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Abstract. 

Purpose: Spot-scanning arc therapy (SPArc) is an emerging proton modality that can 

potentially offer a combination of advantages in plan quality and delivery efficiency, 

compared to traditional IMPT of a few beam angles. Unlike IMPT, frequent low-to-high 

energy layer switching (so called switch-up (SU)) can degrade delivery efficiency for SPArc. 

However, it is a tradeoff between the minimization of SU times and the optimization of plan 

quality. This work will consider the energy layer optimization (ELO) problem for SPArc and 

develop a new ELO method via energy matrix (EM) regularization to improve plan quality 

and delivery efficiency. 

Methods: The major innovation of EM method for ELO is to design an energy matrix that 

encourages desirable energy-layer map with minimal SU during SPArc, and then incorporate 

this energy matrix into the SPArc treatment planning to simultaneously minimize the number 

of SU and optimize plan quality. The EM method is solved by the fast iterative shrinkage-
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thresholding algorithm and validated in comparison with a state-of-the-art method, so-called 

energy sequencing (ES). 

Results: EM is validated and compared with ES using representative clinical cases. In terms 

of delivery efficiency, EM had fewer SU than ES with an average of 35% reduction of SU. In 

terms of plan quality, compared to ES, EM had smaller optimization objective values and 

better target dose conformality, and generally lower dose to organs-at-risk and lower integral 

dose to body. In terms of computational efficiency, EM was substantially more efficient than 

ES by at least ten-fold. 

Conclusion: We have developed a new ELO method for SPArc using energy matrix 

regularization, and shown that this new method EM can improve both delivery efficiency and 

plan quality, with substantially reduced computational time, compared to ES. 

Key words: IMPT, SPArc, energy layer optimization. 
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1. Introduction 

Proton arc therapy was developed in late 90s with passive scattering [1,2], which has 

recently revived into spot-scanning arc therapy (SPArc) by Ding et al [3] as an emerging 

proton modality that can potentially offer a combination of advantages in plan quality and 

delivery efficiency [4-7], compared to traditional IMPT of a few beam angles. This work 

concerns about the energy layer optimization (ELO) problem for SPArc. 

The need of ELO for SPArc is motivated by the fact that the low-to-high energy layer 

switching (i.e., switch-up (SU)) time is much longer than the high-to-low energy layer 

switching (i.e., switch-down (SD)) time, e.g., 5s versus 0.5s. The SU is usually not an issue 

for IMPT of fixed beam angles, because (1) energy layers are delivered from high to low 

within each beam angle so that SU does not occur within an angle, and (2) the angle 

switching takes time anyway so that SU may not require additional time even it occurs 

between angles. However, the SU can be a limiting factor for delivery efficiency of SPArc, 

because ideally the beam can be constantly delivering while the gantry angle is continuously 

changing during SPArc. Without proper reduction of SU, the gantry may need to stop 
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frequently to wait for beam delivery, or beam delivery may need to be skipped for many arcs 

in order to wait for SU to complete before resuming beam delivery. Therefore, the 

minimization of SU is important for SPArc, in terms of both delivery efficiency and plan 

quality. 

While Ding’s method [3] was heuristic, Gu et al [8] proposed an ELO method with a 

rigorous problem formulation and method derivation, using so-called energy sequencing 

(ES) regularization to minimize SU while optimizing plan quality. However, in order for ES to 

function, ES imposes the optimization constraint “one energy layer per beam angle” (here 

each beam angle during SPArc optimization is after discretization and represents an angular 

segment or control point during SPArc delivery), which seems practically unnecessary and 

limits optimization degrees of freedom for plan quality. Because the optimization solution 

space with the constraint “one energy layer per beam angle” is a subset of the solution 

space without this constraint, the optimal plan quality under this constraint is usually worse 

than the plan quality that can be achieved with “multiple energy layers per beam angle” [8]. 

On the other hand, the ES regularization involves the updates of several ES matrices each 

iteration, which is computationally expensive. Inspired by SPArc [3] and ES [8], this work will 
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develop a new ELO method for SPArc using energy matrix (EM) regularization. Relative to 

ES, EM does not need to be restricted by the aforementioned optimization constraint so that 

more than one energy layer per beam angle is allowed in order to improve plan quality. It will 

be shown that EM can further reduce number of SU, improve plan quality, and enhance 

computational efficiency from ES. 

 

2. Methods and Materials 

 

2.1. Notations 

Let B be the number of beam angles during SPArc plan optimization, and Eb the number of 

energy layers in the bth angle. For the convenience of presentation, energy layer distribution 

for all beam angles (e.g., Fig. 1(a)) is called the energy map. 

Note that the modeling of SPArc in many fixed beam angles here is a mathematical 

approximation or discretization of arc delivery, which does not mean that SPArc is delivered 
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only at those fixed beam angles. In the actual delivery, the gantry angle varies continuously, 

for which each beam angle in the presented model corresponds to an angular segment 2π/B 

or control point. 

The vector x denotes intensities or the number of particles per spot for all spots from all 

angles, xb all spots for the bth angle, and xbe all spots with the eth energy layer in the bth 

angle. That is 

 

1 11

2 22

 ,  , 

b be

b

b

n

b be

be

b be

beb

bEB

e

beN

x xx

x xx

x x x
x xx

x xx

    
    
    
    

      
    
    
    

          

 (1) 

where Nbe is the length of xbe, i.e., the number of spots in the eth energy layer of the bth angle. 

To group the spots per energy layer, we introduce the scalar ybe as the sum of all 

elements in xbe, the vector yb as the concatenation of ybe corresponding to the bth angle, and 

y that consists of all yb’s from all angles. That is 
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In matrix representation, y=Wx, where W is a summation matrix that sums up x per energy 

layer. 

 

2.2. Energy Layer Optimization 

We start the formulation of ELO by giving the dose fidelity term 

 
2

2
f( ) s s s

S

x w A x d


  , (3) 

where Ω is a set of different structures including the treatment planning target PTV and 

organs-at-risk (OAR), ds is the constraint dose, As is the dose influence matrix, and ws is the 

objective weight, corresponding to the sth structure. Note that Ω depends on x and needs to 

be updated during plan optimization iterations, for dose-volume constraints [9-11]: for 
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example, for dose-volume constraint D50%<30Gy, if the volume of ≥30Gy is 60% (which is 

more than 50%), Ω for this constraint will include the 10% dose-violating voxels of the 

smallest dose for dose minimization.  

To benchmark and compare with the ES method, the EM method adopts the similar ELO 

formulation to ES [8] 
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The first term   is dose fidelity term Eq. (3), where, without loss of generality, Eq. (3) is 

denoted by a simplified version in Eq. (5). The second term GS is group-sparsity 

regularization to minimize the number of energy layers with energy-layer-dependent 
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weighting wbe [12]. The third term LOG uses a log barrier function to promote that each angle 

has at least one energy layer, since the GS alone may generate the energy map with angles 

of empty energy layers [8]. The fourth term is the energy matrix regularization (EMR) with 

the energy matrix M. 

The difference between ES and EM methods is that the ES regularization is replaced by 

the EMR in Eq. (4). In the EMR term Eq. (5), S is a sigmoid function that binarizes y to 

capture energy SU for the purpose of energy-matrix regularization, i.e., S(y)=2/(1+e-y)-1. 

Note that the necessity of L2 norm (i.e., sum of least squares) in EMR can be explained 

by comparing Fig. 1(g) and (h). The EM method can minimize the number of SU to improve 

the delivery efficiency of SPArc, using the properly designed energy matrix, i.e., M in Eq. (5), 

that will be explained next. 

 

2.3. Energy Matrix Regularization: Principle 
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This section discusses the principles for designing the energy matrix (P1-P4), and the next 

section will provide the algorithm for generating the energy matrix. 

To mimic the delivery of SPArc, energy layers per beam angle in the energy map (e.g., 

Fig. 1(a)) are sorted in the descending order of proton energies, i.e., the energy layers are 

delivered always from high to low energies (e.g., for the 2nd angle A2 in Fig. 1(c)), while the 

energy SU can occur at the transition of beam angles (e.g., from the 1st angle A1 to the 2nd 

angle A2 in Fig. 1(d)). Since the energy switch-up (from low to high) takes much longer than 

the switch-down (from high to low), smaller number of SU often implies faster delivery of 

SPArc. 

For minimizing the number of SU and at the same time optimizing the plan quality, the 

energy matrix M is designed in such a way with 

 (P1) the selection of high-energy layers to minimize SU for the purpose of efficient 

plan delivery (e.g., by comparing Fig. 1(c) and (d)); 

 (P2) the selection of high-energy layers to have more degrees of freedom for 

optimizing plan quality without increasing SU (e.g., by comparing Fig. 1(e) and (f)); 
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 (P3) the penalization of the selection of only high-energy layers to have diversified 

energy layers for the purpose of optimizing plan quality (e.g., by comparing Fig. 1(g) 

and (h)); 

 (P4) the introduction of barrier constraints (e.g., Fig. 2(c)) to minimize SU (e.g., by 

comparing Fig. 2(d) and (e)). 

First, we will illustrate the use of M matrix via two examples (Fig. 1 and 2): P1-P3 will be 

explained via Fig.1, and P4 will be explained via Fig. 2. Then we will provide the algorithm 

(Fig. 3) to determine M. 

Because the number of SU is determined by “which energy layers to use” rather than 

specific spot values per energy layer, the M matrix concerns about the binarized y: ybe=1 

when the eth energy layer of the bth beam angle is used (i.e., with at least one nonzero spot 

to be delivered); ybe=0 otherwise. Throughout this section (including Fig. 1 and 2), EM refers 

to the value of EMR term in Eq. (5) acting on the binarized y without γ, i.e., EM=||My||2 and 

strictly speaking y corresponds to S(y) after the sigmoid transform. 



 

 

 

This article is protected by copyright. All rights reserved. 

13 

 

An example of energy matrix M is provided in Fig. 1(b), which corresponds to the energy 

map in Fig. 1(a). The optimization degrees of freedom in this example consist of three beam 

angles (A1-A3), each of which has three energy layers (140MeV, 150MeV, 160MeV). The 

beam angles are sorted in the order of actual delivery, and the energy layers are arranged in 

the order of descending energy values.  

To illustrate P1, let us consider Fig. 1(c) and Fig. 1(d), where active energy layers (i.e., 

ybe=1) are denoted by red and green dots. In terms of SU, since there is no SU in Fig. 1(c), 

SU=0; since there is a SU from A1 to A2 in Fig. 1(d), SU=1. In terms of EMR, in Fig. 1(c), 

y=[1 0 0 1 1 0 0 0 1]T  and thus EM=17; in Fig. 1(d), y=[0 0 1 1 1 0 0 0 1]T and thus EM=41. 

Therefore, the energy matrix M encourages the selection of high-energy layers (i.e., 160MeV 

instead of 140MeV for A1 with smaller EM=17 than EM=41) for minimizing SU (i.e., SU=0 

instead of SU=1). 

To illustrate P2, let us consider Fig. 1(e) and Fig. 1(f). In terms of SU, when 150MeV is 

active in A2 (Fig. 1(e)), either 150MeV or 140MeV can be active in A3 without increasing SU; 

when 140MeV is active in A2 (Fig. 1(f)), only 140MeV can be active in A3 without increasing 
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SU. In terms of EMR, in Fig. 1(e), y=[1 0 0 1 1 0 0 1 0]T and EM=20 if 150MeV is active in 

A3, while y=[1 0 0 1 1 0 0 0 1]T and EM=17 if 140MeV is active in A3; in Fig. 1(f), y=[1 0 0 1 

0 1 0 1 0]T and EM=17 if 150MeV is active in A3, while y=[1 0 0 1 0 1 0 1 0]T and EM=40 if 

140MeV is active in A3. Therefore, M encourages the selection of high-energy layers (i.e., 

150MeV instead of 140MeV for A2 in Fig. 1(e)) to have more rooms for optimizing plan 

quality without increasing SU (i.e., A3 can be filled with either 150MeV or 140MeV without 

increasing SU in Fig. 1(e), while only 140MeV for A3 does not increase SU for in Fig. 1(f)). 

To illustrate P3, let us consider Fig. 1(g) and Fig. 1(h). In terms of EMR, in Fig. 1(g), y=[1 

0 0 1 0 0 1 0 0]T and thus EM=9; in Fig. 1(h), y=[1 0 0 1 0 0 0 1 0]T and thus EM=8. 

Therefore, M penalizes the selection of only high-energy layers (i.e., 160MeV for all angles 

A1-A3 with larger EM in Fig. 1(g)) to have diversified energy layers for the purpose of 

optimizing plan quality. 

Note that the energy matrix in Fig. 1(b) is local in the sense its matrix value only depends 

on the local ordering of energy layers per beam angle and is independent of the global 

ordering energy layers from all beam angles. This locality can be problematic, when the 
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energy map has different energy-layer distribution per beam angle (e.g., Fig. 2(a)). To 

incorporate the globality (in the ordering energy layers) into energy matrix, barrier constraints 

are introduced and explained next. 

To illustrate P4 on barrier constraints, let us consider Fig. 2. The optimization degrees of 

freedom (Fig. 2(a)) in this example consist of energy layers (150MeV, 140MeV, 130MeV) for 

A1, energy layers (170MeV, 160MeV, 150MeV) for A2, and energy layers (160MeV, 

150MeV, 140MeV) for A3. The energy matrix M1 (Fig. 2(b)) is similar to the previous one in 

Fig. 1: M1 is local to each beam angle in the sense that the M1 matrix value (i.e., 1, 2, 3) 

corresponds to the descending order of energies per angle. On the other hand, the energy 

matrix M2 (Fig. 2(c)) has the barrier constraints, i.e., the matrix values of M2 equal to a much 

larger number 30 (here 30 is the barrier constraint value, which could have been set to a 

different value rather than 30, as long as it is sufficiently larger than the rest of values, e.g., 

by ten-fold) at 170MeV and 160MeV for A2 and 160MeV for A3; as a result, M2 is non-local 

in the sense that the M2 matrix value also accounts for the descending order of energies for 

all angles. In terms of SU, since there is a SU from A1 to A2 in Fig. 2(d), SU=1; since there 

is no SU in Fig. 2(e), SU=0. In terms of EMR, in Fig. 2(d), y= [0 0 1 0 0 1 0 0 0 0 0 1 0 0 0]T 
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(there are 15 elements because there are 5 different energy layers 170MeV, 160MeV, 

150MeV, 140MeV and 130MeV, and 3 angles; for each angle, 1 implies the energy available 

for optimization and 0 otherwise) and thus EM1=3, EM2=1801; in Fig. 2(e), y= [0 0 1 0 0 0 0 

1 0 0 0 0 0 1 0]T and thus EM1=25, EM2=8. Therefore, without barrier constraint, M1 falsely 

chooses SU=1 over SU=0, because SU=1 has smaller EM1; with barrier constraints, M2 

correctly chooses SU=0 over SU=1, because SU=0 has smaller EM2. The purpose of barrier 

constraint is to de-localize the ordering per angle by giving a sufficiently large weighting 

(e.g., 30 in this example), so that the EMR correctly penalizes the SU. 

 

2.4. Energy Matrix Regularization: Algorithm 

In this section, we will provide the algorithm to determine M for general energy map, 

which is illustrated in Fig. 3. The algorithm consists of two major steps: (S1) to determine the 

location of nonzero matrix elements of M; (S2) to calculate the values for these nonzero 

matrix elements. 
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Regarding S1, the columns of M are arranged for angles in the order of beam scanning, 

for energy layers per angle in the order of descending energy values. To determine the rows 

of M, first, the leading energy layer (with the largest energy) per beam angle is located (e.g., 

orange and black circles in Fig. 3). Then, the largest leading energy layer is identified (e.g., 

the black circle in Fig. 3) and the sub-matrix (e.g., A2 that starts from the first row of M in Fig. 

3) for this angle (the so-called benchmark angle) is determined. Next, for each of the 

remaining beam angles (e.g., A1, A3, A4 in Fig. 3), the leading energy layer is aligned to the 

benchmark angle (e.g., the sub-matrix for A1 starting from the row in A2 of the same energy 

in Fig. 3); within each sub-matrix per beam angle, the nonzero elements are consecutively 

placed on the diagonal, starting from the first nonzero element that is already aligned to the 

benchmark angle. The process of S1 can also be illustrated using Fig. 2: first because A2 

has the largest leading energy layer, which is 170MeV, A2 is the benchmark angle; then A1 

and A3 are aligned to A2 to form the EM in Fig. 2(c), i.e., to position the leading energy layer 

150MeV of A1 in the same row as 150MeV of A2, and i.e., to position the leading energy 

layer 160MeV of A3 in the same row as 160MeV of A2. Note that the process of S1 is 

independent of the delivery order of beam angles. For example, since the benchmark angle 
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is the angle with the largest leading energy layer, the benchmark angle remains the same 

even though the starting angle during SPArc delivery is changed.  

Regarding S2, first, to remove the locality of energy matrix, we identify the elements for 

barrier constraints (i.e., with substantially larger values for the penalization purpose), which 

are the energy layers with larger energy (e.g., the black circle in Fig. 3) than the leading 

energy layer of A1. Then, we determine the rest of diagonal matrix values for each sub-

matrix (without barrier constraint) based on the descending energy order (larger matrix value 

for smaller energy) via the following Gaussian distribution 
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Here x is the local ordering of energy layers per angle (after Barrier constraints are 

assigned), e.g., x=1 for the energy layer of the largest energy;   is set to be the number of 

energy layers (without barrier constraints) per angle; the barrier constant is set to be 10 

times of the largest Gaussian values of all angles; σ=5 in this study. 
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2.5. Optimization Algorithm 

Since ES was solved by the Fast Iterative Shrinkage-Thresholding Algorithm (FISTA) [13], 

the optimization algorithm for solving EM here is also based on FISTA, for the purpose of fair 

comparison with ES, although EM or ES can also be efficiently solved by other methods 

such as Alternating Direction Method of Multipliers (ADMM) [14,15]. 

To solve Eq. (4) using FISTA, the optimization problem Eq. (4) is re-formulated as 

 min ( ) ( )
x
f x g x , (6) 

where 
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Here W is the summation matrix that sums up x per energy layer, i.e., Wx=∑i xbei; We is the 

summation matrix that sums up x from all energy layers per beam angle, i.e., Wex=∑ei xbei; 

Wb is the summation vector that sums up x from all beam angles, i.e., Wb
Tx=∑b xb; L and S 

are element-wise functions,      [                     ]
  with             , and 
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Then the gradient of   is given by 

  T( ) 2 ( ) 2 [ ( )] [ ( )]T T T

e e xWx Wf x A A d L x MS W MS Wx W        (9) 

Here L' and S' are derivatives for L and S respectively, with        
 

 
, and       

    

        
; 

WT is the transpose of W, i.e., xbei=WTybe, where the value of ybe is projected to all spots on 

this energy layer; We
T is the transpose of We, i.e., xbei=We

Tyb, where the value of yb is 

projected to all spots on this beam angle. 

The proximal operator of g(x) has analytical formula [16] 
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The FISTA algorithm for solving EM is summarized in the following. The parameters α, 

β, and γ are manually chosen case by case. Their values are determined based on the rule 
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of thumb to minimize the number of SU while the plan quality is still preserved. For fair 

comparison, the values of α, β, and s are the same between ES and EM. 

 

Algorithm: FISTA for solving EM 

Initialize:                   

for k = 1, 2, …, N 

 T
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end for 

2.6. Materials 

The new method (“EM”) was validated in comparison with a state-of-the-art method (“ES”), 

using Abdomen (2.2Gy x 25 fractions), Brain (2Gy x 10 fractions), Head-and-neck (HN) 

(2.12Gy x 33 fractions) and Lung (2Gy x 30 fractions) cases. For optimizing plan quality, first 
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we solved ES and EM (Eq.(4)) with all regularization terms for selecting energy layers; then 

we solved Eq. (4) with the dose-fidelity term only on selected energy layers to get the 

treatment plan. For simplicity, treatment planning was with respect to PTV, which is sufficient 

for the purpose of this work. For fair comparison, both EM and ES were solved by FISTA 

and plans were normalized after optimization with D95=100% at PTV. To simulate SPArc, 

we divided the full 360º arc into 72 equally segmented beam intervals of at 5º, and each 

interval was approximated by the beam angle at its center. Then the dose influence matrix A 

was generated via MatRad [17] using 5 mm lateral spacing, and 3 mm longitudinal spacing 

for energy discretization, on 3 mm-resolution dose grid. 

In Table 1, the conformity index (CI) is defined as V100
2/(V×Vʹ100) (V100: PTV volume 

receiving at least 100% of prescription dose; V: PTV volume; Vʹ100: total volume receiving at 

least 100% of prescription dose). The value of CI is between 0 and 1, with its optimal value 

being 1. The homogeneity index (HI) [23] is defined as (D2 - D98)/Dp × 100% (D2:  the min 

dose for 2% volume receiving the highest dose; D98: the min dose for 98% volume receiving 

the highest dose; Dp: the prescription dose); smaller value of HI corresponds to a more 

homogeneous target dose. 
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The total plan delivery time T is estimated using a simplified beam delivery model that 

only accounts for energy switching time TE and spot delivery time TB. In Table 2, TE is 

calculated assuming 5.5 seconds (s) for each SU and 0.6 s for each SD, and TB is estimated 

by TB=||x||1/γ, with the dose rate γ=2.6×1010 protons/mins (this dose rate corresponds to the 

minimum MU threshold 1.1×106 protons for the Varian ProBeam system). 

3. Results 

 

3.1. EM had fewer SU than ES 

The energy-layer delivery trajectories optimized with ES and EM are presented in Fig. 4, 

which shows that EM had fewer SU than ES. Specifically, compared to ES, EM reduced SU 

from 36 to 13 for Abdomen, from 31 to 26 for Brain, from 35 to 24 for HN, from 32 to 24 for 

Lung, with an average of 35% reduction of SU. Also note that ES was strictly one energy 

layer per angle, while EM removed such striction and allowed more than one energy layers 

per angle. This flexibility in the number of energy layers per angle can allow for the 

improvement in plan quality, which will be presented in the next section. 
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3.2. EM had better plan quality than ES 

For plan quality comparison, dosimetric parameters are summarized in Table 1, dose 

volume histogram (DVH) plots and dose plots are presented in Fig. 6 and 7 respectively. As 

shown in Table 1, EM had smaller optimization objective values than ES, which indicates 

that EM had better plan quality than ES. Moreover, EM provided better target dose 

conformality, indicated by larger CI values, e.g., an increase from 0.53 to 0.84 for Brain in 

Table 1; EM provided better target dose homogeneity, indicated by smaller HI values, e.g., a 

decrease from 15.14 to 9.34 for lung in Table 1; EM had generally lower dose to OAR and 

lower integral dose to body. The improved plan quality via EM is also demonstrated by DVH 

plots in Fig. 6 and dose plots in Fig. 7: EM had steeper target DVH curve and lower OAR 

DVH curve in Fig. 6, and tighter 80% isodose line in Fig. 7. 
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3.3. EM was more efficient than ES 

As shown in Table 2, EM had shorter energy switching time TE than ES, due to reduced 

number of SU, despite of increased number of SD. On the other hand, EM also had shorter 

spot delivery time TB than ES. As a result, EM had shorter total plan delivery time T and thus 

was more efficient than ES. Specifically, compared to ES, EM reduced total plan delivery 

time T from 307s to 140s (54% reduction) for Abdomen, from 252s to 217s (14% reduction) 

for Brain, from 460s to 359s (22% reduction) for HN, from 415s to 339s (18% reduction) for 

Lung, with an average of 23% reduction of total delivery time. 

 

 

3.4. EM was more computationally efficient than ES 

Regarding the number of iterations, ES converged in 1000-1500 iterations to meet the one-

energy-layer-per-beam requirement, while EM converged in 500 iterations or fewer (e.g., 

Fig. 7). Regarding computational cost per iteration, one EM iteration was one tenth of one 

ES iteration. The average run time of 500 ES iterations took about 6000 seconds, while that 
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of 500 EM iterations took about 600 seconds, on a desktop computer with i5-11400 6-core 

12-thread CPU. Therefore, EM was more computationally efficient than ES by at least ten-

fold. 

 

 

 

 

 

 

 

4. Discussion 

It is an intrinsic tradeoff between plan quality and delivery efficiency, even for SPArc, 

regardless of ES or EM. However, as demonstrated in the Result section, compared to ES, 

EM improved both delivery efficiency (with reduced number of SU) and plan quality. 
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Therefore, EM has a better tradeoff than ES, i.e., lower Pareto surface in terms of multi-

criteria optimization. 

In term of algorithm difference for SU reduction, ES requires the calculation of several 

regularization matrices each FISTA iteration, which substantially slows down the ES method; 

on the other hand, ES has to impose the condition “one energy layer per angle” in order to 

for ES to function. In contrast, the M matrix in EM is computed only once, and thus its 

computational cost is negligible overall; EM does not need to be constrained by the ES 

condition and can have more than one energy layer per angle, and the removal of the 

constraint allows EM to have more optimization degrees of freedom to improve plan quality. 

On the other hand, there is a flaw for EM that the M matrix can have unnecessary 

penalization to some energy layers. For example, considering the scenario that SU occurs at 

the current angle (i.e., the leading energy layer at this angle has larger energy than the 

smallest energy layer of the previous angle), although the selection of other energy layers at 

this angle does not further increase SU with respect to the previous angle, the M matrix still 

penalizes the selection of remaining energy layers, which is unnecessary. However, this flaw 

seems practically minor, as EM still outperformed ES in plan quality. 
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We have tried both ADMM and FISTA and found no major difference in results. 

However, since FISTA was used in the original ES paper [8], we also adopt FISTA here. On 

the other hand, we found the difference between ½ norm and L1 norm for GS is negligible; 

given the L1 norm is more common for GS, we also use L1-norm based GS term in this 

work.  

Without complicating the matter of this work on ELO, we have not considered the 

minimum monitor-unit (MMU) constraint, i.e., MMU optimization problem, that may be 

needed for SPArc plans to be deliverable. It should be technically straightforward to add 

MMU to ELO for either ES and EM, e.g., to incorporate our previous MMU methods [18-21]. 

However, MMU-based SPArc treatment planning can be practically challenging, as the MMU 

constraint is nonconvex and more restrictive for SPArc than IMPT. That is, since SPArc has 

more optimization degrees of freedom and thus smaller monitor units per spot, the MMU 

constraint is harder to meet for SPArc, for which a recently developed MMU method [22] for 

relatively large MMU threshold may help. 
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6. Conclusion 

We have developed a new ELO method for SPArc using energy matrix regularization, and 

shown that this new method EM can improve both delivery efficiency and plan quality, with 

substantially enhanced computational efficiency, compared to a state-of-the-art method ES. 
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Figure 1. P1-P3 principles behind energy matrix regularization. (a) Energy map of 3 beam 

angles A1-A3; (b) energy matrix M corresponding to this energy map. P1 is demonstrated by 

comparing (c) and (d): the energy matrix encourages the selection of high-energy layers (i.e., 

160MeV instead of 140MeV for A1 with smaller EM in (c)) for minimizing SU (i.e., smaller SU 

in (c)). P2 is illustrated by comparing (e) and (f): M encourages the selection of high-energy 

layers (i.e., 150MeV instead of 140MeV for A2 in (e)) to have more degrees of freedom for 

optimizing plan quality without increasing SU (i.e., A3 can be filled with either 150MeV or 

140MeV without increasing SU in (e), while only 140MeV for A3 does not increase SU for in (f)). 

P3 is explained by comparing (g) and (h): M penalizes the selection of only high-energy layers 
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(i.e., 160MeV for all angles A1-A3 with larger EM in (g)) to have diversified energy layers for 

the purpose of optimizing plan quality. 
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Figure 2. P4 principle behind energy matrix regularization. (a) Energy map. (b) Energy matrix 

M1 (without barrier constraint); M1 is local to each beam angle in the sense that the M1 

matrix value (i.e., 1, 2, 3) corresponds to the descending order of energies per angle. (c) 

Energy matrix M2 (with barrier constraints); owing to the barrier constraints (i.e., the matrix 

values of M2 equal to a much larger number 30 at 170MeV and 160MeV for A2 and 160MeV 

for A3), M2 is non-local in the sense that the M2 matrix value is also determined by the 

descending order of energies for all angles. P4 is demonstrated by comparing (d) and (e): 
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P4 introduces barrier constraints to minimize SU; without barrier constraint, M1 falsely 

chooses SU=1 (d) over SU=0 (e), because SU=1 has smaller EM1; with barrier constraints, 

M2 correctly chooses SU=0 (e) over SU=1 (d), because SU=0 has smaller EM2. Note that 

the barrier constraint value 30 could have been set to a different value rather than 30, as 

long as it is sufficiently larger than the rest of matrix values. 
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Figure 3. Generation of energy matrix. First, the leading energy layer (with the largest 

energy) per beam angle is located (orange and black circles in the figure). Second, the 

largest leading energy layer is identified (the black circle) and the sub-matrix (i.e., A2 that 

starts from the first row of M) for this angle (the so-called benchmark angle) is determined. 

Third, for each of the rest of beam angles (A1, A3, A4), the leading energy layer is aligned to 

A2 (e.g., the sub-matrix for A1 starting from the row in A2 of the same energy). Fourth, the 

barrier constraints (with substantially larger values for the penalization purpose) are 

assigned for the layers with larger energy (the black circle) than the leading energy layer of 

A1. Last, diagonal matrix values for each sub-matrix (without barrier constraint) are 

calculated in the descending energy order (larger matrix value for smaller energy) via the 

Gaussian distribution. 
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Figure 4. Comparison of energy-layer delivery trajectories between ES (blue) and EM (red).  
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Figure 5. DVH plots. Blue solid line: PTV of ES; blue dashed line: OAR of ES; red solid line: 

PTV of EM; red dashed line: OAR of EM. 
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Figure 6. Dose plots. (a-d): ES; (e-h): EM. (a, e): abdomen; (b, f) Brain; (c, g): HN; (d, h): lung. 

The dose plot window is [0%, 110%]. PTV, 100% isodose line and 80% isodose line are 

highlighted. 
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Figure 7. Convergence plot of EM for the Brain case. F: total objective; f: dose fidelity; GS: 

group sparsity term; LOG: log barrier term; EMR: energy matrix term. Note that the y-axis for 

EMR is different from the rest terms. 
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Table 1. Comparison of dosimetric parameters between ES and EM. Optimized planning 

objective value f , CI and HI are unitless. 

 Quantity (Unit) ES EM 

A
b

d
o

m
e

n
 

CI 0.83 0.86 

HI 9.38 7.30 

Dmean,bowel (Gy) 2.14 1.69 

Dmean,body (Gy) 0.47 0.42 

f 0.04 0.01 

B
ra

in
 

CI 0.53 0.84 

HI 9.27 8.59 

Dmean,brainstem (Gy) 3.32 2.77 

Dmean,body (Gy) 0.93 0.95 
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f 1.41 1.29 

H
N

 

CI 0.59 0.79 

HI 13.65 9.94 

Dmean,larynx (Gy) 4.89 4.62 

Dmean,body (Gy) 2.00 1.86 

f 0.04 0.04 

L
u
n
g
 

CI 0.63 0.83 

HI 15.14 9.34 

Dmean,heart (Gy) 1.02 0.89 

Dmean,body (Gy) 2.39 2.24 

f 0.03 0.02 
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Table 2. Comparison of plan delivery time between ES and EM. The values of energy switching 

time TE, spot delivery time TB, and total plan delivery time T=TE+TB have the unit of second. 

 Quantity ES EM 

A
b

d
o

m
e

n
 

SU 36 13 

SD 28 48 

TE 215 100 

TB 92 40 

T 307 140 

B
ra

in
 

SU 31 26 

SD 31 43 

TE 189 169 

TB 63 48 

T 252 217 

H
N

 

SU 35 24 

SD 26 58 

TE 208 167 

TB 252 192 

T 460 359 
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L
u
n
g
 

SU 32 24 

SD 32 47 

TE 195 160 

TB 220 179 

T 415 339 

 

 

 

 

 


