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Methods 24 
 25 
F-K beamforming 26 
 27 
We calculated the two-dimensional frequency-wavenumber (F-K) spectrum by applying a F-K 28 
beamforming technique to each hour of the data (Capon, 1969). The aperture of the seismic array 29 
determines the resolution of the smallest wavenumber (Schweitzer et al., 2002). Arrays with large 30 
apertures can acquire high-speed seismic waves. For ocean waves, which have relatively large 31 
wavenumbers, we used DAS data recorded over 1 kilometre (Figure S1a). To observe Scholte 32 
waves (Figure S1b), we used data recorded over 15 kilometres. 33 
 34 
Excitation of modes by the wave-wave interaction of wind ocean waves 35 

The far-field Green’s tensor for a spherical Earth  (Dahlen & Tromp, 2021) can be written as 36 𝐺 𝐱, 𝐱′;  𝜔 = 1𝑐𝐶𝐼 8𝜋𝑘 |𝑠𝑖𝑛Δ| �̂�𝑈 − 𝑖𝑘𝑉 + 𝑖 �̂� × 𝑘 𝑊 𝑟′𝑈′ + 𝑖𝑘′𝑉′37 − 𝑖 𝑟′ × 𝑘′ 𝑊′  38 × exp −𝑖 𝑘 Δ + 𝜋4 − 𝜔Δ2𝐶𝑄 (1) 39 

where 𝐱, 𝐱′, and 𝜔 are the station location, the source location, and the angular frequency (𝜔 =40 2𝜋𝑓 where 𝑓 is the frequency), respectively. The summation is conducted for modes in each modal 41 
branch (e.g., the fundamental mode branch, the 1st overtone branch, etc.). 𝑐 is the phase velocity 42 
of a given mode, 𝐶 is the group velocity, I is the normalization for a spheroidal mode defined by 43 𝑘 = 𝑙(𝑙 + 1), Δ is the angular distance from the source to the station, 𝑄  is the attenuation 44 
parameter for a given mode. Note that this equation is for the spherical Earth. 45 
 46 
We consider a modal excitation problem by the wave-wave interaction of ocean surface waves in 47 
a flat-layered model. The horizontal displacement in the cylindrical coordinate can be defined as: 48 𝑢 (𝜔) = 1𝑐𝐶𝐼√8𝜋𝑘𝑟 −𝑖𝑉(0)𝑈′(𝐻) × exp −𝑖 𝑘r + 𝜋4 − 𝜔r2𝐶𝑄 (2) 49 

in the radial direction (r). The normalization factor I is defined as: 50 𝐼 = 𝜌(𝑈 + 𝑉 )𝑑𝑧 (3) 51 

where 𝑈(𝑧)  and 𝑉(𝑧)  are the vertical and horizontal eigenfunction of a spheroidal mode 52 
(Rayleigh-wave mode) and z is the vertical coordinate (positive upward) where the sea bottom is 53 𝑧 = 0 and the ocean surface is 𝑧 = 𝐻.  54 
 55 
The wave-wave interaction of ocean waves near the ocean surface generates pressure (Longuet-56 
Higgins, 1950) and with an introduction of a surface area 𝑑𝑆, it creates a vertical force 𝑓 = −𝑝𝑑𝑆. 57 
This force can be multiplied to the above formula to obtain the generation of horizontal 58 
displacements at sea floor. 59 
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Since DAS measures strain along the fibre-optic cable, we differentiate the above formula with 60 
respect to 𝒓 and derive the following formula for the extensional strain in the radial direction: 61 𝑒 (𝜔) = 1𝑐𝐶𝐼 𝑘8𝜋𝑟 {−𝑉(0)𝑈′(𝐻)} × exp {−𝑖 𝑘r + 𝜋4 − 𝜔r2𝐶𝑄} (4) 62 

where we only kept the term that differentiates the exponential oscillation term. Differentiation 63 
with respect to 1/√𝑟 should rapidly become small with distance and the differentiation of the 64 
attenuation term should also be small. In this formula, 𝑘 is the horizontal wavenumber. We can 65 
rewrite this formula as 66 𝑒 (𝜔) = 𝑎 exp {−𝑖 𝑘r + 𝜋4 − 𝜔r2𝐶𝑄} (5) 67 

where 𝑎  is the excitation coefficient for a mode defined by: 68 𝑎 = 1𝑐𝐶𝐼 𝑘8𝜋𝑟 {−𝑉(0)𝑈′(𝐻)} (6) 69 

The efficiency of excitation of various mode branches is related to the size of this term and is 70 
computed for various models. 71 
 72 
Modal analysis 73 
 74 
We vary the ocean depth from 25 m to 500 m and examine the effects on modal excitations. Below 75 
the sea bottom, all models have a sedimentary layer of a thickness of 1 km (density (𝜌): 2000 76 
kg/m3, Vp: 2.0 km/s, Vs: 1.0 km/s), a transition layer with a thickness of 1 km where 𝜌 and seismic 77 
velocities increase linearly with depth and finally connect to the parameters from the PREM model 78 
(1981). The PREM parameters are assumed from 2 km below the sea bottom. PREM has the upper 79 
crustal parameters of 𝜌: 2600 (kg/m3), Vp: 2.6 (km/s), Vs: 3.2 (km/s), and the parameters after 80 
transition to lower crust are 𝜌: 2900 (kg/m3), Vp: 6.8 (km/s), Vs: 3.9 (km/s). 81 
 82 
In Figure S2, we show an example of the modal analysis performed with a model that has an ocean 83 
depth of 100 m. We use a code for spherical modes that incorporates gravity effects. Therefore, 84 
for each wavenumber (horizontal wavelength), we first obtain a tsunami mode with a phase 85 
velocity of 𝑔𝐻. Figure S2 shows overtone modes up to the 4th one. The fundamental mode is 86 
termed as the Scholte mode for the reasons listed below. 87 
 88 
Figure S3 shows the same set of modes. Tsunami modes are confined to the low-frequency range 89 
(e.g., below 0.2 Hz) and do not appear in the 0.5-2.0 Hz frequency range, which is the focus of 90 
this work. The phase velocity of Scholte waves for frequencies above 0.5 Hz (e.g., 0.8-1.0 km/s) 91 
shows good agreement with Figure S1b. It supports that we mainly observe the effects of Scholte 92 
waves. Eigenfunctions of four modes at 1 Hz, indicated by solid circles in Figure S3, are shown in 93 
Figure S4. 94 
 95 
We name the fundamental mode as the Scholte mode in this paper because eigenfunctions have 96 
their maximum amplitudes at the seabed (Figure S4). The amplitudes tend to decay up and down 97 
from the seafloor, although strictly speaking, they deviate from what were originally known as 98 
Scholte waves, which were trapped at the fluid-solid interface on the seafloor.  99 
 100 
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The excitation coefficients of these modes are shown in Figure S5. This figure shows clearly that 101 
the wave-wave interactions at the ocean surface preferentially excite Scholte modes. The effect of 102 
the ocean depth on the excitation coefficients is shown in Figure S6. This figure shows that the 103 
results in Figure S5 remain very similar from 25 m to 100 m in depth, which are relevant to this 104 
study. It also shows that ocean depths deeper than 200 m show much less excitation of Scholte 105 
modes. This suggests that the excitation efficiency may greatly differ if the ocean depth steeply 106 
increases near the coast. 107 
 108 
 109 
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 121 
Figure S1. One-hour F-K beamforming analysis for DAS data on September 3rd, 2020. (a) The 122 
data are taken between 8 and 9 km from the coast, where the water depth is about 40 m. The red 123 
lines represent the theoretical dispersion curve of ocean surface gravity waves for a water depth of 124 
40 m. (b) The phase velocity of Scholte waves was observed between 25 and 40 km from the coast 125 
versus frequency. Clear surface-wave dispersion can be seen for frequencies higher than 0.2 Hz. 126 
Note that our analysis focuses on the 0.5-2.0 Hz frequency range.  127 
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 128 
Figure S2. Eigenfrequencies plotted against wavenumber. For each horizontal wavenumber, the 129 
lowest mode is the tsunami mode (equivalent mode). The fundamental mode is named as Scholte 130 
wave or Scholte mode because of a large horizontal motion peak at the sea bottom. The first four 131 
modes (overtones: OVT) are shown in this plot.  132 



 
 

7 
 

 133 
Figure S3. Phase velocity of the normal modes plotted against frequency. Color code is the same 134 
as in Figure S2.  135 
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 136 
Figure S4. Eigenfunctions of four modes at 1 Hz, indicated by solid circles in Figure S3. The 137 
eigenfunctions of the Scholte waves (upper left) are very similar to that of Rayleigh waves on land, 138 
except for the behaviors in the ocean. The red dashed line is sea bottom.   139 
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 140 
Figure S5. Excitation coefficients |as| of Scholte modes. The fundamental mode (the red dots), 1st 141 
(the black dots), 2nd (the green dots), and 3rd (the purple dots) overtones (OVT) of Scholte waves 142 
are shown. For horizontal strain at the ocean bottom, the contributions from Scholte waves are 143 
dominant.  144 
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 145 
Figure S6. Excitation coefficients at different depths. We observe the excitation sources changing 146 
in the area where ocean depth varies from 25 m to 100 m. Three cases within this depth range are 147 
shown in color and agree between 0.5 Hz and 1.0 Hz. Three cases for the deeper ocean, 200 m, 148 
300 m, and 500 m, show that the excitation efficiency by the wave-wave interaction of ocean 149 
surface waves decreases quickly with depth.  150 
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 151 
Figure S7. Examples of Cross-Correlation Functions. (a) CCF between channels 300-305 (channel 152 
300 is at 5.0 km from the coast) and channels 390-395 (channel 390 is at 6.5 km from the coast) 153 
in the frequency band 0.5-1 Hz. The red and blue lines show the Scholte wave selected in this 154 
study. The causal (blue) and acausal (red) parts relates to the seaward and landward propagations 155 
of Scholte waves. The black line shows the trailing coda for a duration of 200 sec. We calculated 156 
the signal-to-noise ratio (SNR) by using the maximum amplitude of the signals (red and blue) 157 
divided by the mean value of 200 seconds of trailing coda (black). (b) Same as (a) for channels 158 
2000-2005 (channel 2000 is at 33.6 km from the coast) and channels 2090-2095 (channel 2090 is 159 
at 35.1 km from the coast). 160 
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161 
Figure S8. HF microseisms source locations in the frequency band 1-2 Hz. (a) The SNR of the 162 
Scholte waves in the frequency band 1-2 Hz as a function of time for the seaward (blue) and 163 
landward direction (red) propagation. The position between the two-color series represents the 164 
source location of the HF microseism. The black line represents the local wind direction change 165 
recorded at the location marked in Figure 1a. (b) The source regions of HF microseisms in the 166 
frequency band 1-2 Hz. We define the source locations of the HF microseisms as the SNR of both 167 
seaward and landward propagating Scholte waves larger than 5.  168 
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 169 
Figure S9. Shear-wave velocity profile obtained from ambient noise cross-correlation functions. 170 
Each dispersion curve is calculated at each subset of 4 km. 171 
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