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Abstract 

Purpose 

This work presents an end-to-end open-source MR imaging workflow. It is highly flexible in 
rapid prototyping across the whole imaging process and integrates vendor-independent 
openly available tools. The whole workflow can be shared and executed on different MR 
platforms. It is also integrated in the JEMRIS simulation framework, which makes it possi-
ble to generate simulated data from the same sequence that runs on the MRI scanner using 
the same pipeline for image reconstruction. 

Methods 

MRI sequences can be designed in Python or JEMRIS using the Pulseq framework, allowing 
simplified integration of new sequence design tools. During the sequence design process, 
acquisition metadata required for reconstruction is stored in the MRD format. 
Data acquisition is possible on MRI scanners supported by Pulseq and in simulations 
through JEMRIS. An image reconstruction and postprocessing pipeline was implemented 
into a Python server that allows real-time processing of data as it’s being acquired. The 
BART toolbox is integrated into this framework for image reconstruction. The reconstruc-
tion pipeline supports online integration through a vendor-dependent interface. 

Results 

The flexibility of the workflow is demonstrated with different examples, containing 3D par-
allel imaging with CAIPIRINHA acceleration, spiral imaging and B0 mapping. All sequences, 
data and the corresponding processing pipelines are publicly available. 

Conclusion 

The proposed workflow is highly flexible and allows integration of advanced tools at all 
stages of the imaging process. All parts of this workflow are open-source, simplifying col-
laboration across different MR platforms or sites and improving reproducibility of results. 
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Introduction 

Open Science and open-source software tools are of increasing importance in today’s MR 
research as the number of available open-source software has constantly grown over the 
years. The ISMRM website MR-Hub (1) and the website of the Open Source Imaging Initia-
tive (2) currently list over 40 MRI related open-source tools. Many of these tools are active-
ly developed and contain state of the art algorithms for MR imaging. Open-source imaging 
software and hardware readily helps many researchers to collaborate and improve their 
own research, as well as reproduce outcomes of published literature. 
Recently, results from the first ISMRM reproducibility challenge targeting MR image recon-
struction were published (3). In this challenge, reconstruction results from CG-SENSE im-
plementations of different submissions were compared. It concluded that small variations 
in implementation details or input parameters can lead to significant differences in images 
and that access to the original source code and data is indispensable for a reliable repro-
duction of research results. Well-maintained online resources consolidating open-source 
tools, such as opensourceimaging.org (2), are expected to play an increasingly important 
role in promoting reproducibility and sustainability of MR imaging studies. 

Open-source software tools are available for many parts of the MR imaging process includ-
ing sequence development, data acquisition, image reconstruction and image postpro-
cessing or analysis. In the case of development or modification of MRI sequences, the exact 
time course of RF pulses and gradients may be of high importance for reproducibility. 
However, publications typically do not contain the detailed fine-grained timing information 
of new sequences, but only the general idea and high-level features. Sequence source code 
itself may also not be shareable for intellectual property or contractual reasons and hard-
ware and software versions may be incompatible. 
The Pulseq (4) and TOPPE (5) file formats provide an open-source description of a com-
plete pulse sequence’s timing and waveforms defined in one file, which can be executed on 
scanners running different software versions and also from different vendors. 

On the other end of the imaging pipeline, reconstruction of MR images is increasingly de-
pendent on parameter choices, as algorithms get more complicated and allow more tuning 
parameters. The results may depend on the specific implementation of a reconstruction 
algorithm, making comparisons between studies difficult. Novel reconstruction algorithms 
are often executed offline, due to the difficulty of integrating them into the existing ven-
dors’ reconstruction frameworks. The Gadgetron (6) project addresses this problem, by 
using an extensible image reconstruction framework based on streaming data pipelines, 
that can be integrated into the existing reconstruction environment of the MRI scanner. 

The diversity in input raw data such as format, ordering, and preprocessing further compli-
cates the development of a generalizable pipeline. Therefore, widely used open-source data 
formats, such as the ISMRM raw data (MRD, originally ISMRMRD) (7) for MR raw data or 
the NIfTI format (8) for image data, are crucial for standardizing data structures and shar-
ing algorithms efficiently. 

These openly available tools contribute towards improving reproducibility of published 
research results. However, there is currently no open-source workflow covering all aspects 



of the MR imaging process from sequence design to image reconstruction. For example, re-
sults may only be partly reproducible if specific raw datasets are needed to reproduce the 
results of an image reconstruction algorithm, as the sequence may not be made available. 
The proposed workflow aims at combining different tools to form an open-source end-to-
end imaging pipeline, which is completely shareable and can easily be extended by new 
tools. The pipeline covers MRI sequence development, data acquisition, image reconstruc-
tion and postprocessing of images. MRI sequence development and data acquisition is 
based on the Pulseq framework, while the MRD format is used for storage of MR raw- and 
metadata. Acquired raw data are processed by a Python based server. The data can be 
streamed to the reconstruction server either offline or online, where the latter requires a 
vendor dependent streaming interface. Reconstruction is done with the Berkeley Advanced 
Reconstruction (BART) toolbox (9). 

The pipeline was also integrated into the JEMRIS (10,11) simulation framework, by adding 
an interface to the image reconstruction pipeline to the framework. As a result, sequences 
designed and simulated in JEMRIS can be executed without modification on the MRI scan-
ner, and simulated and acquired data can be reconstructed with the same pipeline. 

The whole workflow is based on openly available tools, with the exception of the interfaces 
for on-scanner sequence execution and data streaming for online reconstruction. These in-
terfaces are vendor-dependent and thus not entirely open-source. However, the streaming 
interface is optional as the image reconstruction pipeline can also be executed offline. The 
Pulseq interpreter sequence is also shared in the source code form within the respective 
vendor communities. 

  



Methods 

The open-source imaging workflow contains sequence design, data acquisition, image re-
construction and optional postprocessing of images. An overview of the whole pipeline is 
shown in Figure 1. 

Sequence Development 

Sequence design can be done with the Pulseq framework, using either the official MATLAB 
toolbox (12), the Python implementation PyPulseq (13) or JEMRIS. All tools generate 
Pulseq sequence files, which contain the complete timing for RF pulses, gradients and ADC 
sampling points. In the present paper, PyPulseq and JEMRIS are used, as neither depends 
on commercial software. 

The Pulseq format currently has no support for transferring metadata and k-space infor-
mation to the MRI scanner, it only contains the sequence timing. The vendor’s raw data 
files that originate from the Pulseq sequence execution therefore contain only the acquired 
data with no information on k-space sampling. These raw data files do contain a header 
section, but only with dummy values. For this reason, an additional MRD “metadata” file is 
created together with the Pulseq sequence. This file contains all relevant information about 
the measurement and is merged with the raw data before image reconstruction. 

For identification of the files, the MD5 hash of the Pulseq sequence file is calculated and ap-
pended to both the sequence and the metadata file as a signature. 

PyPulseq 

The PyPulseq toolbox implements the functionalities of the official Pulseq MATLAB toolbox 
in Python. It provides common RF pulses and gradient waveforms, as well as example se-
quences. Arbitrary gradient and RF waveforms are also possible allowing for high flexibil-
ity. The additional metadata file is created with the Python implementation of the MRD 
format (7). 

First, all elements of a sequence containing RF pulses, gradient waveforms and ADCs are 
defined. Sequence parameters such as the FOV, resolution, number of slices and the k-space 
trajectory type are added to the MRD header as illustrated in Figure 2 (left). 
The timing of the sequence is represented as a gapless concatenation of time slices termed 
“blocks” in Pulseq. Each block may define a single RF, ADC or gradient pulse event per gra-
dient axis, whereas each of these events may be delayed by an arbitrary period of time. The 
duration of each block is defined by the duration of the longest event within that block or 
an optional additional delay object that can be used to increase the duration of the block. 

For each ADC/readout event present in the sequence, acquisition parameters are added to 
the MRD metadata file, containing k-space counters, flags and optionally the k-space trajec-
tory. Further sequence-specific information for reconstruction and postprocessing (e.g., b-
values for diffusion sequences) can be added by using user defined parameters and arrays. 
Auxiliary information, such as the sequence name or the FOV can be added to the Pulseq 



file. Knowledge about the FOV is useful for a correct visualization of the acquisition volume 
at the scanner. 

JEMRIS 

JEMRIS provides a graphical user interface for sequence development, where the sequence 
output are XML files that can also be edited directly. JEMRIS also provides common RF and 
gradient shapes, as well as the ability to import user-defined shapes via HDF5 files. Se-
quences can be simulated directly in JEMRIS or exported to the Pulseq format for scanner 
execution. The export of the JEMRIS sequence XML file to Pulseq is done automatically 
based on the provided XML file. For this work, the Pulseq file export was extended to sup-
port rotations of gradient waveforms with a given rotation angle. This simplifies sequence 
development for rotationally symmetrical k-space trajectories such as radial or spiral tra-
jectories. Additionally, a new time-optimized spiral gradient (14) was implemented in 
JEMRIS. 

An MRD metadata file is automatically created during export to the Pulseq format. Header 
information is taken directly from the parameter module in JEMRIS. K-space positions are 
defined by the k-space trajectory, which is calculate for each ADC event in the sequence. 
However, as JEMRIS does not distinguish between different types of loops or ADCs, differ-
ent k-space acquisitions cannot be separated easily. Therefore, the “Loop Type” and “ADC 
Type” parameters were added to each pulse module, which is shown in Figure 2 (right). 
The “Loop Type” classifies loops to distinguish, if different lines in k-space (e.g., phase en-
coding and partition loop) or different images (e.g., slice, contrast, set or average loop) are 
acquired. The “ADC Type” defines the ADC sampling as an imaging ADC or some sort of cal-
ibration ADC (noise, parallel imaging calibration, phase calibration). 

Data acquisition and simulation 

Raw data in the presented workflow can originate either from a real acquisition on an MRI 
scanner or from a simulation with the JEMRIS framework. For the latter, the sequence must 
be designed in JEMRIS, as there is currently no efficient import of Pulseq sequences in 
JEMRIS. 

In a real experiment, the sequence file is exported to the MRI scanner and selected in the 
scanner GUI for execution as shown in Figure 1. Pulseq sequences are run with a vendor-
specific interpreter sequence, which supports integrated field-of-view positioning. Current-
ly, sequence interpreters for Siemens, GE and table-top MRI scanners are available. During 
sequence execution, both the sequence name and the MD5 signature are saved in the raw 
data header in order to identify the correct metadata file in the reconstruction. 

Simulation of a sequence in JEMRIS is executed either from the command line or in the GUI 
by providing the sequence XML file, the digital phantom and its MRI-relevant parameters, 
and optionally receive and transmit coil sensitivities. An MRD file is generated after simula-
tion (Figure 1), containing both the MRI signal and the metadata, as well as receive coil 
sensitivities for multi-coil simulations. 



Image reconstruction & Postprocessing 

The image reconstruction is initiated by streaming the raw data to a Python server running 
inside a Docker container. Data processing scripts are selected by a configuration string, 
sent to the server together with the raw data. An overview of the pipeline is given in Figure 
3. 

MRI scanner data 

Raw data from the scanner are converted to the MRD format and streamed to the recon-
struction server by a client using a format initially developed by the Gadgetron framework 
and extended for other workflows. This is done either online with a vendor-dependent in-
terface or offline with a converter and a Python-based client. Converters from the most 
common vendor data formats to MRD are provided by the MRD project 
(https://github.com/ismrmrd). The prototype Siemens Framework for Image Reconstruc-
tion Environments (FIRE) (15) was used as the vendor interface for online reconstruction 
in this work. This interface allows real-time streaming of acquired data, which can be se-
lected in the scanner GUI prior to execution of the sequence. The online pipeline is config-
ured with an XML file, that is linked to the Pulseq interpreter sequence (15), similar to the 
configuration used by the Gadgetron project (6). 

Prior to image reconstruction, the MRD metadata file is transferred to the reconstruction 
server. The header and k-space information from the metadata file are automatically 
merged with the corresponding raw data in the reconstruction pipeline. Optional trajectory 
correction with the gradient impulse response function (GIRF) (16) can be performed by 
supplying gradient shapes instead of k-space trajectories. This requires knowledge of the 
scanner specific GIRF as well as additional information for aligning the trajectory with the 
ADC readout samples. 

Image reconstruction is triggered, when all data for a complete image is collected, for ex-
ample by a metadata flag identifying the last acquisition in a slice. The pipeline contains 
processing steps for sorting the data, noise pre-whitening with noise scans and parallel im-
aging calibration using reference k-space data. Prescan data is separated from imaging da-
ta, by reading the corresponding metadata flags. Calculation of coil sensitivity maps is done 
with the ESPIRiT algorithm (17), implemented in the BART toolbox. Other reconstruction 
steps, such as k-space filtering and application of phase navigator data can be integrated 
into the existing pipeline. 

Fully sampled Cartesian data are reconstructed with a simple FFT in Python, while under-
sampled and non-Cartesian data are processed with the BART toolbox, using its parallel 
imaging and NUFFT implementations. If sensitivity maps were calculated, the parallel im-
aging with compressed sensing reconstruction (“pics”) implemented in BART is executed. 
Online reconstructed data are streamed back to the MRI scanner in real time and can be 
viewed in the scanner console GUI while the acquisition is still ongoing. Images, that were 
reconstructed in offline mode are stored in the MRD image format. 



JEMRIS simulation data 

For simulated data, the reconstruction pipeline can either be started from the JEMRIS GUI 
or from the command line. In the first step, the MRD data are streamed to the server appli-
cation (Figure 3). Simulated data are processed with the same pipeline as data from the 
MRI scanner that were acquired with a JEMRIS sequence. The MRD file created after simu-
lation already contains both metadata and imaging data. In the case of multiple simulated 
receiver coils, the coil sensitivities that were used during the simulation are directly passed 
to the pipeline. If no additional reference data for parallel imaging calibration are acquired 
in the simulation, these coil sensitivities are also used in the reconstruction. 

Currently, it is not possible to define Cartesian k-space sampling for JEMRIS sequences in 
the metadata or to detect Cartesian sampling during the reconstruction. Therefore, the im-
age reconstruction treats all simulated data as non-Cartesian and thus requires the k-space 
trajectory, even if all data points lie on a Cartesian grid. Reconstruction is done either with 
BART’s NUFFT or with its parallel imaging reconstruction implementation. After recon-
struction, images are saved to an HDF5 file and displayed in the JEMRIS GUI, if the pipeline 
was started from the GUI. 

Experiments 

Different imaging sequences were created with the JEMRIS GUI as well as with PyPulseq to 
demonstrate the flexibility of the presented workflow. Experimental data were mainly ac-
quired on a 7T scanner in Bonn (Siemens MAGNETOM 7T Plus, Siemens Healthineers, Er-
langen, Germany), while one example sequence was additionally executed on several 3T 
scanners as described below. 

The first example sequence designed with JEMRIS contains a 3D GRE Cartesian readout. 
Signal excitation was achieved by a non-selective block excitation pulse with a duration 
chosen to achieve water excitation (suppressing fat signal) at 7T (𝑑𝑑 = 1.02 ms). The acqui-
sition was accelerated by a factor of 𝑅𝑅 = 4 in the first phase encoding direction, with and 
without a CAIPIRINHA (18) shift of 𝛿𝛿 = 1. FLASH-based low-resolution reference scans 
were acquired prior to the measurement in order to obtain coil sensitivity maps. The FOV 
was 210 x 210 x 160 mm3 at 1 mm isotropic resolution. The measurement was repeated 
with four different variations: 

1. TE = 5 ms, TR = 10 ms, with RF spoiling 
2. TE = 5 ms, TR = 10 ms, with RF spoiling, fat-selective sinc-pulse (1 kHz bandwidth) 

instead of water excitation 
3. TE = 25 ms, TR = 30 ms, no RF spoiling 
4. TE = 25 ms, TR = 30 ms, no RF spoiling, no CAIPIRINHA shift 

As a non-Cartesian example, a 2D spiral sequence with a time-optimized (14) k-space tra-
jectory was created using both JEMRIS (without fat saturation pulse) and PyPulseq (with 
fat saturation pulse). One slice with a slice thickness of 1 mm and a FOV of 220 x 220 mm2 
at 1 mm isotropic resolution was acquired. The PyPulseq version of this sequence was ad-
ditionally executed at two 3T scanners in Bonn (3T Skyra) and Freiburg (3T Prisma, both 
Siemens Healthineers, Erlangen, Germany) to demonstrate portability. It was successfully 



executed also on a 3T Vida scanner (Siemens Healthineers, Erlangen, Germany) running on 
a different vendor’s software version (results not shown in the present paper). Additional-
ly, the sequence was converted to the TOPPE (5) file format using the “PulseGEq” converter 
provided by the TOPPE project (19). It was then executed on a 3T UHP scanner (General 
Electric Healthcare, Waukesha, WI, USA) to show the compatibility of the pipeline across 
two different vendors. At 3T, both the slice thickness (3 mm) and TR (200 ms) were in-
creased for higher SNR and better contrast. Since the TOPPE format currently does not 
support ADC sampling intervals of different duration, coil sensitivity calibration was per-
formed with the spiral data.  

A slightly modified version of the same spiral sequence was simulated in JEMRIS demon-
strating the influence of chemical shift and susceptibility in a sample. In the simulation, 
gradient spoiling was replaced with long TR spoiling, as correct simulation of gradient 
spoiling needs many simulated spins resulting in exceedingly long computation times (20). 

A 2D Cartesian B0 mapping sequence was developed to show the postprocessing capabili-
ties of the reconstruction pipeline and to allow for B0 correction of the spiral imaging data. 
One slice with 2 mm slice thickness and a FOV of 220 x 220 mm2 at 2 mm isotropic resolu-
tion was acquired. 

All images were reconstructed with the BART toolbox. Calculation of the B0 field map from 
raw GRE images was done with Python, using the scikit-image (21) and SciPy (22) libraries 
for phase unwrapping and filtering. The spiral data acquired with the PyPulseq sequence 
were reconstructed with a GIRF predicted trajectory. The PowerGrid toolbox (23) was used 
in the pipeline to achieve B0 correction of the spiral data with a time segmented recon-
struction approach (24), using the B0 field map calculated before. Online reconstruction 
was performed exclusively on the 7T MRI scanner. 

The source code, the sequence and metadata files created with PyPulseq and JEMRIS, as 
well as the raw data and reconstructed images can be found at 
https://github.com/mrphysics-bonn/python-ismrmrd-reco (Git hash 15df3aa). The file-
names in the repository are linked to the figures of this paper as shown in Supporting Table 
S1. The repository also contains the reconstruction server with instructions on how to set 
up and use the pipeline (with and without GPU support). A Docker image of the reconstruc-
tion server can be found at https://hub.docker.com/repository/docker/mavel101/bart-
reco-server. The new JEMRIS version with additional examples for the metadata file export 
and the reconstruction of simulated data are available in the JEMRIS GitHub repository 
(https://github.com/JEMRIS/jemris) and on the JEMRIS website 
(https://www.jemris.org/). 

  



Results 

Reconstructed images from the 3D GRE sequence designed with JEMRIS are displayed in 
Figure 4. Images with water excitation in the upper row show a typical T1 weighted con-
trast at short TE. Fat signal in the skull is suppressed, while it is the dominant signal in the 
fat excited images in the lower row. However, images acquired with fat excitation still show 
some residual water signal in the brain. Figure 5 shows images from the same 3D GRE se-
quence with a longer echo time with and without CAIPIRINHA shifts, demonstrating a T2* 
contrast. The CAIPIRINHA shift reduces artifacts, which are especially visible in the sagittal 
view, where stripe-shaped artifacts disappear. 

In Figure 6 a) the magnitude GRE image from the B0 mapping sequence at the first echo 
time TE = 2.04 ms is shown. The phase difference map in Figure 6 b), which was calculated 
from both echoes, has no visible phase wraps in the brain. Figure 6 c) is the resultant B0 
field map, that was smoothed with Gaussian (𝜎𝜎 = 0.5 pix) and median filters (kernel size 
2x2 pix). 

Images acquired with the 2D spiral sequence are shown in Figure 7. The image a), acquired 
without fat-suppression, shows a stripe-shaped artifact at the periphery of the brain caused 
by folded fat signal. The overall blurring in this image is mainly due to B0 inhomogeneities. 
In image b) fat artifacts are removed due to the fat suppression pulse and the blurring is 
reduced significantly. In c) the same image with additional B0 correction using the map in 
c) has even less blurring and signal is recovered especially in the anterior part of the brain. 
The images acquired at all three 3T scanners in d)-f) show only minor artifacts in the 
frontal brain mostly caused by B0 inhomogeneities. Slight geometric distortions presuma-
bly due to gradient imperfections are visible in the posterior part of the brain. 

Reconstructed images from one simulated slice acquired with a spiral sequence are shown 
in Figure 8. Simulating a clean digital phantom yields artifact free images. Adding the chem-
ical shift of fat to the digital brain phantom results in stripe-shaped artifacts similar to the 
artifacts in Figure 6 d). Including magnetic susceptibility in simulations, that is causing B0 
inhomogeneities, leads to the typical blurring artifact, well-known in spiral imaging. Both 
chemical shift and susceptibility differences lead to signal loss especially in the lower brain 
(upper row in Figure 8). 

  



Discussion 

Flexibility and Extensibility 

The examples presented in this paper demonstrate the high flexibility of the proposed 
workflow regarding the sequence design methods and the applied reconstruction algo-
rithms. Advanced imaging techniques such as parallel imaging with CAIPIRINHA or non-
Cartesian sampling are integrated in the workflow. The workflow allows users to prototype 
new sequences and reconstruct the acquired data with vendor-independent tools. Existing 
code for sequence generation can easily be extended with additional sequence design tools, 
such as Sigpy (25) or the gradient optimization toolbox GrOpt (26). 

Based on the example of a spiral sequence, we showed that sequence execution across dif-
ferent scanners and vendors is possible, using the same image reconstruction pipeline 
(with minor modifications). However, porting a sequence from one acquisition system to 
another requires adhering to any differences in hardware properties and safety limits that 
may exist. For example, in the presented spiral sequence, the gradient slewrate had to be 
slightly reduced from 7T to 3T scanners, due to peripheral nerve stimulation limits.  

For the conversion of the spiral sequence to the GE-compatible format TOPPE, prescans for 
noise and coil sensitivity calibration had to be removed. These prescans can be acquired 
with separate sequences, but this does require manual integration of the calibration data 
into the spiral reconstruction. Small timing changes were needed to fit the requirements of 
the TOPPE format with only minimal effect on the acquired data for this particular se-
quence. As TOPPE is a relatively young file format under active development, future im-
provements regarding the compatibility of Pulseq and TOPPE are expected.  

Furthermore, the workflow allows for comparison of data from the JEMRIS MRI simulator 
with an actual acquisition at the MRI scanner. This is useful for testing sequences before 
running them on a real MRI scanner or to investigate the influence of specific physical 
properties (e.g., presence of fat) on data acquisition. However, simulating the exact same 
sequence, that is running on the MRI scanner sometimes is not feasible, as some physical 
effects might not be included in the simulated model or require excessively long computa-
tion times. 

The available reconstruction pipelines for both Pulseq and JEMRIS data can reconstruct 
images from many different MR imaging sequences and can be used as a starting point for 
more elaborate reconstructions or postprocessing techniques. Additional sequence-specific 
meta information such as inversion times or b-values can be transferred and accessed in 
the reconstruction pipeline by adding them as user defined parameters or arrays to the 
MRD metadata file. The BART toolbox already provides much functionality for prepro-
cessing and calibration of data, as well as advanced image reconstruction algorithms. How-
ever, integration of new reconstruction or postprocessing tools into the existing pipeline is 
also possible. 

Online integration of the reconstruction pipeline simplifies testing of novel sequences, that 
require non-standard reconstruction techniques such as non-Cartesian sequences. It also 
allows using reconstructed images from novel sequences for calibration such as B0 or B1-



shimming. Since reconstruction scripts can be dynamically embedded into the Docker con-
tainer without rebuilding, reconstruction scripts can be changed and tested during a scan-
ning session. 

Openness and Reproducibility 

All file formats used in the workflow are open-source, including the Pulseq sequence file, 
MRD metadata file and JEMRIS XML files. Source code of the reconstruction pipelines and 
sequences developed in Python can be made openly available, as no proprietary code is 
used. Reconstruction pipelines can be shared and deployed via Docker images, which re-
quire no additional modifications of the system, as all dependencies are already installed 
inside the container. 

In summary, the presented workflow allows sharing the whole imaging workflow by 
providing the sequence file, metadata file and the reconstruction pipeline. In this way, it is 
potentially possible to reproduce data acquisition and reconstruction with the same pa-
rameters at MRI scanners from different vendors, with different software versions, and at 
different sites. Sharing the source code of both sequences and reconstruction can simplify 
collaborations between different sites. For sites already using the Pulseq framework, inte-
gration of the proposed workflow into existing pipelines would not require much effort. 

In the present paper, we demonstrated the portability of the workflow, by acquiring images 
with the same sequence at three different 3T scanners located at two different sites using 
the same image reconstruction pipeline. 

Inline reconstruction directly on the vendor’s interface significantly improves the workflow 
by providing real-time feedback during experiments and improves the user experience by 
automating the reconstruction. However, inline integration is optional and all reconstruc-
tion pipelines can also be run offline if a vendor-dependent interface is unavailable or a ful-
ly open-source pipeline is desired. Therefore, no proprietary software is required for the 
post-acquisition part of the workflow, as converters to the MRD file format exist for all 
common vendor raw data formats. 

Performance of the pipeline 

If sequence parameters are changed, both sequence and metadata files must be recreated 
and transferred to the scanner and the reconstruction server. This procedure can be auto-
mated, depending on the local scanner setup. However, for long sequences, metadata files 
can get quite large due to redundant trajectory information stored for each readout. The 
computation times for creating metadata files increases with file size, which might limit 
rapid testing of different protocols as well as manual parameter optimization at the scan-
ner for long sequences. However, recreation of the metadata file for online reconstruction 
is only necessary if reconstruction-specific parameters are changed. 

The performance of the reconstruction pipeline depends on many factors including config-
uration of reconstruction parameters and possible preprocessing steps. Performance opti-
mization is especially important, when the pipeline is to be executed online. The example 
2D spiral reconstruction required about 10s of computation, while the 2D Cartesian recon-



struction finished in under a second. The much larger accelerated 3D Cartesian dataset re-
quired about 15 min of computation (16 core CPU, NVIDIA A6000 GPU). Reconstruction 
times for the simulated data are negligible compared to the simulation times. 

For complex reconstructions and large datasets, the total reconstruction time mainly de-
pends on the time for the coil sensitivity calibration and the reconstruction with BART. Op-
timization of reconstruction parameters or the usage of coil compression hold potential for 
future performance improvements. For large datasets, reading and merging the metadata 
takes a significant amount of time. In future development, metadata could be stored in a 
less redundant way or transferred directly to the scanner at sequence runtime via the 
Pulseq format to accelerate the merging process. 

Limitations 

In the current implementation of the reconstruction pipeline, calibration data must be ac-
quired within the same sequence as the imaging data. Separately acquired prescans for coil 
sensitivity calibration or field correction must be integrated manually into the reconstruc-
tion, requiring modification of the reconstruction code. This is unfavorable, if the user 
wants to reconstruct multiple datasets using the same calibration from a single prescan. 
Future implementation of linking calibration to imaging data would increase usability of 
the pipeline. 

The automatic metadata and sequence file creation from JEMRIS simplifies the develop-
ment process as no programming is necessary. However, it is currently not possible to add 
arbitrary user-defined sequence-specific information to the metadata file. Further exten-
sion of JEMRIS to include such information may be the focus of future work. Data acquisi-
tion by simulation in JEMRIS is only possible for sequences designed in JEMRIS. Conversion 
of Pulseq sequence files to the JEMRIS XML format is possible (27), however, the high-level 
loop structure of a sequence cannot be recovered from Pulseq files, leading to excessively 
long computation times in simulations. 

Setting up the whole pipeline and extending it for one’s own experiments might require 
some time and experience with Pulseq, the MRD file format and the processing of streamed 
data. However, several examples for sequences and reconstruction scripts are available in 
the GitHub repository, that can be used or modified for one’s own purposes. 

Online reconstruction of acquired data requires a vendor dependent interface and is only 
feasible, if the reconstruction time is not excessively long. Time consuming reconstruction 
routines e.g., for non-Cartesian 3D acquisitions may therefore have to be performed offline 
depending on the computational power of the reconstruction computer. 

  



Conclusion 

The demonstrated end-to-end open-source sequence programming and image reconstruc-
tion workflow allows for rapid prototyping and testing of MRI sequences. By using the 
Pulseq framework, a flexible MRD-based metadata file and streamed reconstruction pipe-
lines, the whole imaging workflow becomes highly extensible. The workflow enables com-
parison of data from different MRI scanners and from MRI simulations in JEMRIS using the 
same pipeline for image reconstruction. The (online) image reconstruction pipeline is ver-
satile as it is not restricted to particular types of MRI sequences and can be extended in var-
ious ways with one’s own code or using available open-source tools. As all software in the 
proposed workflow is open-source, both sequence code and image reconstruction pipelines 
are vendor-independent and can be shared freely, facilitating greater reproducibility of 
MRI experiments. 

  



List of figure captions 

FIG. 1: Overview of the whole workflow with data acquisition at an MRI scanner (light blue) 
or in JEMRIS simulations (light green). Pulseq sequence and MRD metadata files are creat-
ed with either PyPulseq or JEMRIS. The sequence file is executed at the scanner using a 
vendor-specific interpreter. Raw data are sent to the reconstruction server via the FIRE in-
terface and the metadata from the MRD file are merged. Images are reconstructed with 
BART and are sent back to the scanner via FIRE. In an offline reconstruction, the FIRE inter-
face is replaced by an MRD converter and a Python-based client. Acquired data from 
JEMRIS simulations is merged with the metadata inside JEMRIS and saved in the MRD for-
mat. The same reconstruction pipeline as for data from an MRI scanner data is executed. 

FIG. 2: Left: Sequence development and metadata file creation with PyPulseq. The metadata 
file is initialized and a header is created from global sequence parameters (full header func-
tion not shown). The sequence object is created, and event blocks are added. At the same 
time, readout information such as k-space flags, counters and the k-space trajectory are 
added to the metadata file. Right: Dump of the sequence tree from a sequence developed 
with the JEMRIS simulation framework. The metadata header is generated from the global 
parameters in JEMRIS. Acquisition-specific k-space information is generated from the new 
JEMRIS “Loop Type” and “ADC Type” parameters and added to the metadata together with 
the k-space trajectory. Green color indicates new features. 

FIG. 3: Detailed view of the reconstruction pipeline for raw data from an MRI scanner or 
the JEMRIS simulation framework. Raw data from the scanner are first converted to MRD. 
The data is streamed to the reconstruction server, where the reconstruction pipeline is 
started. The pipeline supports an optional correction of gradient imperfections with the 
gradient impulse response function (GIRF). Image reconstruction and optional calculation 
of coil sensitivity maps is done with the BART toolbox. Reconstructed images are displayed 
in the GUI of the scanner, the JEMRIS GUI or saved to a file. 

FIG. 4: Reconstructed images from a T1 weighted 3D GRE sequence created with JEMRIS 
with a TE of 5 ms and 4x undersampling with a CAIPIRINHA shift. Water images were ac-
quired with block pulses of 1.02 ms length suppressing fat signal (upper images), whereas 
fat excitation was achieved with fat-selective sinc-pulses (lower images). 

FIG. 5: Images from the same 3D GRE sequence as in Figure 4, with a TE of 25 ms. Upper 
images were acquired with a CAIPIRINHA shift, while lower images were acquired without 
this shift. The red arrow indicates artifacts in images without CAIPIRINHA. 

FIG. 6: Reconstructed images from a B0 mapping sequence. Image a) is the first magnitude 
image with TE = 2.04 ms, b) is the phase difference map of the two echoes and c) shows the 
corresponding filtered B0 field map. 

FIG. 7: Reconstructed images from a 2D spiral GRE sequence acquired at 7T (a-c) and 3T 
(d-e) scanners from four different subjects. Image a) was acquired with a spiral sequence 
without fat suppression, while in b) fat suppression was added to the sequence and GIRF 
trajectory correction was done in the reconstruction. Image c) was reconstructed from the 
same raw data, but with an additional B0 correction using the field map shown in Figure 6 



c). Images d)-f) were acquired at three different 3T scanners with fat suppression, but 
without GIRF correction in the reconstruction. Red arrows indicate artifacts from gradient 
imperfections and from offresonance due to chemical shift and magnetic susceptibility. 

FIG. 8: Images reconstructed from data simulated with the JEMRIS simulation framework. A 
spiral sequence was simulated for two different slices either with a clean digital phantom, 
with additional chemical shift from fat or with susceptibility differences across the digital 
brain phantom. Artifacts from chemical shift and susceptibility are indicated by red arrows. 
The B0 maps on the right show both chemical shift (at approximately 1 kHz) and suscepti-
bility-induced offresonance effects. 

Sup. Table S1: Pulseq sequence, raw data, metadata and image filenames in the GitHub re-
pository linked to the Figures in the paper. Additionally, the reconstruction scripts, the se-
quence source code for PyPulseq sequences and XML files for JEMRIS sequences are listed. 
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