour tracking from raw MRI data.(58,103) 

Opportunities and challenges of real-time imaging for MRgRT are shared by 

interventional MRI.(104) We should therefore ensure that both fields learn from one 

another as solutions are explored in the coming years. Another area that will benefit is 

MR-guided proton therapy, where a full characterisation of target and OAR motion is 

crucial since steep dose gradients exist not only perpendicular to the beam, but also 

along the direction of the beam.(105) 

Unmet needs 

• Low-latency, high-fidelity precise spatial-temporal localisation of target volume 

and organs at risk 

• Rapid online reconstruction of highly undersampled MRI data 

• A tighter integration of MRI and RT systems for adaptive planning informed 

directly by k-space 

5. Quantitative MRI 

Biomarkers derived from quantitative MRI (qMRI) techniques allow for non-invasive 

assessment of morphological, biological, and functional processes in tissue and 

therefore promise several key roles throughout RT workflows.(106) First, qMRI could 

improve visualisation for delineation by incorporating advanced contrast mechanisms. 



Second, qMRI biomarkers promise to provide metrics for RT response to allow adaptive 

treatment based on physiological responses(9) (e.g., necrosis) that manifest earlier than 

anatomical imaging features.(21,107) For instance, changes in cell density—a well-

established marker for early response detection—can be measured indirectly using DWI 

for early response detection.(9) Third, qMRI techniques may offer a surrogate for tissue 

dose sensitivity, such that treatment dose boosts can be informed and adapted 

according to baseline measurements.(108) Several recent articles have been published 

on the use and level of evidence for different qMRI techniques in RT.(103,106,109) We 

particularly refer to Table 1 in (103). 

MRI-derived biomarkers 

An active area of MRI research that works to detect radiation sensitivity is the 

investigation of hypoxia, a well-established and important prognostic marker for 

radioresistance. Hypoxic tissues require up to threefold greater doses to achieve the 

same biological effectiveness.(110) Although there are several MRI approaches for 

assessing oxygenation (pO2), they are predominately indirect. Tissue water T1 is 

sensitive to pO2 since the oxygen molecule is paramagnetic. The effect is small, but 

recent pre-clinical work demonstrated the feasibility of stratifying tumours based on pre-

irradiation oxygen gas breathing to predict long term tumour control following 

radiation.(108) Meanwhile, T2* is strongly influenced by the concentration of 

deoxyhaemoglobin. Perfusion is also an indirect marker for hypoxia, which can be 

measured using dynamic contrast enhanced (DCE), arterial spin labelling, or intravoxel 

incoherent motion. A more direct way of measuring pO2 is with dynamic oxygen-17 

MRI;(111) however, this technique is expensive and suffers from weak SNR and so has 

not been commonly investigated. 

Other commonly investigated qMRI techniques for RT include chemical exchange 

saturation transfer (CEST) and MR spectroscopy.(103) Recent analysis suggests 

radiation dose could be effectively adapted using a genomic-adjusted radiation dose 

model(112) and active investigations seek similar capabilities based on radiomics.(113) 

Ultimately, we believe a combination of several techniques will allow us to sample 



complimentary information on the state of the tumour. These data will allow clinicians to 

generate better personalised treatment plans than ever before: targeting dose to 

(hypoxic) radioresistant tumour regions and reducing dose to regions it is no longer 

needed. 

We expect that the impact of qMRI development for RT will not only improve RT 

outcomes but allow RT in cases that are currently considered unsuitable. For instance, 

lung cancer patients with severe lung function loss are often limited to surgery due to 

the risk of damage to remaining healthy tissue. However, with qMRI in combination with 

ventilation of hyperpolarised gases, functional regions of the lung can be clearly 

identified and considered, enabling RT as viable treatment in these patients. (114–117) 

From research tool to clinical tool 

Currently, qMRI for RT is predominantly a research tool, with most work focusing on 

establishing a link between MRI and treatment response. To translate qMRI to clinical 

use, the next step will be establishing quantitative imaging biomarkers (QIBs) from 

qMRI parameters. The general imaging biomarker roadmap of O’Connor et al. provides 

a useful framework for these next steps,(118) where there must be a transition from a 

promising QIB, to a potential QIB, and ultimately towards a clinically validated QIB.(119) 

Today, evidence for QIBs in RT is limited: complex logistics and the added patient 

burden of extra MRI examinations(103) mean that analyses are often based on small 

patient cohorts or very few time points. To overcome these difficulties, functional 

imaging data for QIB studies could be collected on MRgRT systems at the time of 

treatment. Through systematic measurement of qMRI across treatment courses, large 

collaborative libraries could be built to detect which qMRI techniques generate truly 

prognostic QIBs. Such an initiative would require large collaborative networks that 

include experts from both MRI and RT communities, such as the Elekta MR-linac 

consortium, to collect data prospectively and systematically over many years. To 

supplement this, robust data-science frameworks should be established, which are 

often overlooked in qMRI studies. 



When the prognostic value of a set of qMRI parameters has been systematically 

demonstrated in a large cohort, the next step of clinical validation is confirmation that 

the qMRI method also has predictive value (i.e., can be used to modify treatment). 

Investigations into predictive value can be conducted using interventional trials that 

adhere to the RT idea, development, exploration, assessment, and long-term evaluation 

(R-IDEAL) framework.(120) Although we must first ensure that any unknowns are first 

solved, like how qMRI parameter maps are translated into the dose prescription.  

To systematically study the relation between qMRI parameters, dose, and treatment 

response requires comparing qMRI with clinical outcome measures at different 

treatment dose levels. Some insight can be gained by comparing results between 

periods where guidelines for dose prescriptions changed or countries that prescribe 

differing treatment doses. Ultimately, however, qMRI validation requires randomised 

trials with variable dose. Setting up such trials is challenging since current dose levels 

are the accepted clinical standard. Changing doses could benefit some patients but 

could result in a worse outcome for others. Therefore, informed, careful patient 

selection, and close collaboration between qMRI experts and oncologists will be 

essential. In particular, radiation oncologists should have a more advanced 

understanding of the underlying qMRI mechanisms so that they can be comfortable in 

adapting treatment. 

Initial efforts towards consensus guidelines for qMRI on MRgRT systems have recently 

begun.(22) However, the current focus of qMRI in RT is on the target volume, where 

QIBs that monitor normal tissue toxicity(121) could be further explored. To further 

develop guidelines for RT QIBs, there are opportunities to learn from and work with the 

diagnostic qMRI community, building on pre-existing work. Such opportunities include 

initiatives for accurate and reproducible qMRI,(122) learning from the Quantitative 

Imaging Network,(123) and guidelines from the Quantitative Imaging Biomarker Alliance 

(QIBA) on DWI and DCE-MRI.(124) In adapting diagnostic recommendations for RT, we 

must remember that MR-linacs differ from conventional MRI systems.(125,126) For 

instance, images from MRgRT systems typically exhibit a lower signal-to-noise ratio 



(SNR) than those obtained using diagnostic devices, and sometimes have 

unconventional field strengths. 

Adaptive treatment 

One major opportunity for qMRI which arose with the onset of MR-linac systems is daily 

tumour biology-based treatments. For instance, the availability of real-time qMRI 

techniques could improve RT efficacy by allowing treatment to be timed to when the 

tumour is at its most sensitive to irradiation, such as outside of hypoxic periods.(20,127–

132) MRI might also be used to directly enhance treatment. For instance, radiation 

sensitivity could be increased with drugs targeted to the tumour tissue with MRI, using a 

similar approach as MR targeting.(133) Alternatively, hypoxia could be reduced by 

breathing hyperoxic or hyperbaric oxygen,(134) with qMRI used to confirm normoxic 

status. 

Another application of qMRI in RT could be real-time visualisation of biological dose. 

Since radiation dosimetry can be assessed in vitro using Bang gels, one can envisage 

extension to in vivo applications.(135) Through a deeper understanding of the short-

term effects of dose on tissue, we may find an MRI contrast mechanism, such as CEST 

or DWI, is sensitive to the short-term biological effect of the treatment beam. Such qMRI 

methods could be used for validation and adaptation of the planned treatment. 

Protocol optimisation 

The image quality of qMRI is notoriously poor when compared to conventional MRI. 

Because multiple images must be obtained to model and measure signal changes, 

image resolutions are low despite long acquisition times. Therefore, clinicians often 

prefer conventional MR images for tumour assessments. Technical improvements in 

acquisition speed and image quality will hence greatly aid implementation of qMRI in 

clinical workflows. 

For state-of-the-art RT on MR-linacs, faster qMRI is imperative. Today, qMRI 

measurements are acquired during the opportunity-time created by manual contouring. 

With the adoption of autocontouring (see 2 Delineation), the time available for qMRI 



measurements for MRgRT will be shortened as this is used more clinically. Methods 

such as MR fingerprinting,(136) model-based image reconstruction,(137) and MR-Spin 

Tomography in Time-Domain(138) could enable substantially shorter acquisitions and 

could yield higher resolution qMRI images with improved accuracies. However, shorter 

acquisition times often come with a trade-off of longer reconstruction times. For online 

applications, the solution may be machine learning-based methods that permit rapid 

reconstruction,(102,139,140) and modelling(141–143). Ultimately, we may measure 

QIBs in tumours directly from under sampled raw k-space data to meet the goal of real-

time monitoring and treatment adaptation.(144) 

Unmet needs 

• Established, standardised QIBs for RT derived from qMRI parameters 

• Demonstration of the predictive value of QIBs across large multi-center cohorts 

• Accelerated pipelines for acquisition, reconstruction, and interpretation of qMRI 

• Improved image quality of qMRI parameter maps 

6. Hardware 

MRI for RT 

Standalone MRI systems may be used for simulation imaging (i.e., MR-Sim). Compared 

to conventional diagnostic MRI scanners, these pre-treatment imaging systems must 

meet additional RT-specific requirements.(145) For instance, high spatial accuracy is 

important as geometrical image distortions can lead to under-exposure of the tumour 

site and unnecessary dose to healthy structures.(144) Geometric fidelity depends on 

magnetic field homogeneity and gradient linearity, which are typically worse at higher 

field strengths and can be compromised by the integration of the Linac system.(146) 

Unlike in diagnostic MRI, the geometric fidelity of MR images is critically important for 

RT applications. The implementation of MRI for RT has therefore largely focused on 

minimising and charactering(147) distortions as new techniques and QA procedures 

were developed.(148) Today, this issue is largely solved, but will remain an important 

factor to consider as the technology develops. 



The installation of conventional MRI systems in RT departments can be complex and 

costly. Large scanner weights, the need to incorporate a quench pipe in shielding 

designs, and the undesirable interaction between MRI fringe fields and nearby Linacs 

are often challenging factors, and the need for MR-Safe(149) immobilisation devices 

and other devices (e.g., intravenous-contrast pumps) further adds to the cost. In 

addition, wide scanner bores are required to accommodate immobilisation equipment. 

Several recent developments can help adapt diagnostic systems for RT purposes. The 

industry has recently developed diagnostic MR scanners with low helium content (e.g., 

< 8 l), which offer lower installation costs, reduced environmental impact, and no need 

for a quench pipe.(150) Another example is the increased use of low-field scanners, 

which can improve geometric accuracy.(151) However, improved geometric accuracy 

must be balanced with SNR loss and poor image quality below 1 T (particularly for 

qMRI). One possible future solution to boost low-field SNR is machine learning driven 

reconstruction.(152) 

MR-linac systems 

MRI is also present in RT in the form of MR-linac systems. These hybrid systems 

present several engineering challenges. For instance, the influence of the MR system 

fringe field on the Linac must be minimised. In addition, the radiofrequency (RF) 

radiation originating from the Linac must be shielded from the MRI sub-system. 

Furthermore, the MR sub-system design must be optimised to meet radiation 

attenuation requirements. 

Currently, two MR-linac solutions are commercially available, which have taken different 

approaches to the integration of an MR scanner with RT beam-generation 

components.(126,153) Both MR sub-systems are based on diagnostic designs, which 

have been modified to meet RT workflow and dosimetric requirements while maintaining 

imaging performance (e.g., spatial integrity). The Unity (Elekta AB, Stockholm, Sweden) 

MR device(154) is based on a modified 1.5-T MRI (Philips Healthcare, Best, the 

Netherlands). The magnet is optimised to create a surrounding annulus of a low 

magnetic field to enable its decoupling from the rotating-gantry-mounted ferromagnetic 



components that include the beam generation sub-systems. The magnet was also 

modified to create a radiation window by splitting the gradient coils.(155) The MRIdian 

(ViewRay Inc, Oakwood, USA) system houses a superconducting, 0.35-T, split-magnet 

design, using ferromagnetic shielding to isolate the Linac sub-systems on the ring 

gantry from the magnet. In both vendor designs, the gap between the two magnet 

cryostat components permits megavoltage x-ray beams to pass through with very little 

attenuation.(153) Non-commercially available MR-linac systems have focused on bi-

planar rotatable MR designs(156) and the use of a standalone magnet with a non-

rotatable radiation beam.(157) 

To date, approximately 200 MR-linacs have been installed, which is limited compared to 

the global installed base of roughly 13,000 conventional Linacs. To provide improved 

access to MR-linacs, it is important that they become cheaper and simpler to use in the 

future. There are several challenges associated with the current designs. Firstly, the MR 

magnet structure offers limited access to the patient table inside the bore. Secondly, the 

overall size, weight and cost of the MR scanner adds complexity. The footprint of MR-

linac systems may pose significant demands on the construction space required, greatly 

increasing installation costs. Thirdly, only a very limited range of coils, with low numbers 

of coil elements, are available. Fourthly, state-of-the-art treatments, like volumetric-

modulated arc therapy, are not yet available for MR-linac systems. 

As the MR-linac market grows, optimised components may start to differ from the 

mainstream diagnostic solutions to become more aligned with the unique needs of RT. 

Future iterations of MR-linac technology may include greater use of modelling for the 

MR magnet optimisation problem, such that additional Linac structural and performance 

specifications are considered. MR-linac designs could also put more focus on 

requirements for maximising patient access and minimising hardware size.(158) 

Vendors should facilitate easy MR-linac upgrades since these are essential to enabling 

rapid integration of novel treatment and imaging innovations. 

Conversely, maintaining a similar blueprint could reduce overheads through the sharing 

of manufacturing, obsolescence, and supply costs. This could be aided further by 



focusing on open-source hardware.(159) Comparable designs could facilitate fast and 

easy translation of MRI solutions to the MR-linac domain. Another advantage is that 

when MR-designs are similar, less retraining is required for in-house radiology experts. 

In addition to imaging performance, RF coil design for MRgRT applications must 

balance patient set-up and dosimetric requirements.(160) For instance, in some MR-

linac designs, the RF coil elevates above the patient to reduce the excess surface dose 

at the expense of SNR.(161) In future designs, excess surface dose may instead be 

reduced by constructing RF coils with inbuilt foam boluses, which allow the coils to be 

positioned closer to the patient to improve SNR.(162) Low-weight coils minimise body-

contour deformations and ease patient set-up.(158) Another important design 

consideration relates to the local beam attenuation and positioning of sensitive 

electronics, which limit the number of coil elements and, consequently, the parallel 

imaging capabilities of the MR subsystem. RF coils utilising high impedance capacitors 

could enable a high number of coil elements to be employed while meeting the beam 

attenuation requirements.(163–165) Alternatively, high-density, disposable coils that 

allow electronics to be directly in the path of the radiation beam could be considered. 

Therefore, many new coil designs could be exploited to optimise image quality for 

MRgRT, including wireless, flexible(165,166) and disposable RF coils, as well as inbuilt 

bolus designs. 

Unmet needs 

• Easier access to MR-Sim and MR-linac systems: simpler installation, reduced 

costs, and reduced footprint 

• Optimised MR-linac components that are more aligned with the unique needs of 

RT e.g., improved coil designs 

7. Reducing Patient Burden 

An important aspect for the success of MR in RT is minimising patients’ treatment 

burden. In addition to well-being, patient burden(167) includes the time, difficulty and 

costs devoted to healthcare. Critical components of the treatment burden are the 



number of visits to the hospital (including travel-time and costs), the duration that 

patients must hold the treatment position, and the comfort of this position.(168) 

MR guided radiotherapy 

The advent of MRgRT systems has initially increased the treatment burden for patients 

because treatment times per session have increased substantially compared to 

conventional Linacs. For example, the average treatment duration for prostate cancer 

has increased from 15–20 min on CBCT-Linacs(169) to 45 min on MR-linacs.(170) Liver 

treatment on the MR-linac is particularly long, ranging from 60 to 90 min.(171) Although 

45 min is a generally acceptable examination time on diagnostic MRI scanners, at 

MRgRT, patients are set up in the treatment position, which can include a hard flat 

tabletop, fixation devices such as closely fitted full-head masks, and holding 

uncomfortable positions (e.g., arms above the head).(73) Furthermore, patients 

experience increased MRI-related acoustic noise(172) and anxiety due to limited 

space.(173,174) With the many repeated MRgRT sessions throughout an RT course, 

acoustic noise has a more substantial impact on hearing than for a one-off diagnostic 

MRI examination. 

In the future, MRgRT on MR-linac systems presents several opportunities to reduce 

patient discomfort. Firstly, adaptive planning using onboard MR imaging could allow the 

couch to be made more comfortable, where the hard flat tabletop is no longer needed 

for consistent set-up. Secondly, future MR-linac models could be developed with wider 

bores to reduce claustrophobia and aid access to the patient. Thirdly, uncomfortable 

setup devices may be rendered unnecessary with online MRI tracking.(101) Fourthly, 

future developments in MRI, tumour tracking, and gated deliveries could remove the 

need for breath-hold imaging and treatment deliveries.(175) 

Hypofractionation 

Hypofractionation, increasing the dose per fraction and reducing the number of 

fractions, allows a biologically similar treatment plan to be delivered in fewer hospital 

visits.(171) However, the challenge of hypofractionated approaches is that treatment 



becomes more sensitive to patient setup errors. MR-linac systems could make setup 

errors smaller to overcome these limitations. Consequently, clinicians are currently 

attempting to increase the dose per fraction in several MRgRT protocols.(176,177) By 

further improving image quality at planning and real-time monitoring during treatment, 

we can further reduce uncertainties and gain confidence in continuing the reduction of 

fraction numbers. However, it should be noted that spreading dose over multiple 

fractions allows healthy tissue to repair itself between sessions, receiving a lower 

effective dose. While hypofractionated treatment regimens are showing dramatic 

improvements to treatment response for many disease sites,(178–180) this is only 

possible with excellent geometric precision and, in some instances, tumour dose spread 

must be more heterogeneous to ensure that normal issues are preserved. 

Next-generation workflows may be a one-stop-shop for which only 1–3 hospital visits 

are required. Once the patient is set up, the MR-linac acquires a fast MRI, target 

volumes and OARs are automatically contoured and, within seconds, an automated, 

single-fraction, high-dose treatment plan is developed and delivered, all during a single 

visit (Figure 1). By reducing clinic visits, this approach would increase clinical 

throughput and improve patient experience, especially for palliative patients. At present, 

“day-one” treatment planning would require substantial clinical resources and 

automation is strongly desired. 

Unmet needs 

• Increased patient comfort via removal of uncomfortable elements from MRgRT 

treatment chains, such as hard tabletops, immobilisation devices, and breath-

holding 

• Faster imaging and treatment to reduce time in the machine 

• Improved image quality at planning and real-time monitoring during treatment to 

improve confidence in hypofractionation 



8. Implementation and Dissemination 

The implementation of MRI in RT will be accelerated and steered by the introduction of 

MRgRT on MR-linacs. Currently, however, only a few RT centres have MRI scanners 

installed in the RT department and MR-linacs only account for a small fraction (~1.5%) 

of all treatment machines in clinical use. We expect that developments will initially take 

different directions for non-academic and academic centres. In non-academic centres 

with MR-Sim only, the focus will be on targeting accuracy. For non-academic centres 

with an MR-linac, this will be combined with fast and automated hypofractionated RT 

and target tracking, where hypofractionation greatly reduces the cost of RT. In 

academic centres, experiments will focus heavily on development for qMRI methods. As 

the use of MRI for RT increases, guidelines(145) for its practical implementation should 

be reviewed and updated. 

Clinical burden 

Operating an MR-linac currently requires a large team of clinical and technical experts. 

Centres with MR-linacs often employ an on-site clinician for recontouring, two dual-

trained RT-MR technologists during treatment, an on-call MR-RT physicist, and a large 

group of physicists available for quality control and maintenance. Even where the 

additional facilities and expertise required were minimal, the increased strain on staff 

resources caused by using an MR-linac is often significant, with treatment times 

typically doubling those of conventional systems.(109) The cost of developing and 

maintaining new support teams for MR-linac treatments is manageable for large cancer 

therapy centres but could be prohibitive for smaller (2-3 Linacs), community-based 

radiation therapy centres, which are typical across Europe and the United 

States.(181,182) We therefore predict that over the next few years, MRgRT will 

predominantly be conducted at larger specialised centres. 

For the dissemination of MRgRT and MR-Sim to non-academic centres and for long-

term usage in academic centres to be successful, logistic, environmental, and staff 

burdens must be reduced. Simple solutions to reducing clinical burden in the future 



include transferring staff training to external parties and investing in AI-assisted 

workflows. Looking at the big picture, efforts should be made to reduce treatment times 

and simplify the operation of the MR-linac. Standardised MRI acquisitions for treatment 

planning and motion monitoring combined with AI-driven MRI-scanning methods 

reduces the complexity of MR knowledge needed by radiographers.(183) Similarly, AI-

driven contouring and treatment planning will greatly reduce the time and staff 

requirements for on-table plan adaptation of treatments.(184) Looking further ahead, the 

operational burden on the physics staff could be reduced by increased automation of 

patient treatment and QA procedures and highly hypofractionated treatment 

courses.(176,185) Such a workflow would resemble the ultimate minimisation in 

operational burden and drive the uptake of MRgRT across all radiation oncology 

centres. Because automated workflows remove clinical decision making and 

hypofractionated treatments deviate from the current clinical standard, it is of vital 

importance that clinicians are included in the introduction of these new approaches. 

Unmet needs 

• Standardisation of MRI acquisitions for treatment planning and motion monitoring 

• Collaborative development of automated workflows by researchers and clinical 

teams 

• Easy (or automated) operation of MRI and MRgRT systems 

9. Concluding remarks 

MRI has become indispensable in modern RT pipelines and its role is expected to grow. 

Advances in tumour delineation, onboard image guidance, and imaging biomarkers 

afforded by MRI promise to transform RT over the next 25 years.  With this paradigm 

shift, a rich spectrum of new challenges and opportunities is presented for the MR 

community. 
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12. Figure Captions 

Figure 1: The role of imaging for radiation therapy (RT) in conventional, state-of-the-art, 

and future workflows. 

The conventional workflow (top row) begins the pre-treatment phase by scanning the 

patient in a computed tomography simulator (CT-Sim), where the patient set-up for 

treatment is simulated using the same flat-top coach and positioning devices. MR scans 

are also acquired and registered to the CT images. Target volumes are delineated 

manually on MRI and dose distributions are simulated and optimised using the CT 

images. At treatment, patient set-up on a Linac system is aided by onboard cone-beam 

CT (CBCT) or planar x-ray. The patient must return daily for repeated treatment 

fractions over the course of several weeks. 

The middle row illustrates a state-of-the-art RT treatment chain. This MR-only workflow 

replaces CT-Sim with MR-Sim, reducing the burden on hospitals and patients. Artificial 

intelligence (AI) assisted contouring increases the efficiency and reliability of delineation 

(2 Delineation). Treatment plans are calculated using synthetic CT generated from MR-

Sim images, eliminating CT-MRI registration errors (3 Dose Calculation). At treatment, 

hybrid MR-linac systems (6 Hardware) will facilitate the safe reduction of treatment 

margins via MRI-informed adaptation to the daily anatomy and gated deliveries for 

moving targets (4 Image Guidance). Treatment sessions are more labour intensive 

than conventional treatments but could lead to fewer patient visits overall (7 Reducing 
Patient Burden). 

In the future (bottom row), an MR-linac-only workflow without a pre-treatment workup 

may be possible, where planning and treatment delivery is performed within minutes on 

the same system. Functional and structural MR imaging could inform AI-driven 



algorithms to generate plans without input from clinicians. MR-derived biomarkers (5 
Quantitative MRI) hold the potential to establish new, contourless dose planning 

approaches, with information now available to inform the safe delivery of high-dose 

boosts to targeted regions. Treatment plans could be delivered rapidly via real-time MR-

guided tracking to continuously irradiate the target and safely (precisely) deliver dose 

distributions with steep spatial gradients. The presented workflow would greatly reduce 

patient and clinical burden (8 Implementation and Dissemination). 

 

Figure 2: A-B: Radiation treatment contours for a patient with brain cancer. Here, the 

GTV (red) is contoured based on visible tumour tissue on MRI (A). The CTV (green) 

encompasses the GTV to account for subclinical spread not visible on imaging, based 

on anatomy and biological considerations. The PTV (magenta) is designed to account 

for patient set-up errors and beam inaccuracies, to ensure the prescribed dose is 

delivered to the CTV. The CT images (B) are not suitable for contouring here but are 

needed to provide electron density information for dose calculations. C-D: Radiation 

treatment for a patient with rectal cancer. Again, the GTV is contoured based on MRI 

visibility (C). The MRI is registered to a CT image, which is used to calculate and 

optimise the planned dose distribution illustrated by the colourwash overlay (D). Note 

that the CTV-PTV margin is large compared to the brain site treatment due to greater 

set-up uncertainty and intrafraction motion. 
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