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Abstract 

Purpose: To develop a geometry-informed deep learning framework for volumetric MRI with sub-

second acquisition time in support of 3D motion tracking, which is highly desirable for improved 

radiotherapy precision but hindered by the long image acquisition time. 

Methods: A 2D-3D deep learning network with an explicitly defined geometry module that embeds 

geometric priors of the k-space encoding pattern was investigated, where a 2D generation network 

first augmented the sparsely sampled image dataset by generating new 2D representations of the 

underlying 3D subject.  A geometry module then unfolded the 2D representations to the volumetric 

space. Finally, a 3D refinement network took the unfolded 3D data and outputted high-resolution 

volumetric images. Patient-specific models were trained for 7 abdominal patients to reconstruct 

volumetric MRI from both orthogonal cine slices and sparse radial samples. To evaluate the 

robustness of the proposed method to longitudinal patient anatomy and position changes, we 

tested the trained model on separate datasets acquired more than one month later and evaluated 

3D target motion tracking accuracy using the model-reconstructed images by deforming a reference 

MRI with gross tumor volume (GTV) contours to a 5-min time series of both ground truth and model-

reconstructed volumetric images with a temporal resolution of 340 ms. 
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Results: Across the 7 patients evaluated, the median distances between model-predicted and 

ground truth GTV centroids in the superior-inferior direction were 0.4±0.3 mm and 0.5±0.4 mm for 

cine and radial acquisitions respectively. The 95-percentile Hausdorff distances between model-

predicted and ground truth GTV contours were 4.7±1.1 mm and 3.2±1.5 mm for cine and radial 

acquisitions, which are of the same scale as cross-plane image resolution. 

Conclusion: Incorporating geometric priors into deep learning model enables volumetric imaging 

with high spatial and temporal resolution, which is particularly valuable for 3D motion tracking and 

has the potential of greatly improving MRI-guided radiotherapy precision.   

Key words MRI-guided radiotherapy, Motion tracking, Deep learning, Image reconstruction 
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1. Introduction 

Intrafractional patient motion challenges the precision of radiotherapy 1,2. The advent of MRI-guided 

radiation therapy enables frequent monitoring of patient during treatment delivery and promises to 

improve treatment precision by gating treatment delivery based on tumor and/or nearby tissue 

position changes 3. The long acquisition time of 3D MRI however, limits its capability of capturing 

patient motion in volumetric space with sufficient temporal resolution. Currently motion tracking 

during MRI-guided radiotherapy is mostly based on 2D imaging with a small number of slices such as 

cine MRI 4-6, which is limited in tracking out of plane motion. Estimating 3D image or motion 

information from lower dimensional surrogates including 2D images has been investigated in 

previous works7-10. However, the procedure is either iterative and not suitable for real time motion 

tracking or is based on template matching that requires a library of 2D samples and 3D volumes in 

the same coordinate space. As radiotherapy is typically delivered in fractions over multiple days, 

such template matching process may not be sufficiently robust to longitudinal changes of patient 

position and anatomy, with limited capability in extrapolating to unseen patient motion states.  

Substantial effort has been made to accelerate MRI acquisition by reconstructing MRI images from 

sparsely sampled k-space data, including compressed sensing-based methods and low rank model-

based methods 11-13, where prior knowledge of imaging subjects, such as sparsity in a transform 

domain or low rankness of image matrices were exploited to regularize the ill-posed problem of 

reconstructing MRI from subsampled k-space data. More recently, deep neural networks that are 

capable of learning complex data-driven priors from a training dataset have shown improved 

performance over conventional methods that use pre-defined priors 14-16. The acceleration factor is, 

however, still insufficient in supporting volumetric motion tracking during MRI-guided radiotherapy, 

which requires sub-second temporal resolution to capture patient dynamics. A major deficiency of 

most deep learning-based methods is that the reconstruction process is purely data-driven without 

fully utilizing geometric priors of the image system, which play a vital role in associating intensity 

information with correct spatial locations. Indeed, while the prior knowledge of k-space sampling 
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pattern is critically important for reliable image reconstruction, it is used at most as a consistency 

constraint for algorithm estimations at sampled k-space locations 17,18. As demonstrated in 

tomographic CT reconstruction19, the reconstruction quality would be greatly enhanced if the 

geometric prior of the imaging system could be incorporated into the data-driven image 

reconstruction process. 

In this study, we demonstrate the feasibility of real-time volumetric MRI for 3D motion tracking by 

combining ultra-sparse sampling with a geometry-informed deep learning model. A 2D-3D deep 

learning network with an explicitly defined geometry module that embeds both k-space sampling 

patterns and the known transform between k-space and image domain was investigated. Instead of 

creating volumetric images directly from k-space samples, which often suffers from severe artifacts 

due to extreme subsampling, we started our reconstruction by first enhancing 2D representations of 

the underlying 3D subject using a 2D generation network. The geometry module was then used to 

unfold the 2D representations to a volumetric space. Finally, a 3D refinement network took the 

unfolded 3D data and outputted high-resolution volumetric images. By simply changing the 

geometry module based on k-space sampling patterns, the same network structure was trained to 

reconstruct volumetric images from both cine MRI slices and sparse radial samples with sub-second 

acquisition time. To evaluate the robustness of the proposed method to longitudinal patient 

changes, we trained and tested the model on separate datasets acquired more than one month 

apart. The capability of the model-reconstructed images in support of 3D motion tracking was 

evaluated for 7 abdominal patients over a 5-min time period. 

2. Materials and Methods 

2.A. Problem Formulation 

We investigated sparse sampling schemes for both cine and radial MRI. For cine MRI, interleaved 

acquisition was considered, which samples two orthogonal MRI slices of coronal and sagittal views 

respectively.  For radial MRI, a stack-of-star acquisition pattern 20 was used, where radial readout 



5 

This article is protected by copyright. All rights reserved. 

lines were acquired in the axial plane and Cartesian phase encoding was performed in the superior-

inferior direction. The sequence sampled all radial lines with the same angle throughout the 

superior-inferior direction before moving to the next radial angle. A collection of radial lines with the 

same angle forms a radial spoke. In our study, we sampled two radial spokes with radial angles of 0° 

and 111.25° (the golden angle) 21 respectively. Inverse Fourier transforming each of the 2 radial 

spokes gives 2 projection images of the patient. Both acquisition schemes take less than 1 second 

(about 500 ms for orthogonal cine acquisition 22 and 340 ms for radial acquisition 23) for large field-

of-view imaging such as abdominal MRI. 

With the ultra-sparse sampling scheme, filling out missing data samples in the volumetric space 

directly is challenging. Instead, we formulated a 2D data completion problem first before 

reconstructing 3D volumetric images. Denote the underlying volumetric image with an image size of 

       as         , for cine acquisition, we constructed 2D representations of the 3D 

subject by sampling rotating planar images from the volumetric image. The sampling coordinates 

were defined in the cylindrical coordinate system with origin at the volume center and longitudinal 

axis parallel to the superior-inferior direction of the volume. Under this coordinate system, sampling 

locations for the acquired coronal cine slice     
    were 

{     |         
 

 
            

 

 
   

 

 
} and the sampling locations for the sagittal slice 

    
    were similarly defined with   {  ⁄     ⁄ }. With the two acquired slices, the goal is 

to complete   rotating slices           sampled with   { 
   

   
  (

   

   
  )} for slice 

            . For radial acquisition, 2D representations were similarly constructed by sampling 

the k-space with varying radial angles and performing inverse Fourier transform of radial spokes to 

generate projection images. Denote the projection images generated with acquired radial spokes as 

    
    and     

   , we aim to complete   more projection images          that 

correspond to radial spokes with radial angle equals           for projection    . 
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After defining the target 2D representations, a 2D generation network    with network weights    

was trained to complete missing data in 2D space by synthesizing target 2D representations from 

acquired 2D samples   (        )  (       ̂     ̂   ). A geometry module    with fixed 

weights    then unfolded both acquired and network-generated 2D representations to the 

volumetric space   (       ̂     ̂      )   ̂   
     . Finally, a 3D refinement network    

with learnt weights    took the unfolded volumetric data from the geometric module as input and 

outputted final reconstructed images   ( ̂   )          
     . Based on previous 

experimental results for ultra-sparse imaging 19, in this study we set        Figure 1 presents the 

framework of the geometry-informed deep learning model, and the following sections describe each 

model component in detail.  

 

2.B. Model Architecture 

2.B.1. 2D generation network 

Similar with previous work for sparse-view computed tomography reconstruction 19, a multi-domain 

image translation model 24 synthesizes new 2D representations from acquired 2D representations. 

The model views each 2D representation as a separate domain and completes missing domain 

information by exploiting both shared content between different domains (same patient anatomy) 

and unique information associated with each domain (different sampling locations). The network 

consists of 1) a shared content encoder    that encodes information shared by different 

representations into a content code    2) domain-specific encoders   
  that encode unique 

information of different representations into domain-specific codes                 3) 

generators    that generate new representations by combining shared content code   and domain 

specific codes               and 4) discriminators               that distinguish 

generated representations and real representations  The network was trained by optimizing the 

total loss including the reconstruction loss, the adversarial loss and the cycle consistent loss  
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where      is the L1-norm cycle-consistent loss including representation consistency loss that 

enforces synthesized 2D representations to be consistent with input representations (planar images 

or projections), which is optimized over the 2 acquired representations. 
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and coding consistency loss that enforces consistency of both shared content code and domain-

specific codes before decoding and after encoding.  

    
  ‖  (  (    )       (      ) )   ‖  (3) 

    
   ‖  

 (  (    ))    ‖             (4) 

  

Following previous work24, we assume prior distribution for the domain-specific codes    is a 

standard Gaussian distribution  (   ). During image generation, the generator samples domain-

specific codes from the prior distribution and combines the domain-specific codes with the shared 

content code to synthesize 2D representations.      and      are the adversarial loss and L1-norm 

reconstruction loss respectively. 

    
      (    (  (    )))     (  (  )),            (5) 
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2.B.2. Geometry Module 

A geometry module was defined for cine and radial MRI respectively. The geometry module is 

deterministic for given a sampling pattern and requires no additional training. For cine MRI, the 
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geometry module populates voxel information of the 3D volume based on volumetric sampling 

coordinates of both acquired orthogonal cine slices and network-synthesized rotating planar images. 

Specifically, the geometry module estimates the voxel intensity at (     )  
 

 
     

 

 
  

 

 
 

  
 

 
    as  

 ̂(     )   ̂(     )         (    )        (    )        (    )        (    ) 
(7

) 

where    √      and        (
 

 
) are the cylindrical coordinates of the target voxel.    and 

   are the two rotating planar images with sampling coordinates        . The geometry module 

performs a bilinear interpolation using pixel information from    and    at location (    ) and (    ) 

with         and          are the interpolation weights, determined based on the distance 

between the interpolation locations and the sampled locations. 

For radial MRI, the geometry module first performs a 2D uniform Fourier transform on each of the 

projection images to get the corresponding radial spokes  (  )    ,             and fills out 

the volumetric k-space based on both acquired and network-synthesized radial samples  (  ). A 

non-uniform 3D Fourier transform (3DNUFFT) is then performed on the volumetric k-space to 

reconstruct 3D images. As the radial sampling pattern leads to a denser sampling of the k-space 

center than the periphery, a   filter 23 was used to compensate for the difference in sampling density 

in k-space before 3D NUFFT. Specifically, the filter multiplies k-space samples at sampling location 

   (     ) with density compensation weights  ( )    ( ) 
     ‖ ‖ , where   ( ) equals 

the k-space volume of a semicylindrical shell with central radius | |. The shell height and width equal 

to the sample spacing in the longitudinal and radial directions, respectively. To reduce ringing, a 

Gaussian window 23 with     voxel was also included in the density compensation function.  

2.B.3. Volumetric Refinement Network 
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The 3D image created by the geometry module is generally not perfect and may contain imaging 

artifacts due to sparse sampling. A 3D network was used to refine the quality of volumetric images. 

A U-Net 25 based encoder-decoder network was built, where the encoder consists of four-stage 

down-sampling blocks and the decoder consists of four-stage up-sampling blocks. Similar with 

previous work on CT reconstruction 19, each down-sampling and up-sampling block consists of 

double 3D convolution layers followed by rectified linear unit activation layers and group 

normalization layers. The down sampling operation was implemented by a max pooling layer with a 

step of (2,2,2) and up sampling was implemented by interpolation. Hierarchical skip connections 

were built by concatenating feature maps between encoder and decoder of the same feature level. 

A final 3D convolution layer with kernel size of 1×1×1 and hyperbolic tangent activation function was 

used to output the reconstructed 3D image. The network was trained by minimizing the L1-norm 

difference between network outputs and the ground truth. 

2.C.  Model Training and Evaluation 

Under an institution review board approved protocol (The University of Michigan Institutional 

Review Board, HUM00068061), 7 patients with intrahepatic tumors were involved in this study. A 

patient-specific deep learning model was trained separately for each of the 7 patients using a 4D 

MRI dataset of 21 breathing motion phases. The 4D MRI was acquired with a golden-angle stack-of-

stars spoiled gradient echo sequence and reconstructed through retrospective k-space sorting and 

re-binning using a previously published technique 26. All MRI data were acquired using a 3 Tesla 

scanner (Skyra, Siemens Medical Systems, Erlangen, Germany) with an 18-channel flexible surface 

coil (BodyMatrix) placed anteriorly and 1 or more posterior 4-channel coils embedded in the patient 

couch (Spine Matrix). The field of view covered the liver, stomach and a large portion of the 

intestines. The imaging parameters ranged from 1.14 to 1.21 ms for echo time, 2.71 to 4.51 ms for 

repetition time, 10° to 14° for flip angle, 2 to 2.45 mm for in-plane voxel size and 3 to 4 mm for slice 

thickness. The size of the imaging matrix was 192 × 192 and the number of slices was 64.  
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The training dataset was augmented by applying 3D deformations to volumetric MR images. To 

generate new deformation fields, principal component analysis (PCA) was performed on 

deformation fields associated with each of the 21 MR images that align the exhale phase MR image 

to other breathing motion phases, which were extracted in previous studies using B-spline 

deformable registration 26. New deformation fields were generated using the mean PC mode    and 

the leading 3 PC modes          as                     where   was varied 

between ±3 standard deviation around the mean PC coefficients. Through this data augmentation 

process, we obtained a total number of 2500 volumetric images, where 2400 images were randomly 

selected for training purpose and the remaining for validation purpose.  

All MR images were then normalized to an intensity range of [0,1]. To train the 2D generation 

network, the volumetric MR images were retrospectively subsampled to 2 orthogonal cine slices or 2 

radial projection images, which served as the model input.  After the 2D training was completed, the 

geometry module was used to generate volumetric images from the network-predicted 12 rotating 

planar images or 12 projection images. The geometry module-generated volumetric images were 

then paired with ground truth images to train the 3D refinement network. Both 2D and 3D networks 

were trained using an Adam optimizer and a batch size of 1. The learning rate and number of 

iterations were 0.001/0.005 and 50000/30000 for 2D and 3D training respectively. Random 3D 

translation and rotation were also applied to MR images before each training epoch. To evaluate the 

impact of incorporating geometric priors, we compared the proposed model to a baseline deep 

learning model that is purely data-driven, following the work by Shen et. al.29 The baseline model 

consists of a 2D encoder and a 3D generator with a feature transformation module that connects 2D 

and 3D feature space. We trained the baseline model using the same dataset of paired 2D 

slices/projections and 3D images as the proposed model. 

To evaluate the robustness of the trained model to longitudinal patient anatomy and position 

changes during a radiotherapy course, we applied the trained model to a testing dataset that was 
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acquired more than one month after the training dataset. The same imaging sequence and 

parameters were used. A 5-min time series of dynamic MRI was reconstructed from the acquired k-

space samples with a temporal sampling rate of 340 ms. The reconstruction was based on a 

previously published technique for high temporal and spatial resolution breathing motion 

characterization via retrospective motion state labeling and served as the ground truth for model 

evaluation 27. We subsampled the ground truth volumetric images to 2 orthogonal slices or 2 

projections images and input the sparse samples to the trained model. The model-reconstructed 

volumetric images were compared to the ground truth images in support of 3D abdominal target 

tracking. Specifically, the first image of the ground truth image time series was chosen as the 

reference image with clinically defined gross tumor volume (GTV) contours transferred to it. The 

reference image was then deformed to match both ground truth and model-reconstructed 

volumetric images using B-spline deformable registration implemented in NiftyReg 28, a registration 

method which has been validated in previous studies for aligning different breathing motion states 

26. Target motion during the 5-min time period was characterized by deforming the reference GTV 

volume with calculated deformation fields. Tracking accuracy using model-reconstructed volumetric 

images was evaluated by calculating the difference between centroid positions of deformed GTV 

volumes and 95-percentile Haursdorff distance between deformed GTV contours. The linear 

correlation of motion estimation using model-reconstructed images and ground truth images was 

also assessed similarly with previous work8, where linear fitting was performed between the ground 

truth and model-estimated GTV centroid displacements in the superior-inferior direction and the R-

square value was calculated. 

3. Results 

3.A Model Validation 

After the model training, generating one volumetric MRI from sparse samples took 8.8 ms using a 

Nvidia Tesla K40C GPU. Figure 2 shows example model validation results for the 2D generation 

network. The trained network is able to synthesize new 2D representations that closely match the 
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ground truth from both cine and radial acquisitions. Figure 3 shows volumetric images produced by 

the geometry module, which serve as the input to the 3D refinement network and the final network-

reconstructed volumetric images. Table 1 summarizes quantitative evaluation results including 

structural similarity index (SSIM), peak signal-to-noise ratio (PSNR) and mean square error between 

the network reconstruction and the ground truth. Figure 4 compares sample slices of 3D images 

reconstructed by the proposed model and the baseline model. The proposed model reduces blurry 

artifacts and outperforms the baseline model in terms of various image quality metrics, including 

structural similarity index (SSIM), peak signal-to-noise ratio (PSNR) and mean square error between 

model reconstruction and ground truth, as summarized in Table 1. 

3.B Volumetric Target Tracking 

Figure 5 shows sample views of training and testing volumetric MRI. Positional and anatomical 

changes can be observed in all planes due to long acquisition time intervals between the training 

and testing datasets, while network-reconstructed images show good agreement with testing 

images. Figure 6 plots example motion traces of gross tumor volume (GTV) centroid in the superior-

inferior direction during the 5-min examination. Despite of varying motion patterns and motion 

irregularities across patients, the motion traces estimated using the model-reconstructed volumetric 

images are consistent with the ground truth. Across the 7 patients evaluated, the motion was most 

significant in the superior-inferior (SI) direction. The median distances between GTV centroids during 

the 5-min period and the reference GTV centroid ranged between 0.4 mm to 2.6 mm in the SI 

direction. The median distances in the left-right (LR) and anterior-posterior (AP) direction were less 

than 1 mm for most patients except for one patient where the distance was 1.4 mm in the AP 

direction. By updating the reference GTV centroid position using model-reconstructed volumetric 

images, the median distances in the SI direction were reduced and were less than 1 mm for all 

patients evaluated. Table 2 summarizes the differences in GTV centroid position estimation using 

ground truth and model-reconstructed images. The GTV contour agreement, evaluated as 95-

percentile Hausdorff distance between predicted and ground truth GTV contours were 4.7±1.1 mm 
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and 3.2±1.5 mm for cine and radial acquisitions respectively, which is of the same scale as cross-

plane imaging resolution (3.5~4 mm). The model-estimated GTV centroid displacements showed 

excellent linear correlation with the ground truth, with an R-square of 0.99, as comparing to the 

previously reported R-square of 0.958. It is also worth noting the model was tested on datasets that 

exhibit longitudinal anatomical changes from the training dataset, as opposed to training and testing 

using images acquired in the same imaging session. The robustness of the proposed method to 

longitudinal changes may remove the need of acquiring 4D MRI before each treatment session and 

has the potential of supporting a simplified clinical workflow. 

4. Discussion 

A geometry-informed deep learning model for volumetric MRI reconstruction with ultra-sparse k-

space sampling is proposed.  The technique makes it possible to obtain volumetric MRI images with 

sub-second acquisition time, which is highly desirable for real time 3D motion tracking during MRI-

guided interventions. To regularize the ill-posed problem of image reconstruction from sparse 

samples, both patient-specific priors learnt by the deep neural network and geometric priors that 

are inherent to the imaging system were exploited, which is different from previous deep learning-

based image reconstruction strategies that are purely data-driven 14-16. The proposed deep learning 

framework consisted of a 2D generation network that completes subsampled image dataset in 2D 

space, a geometry module that bridges the gap between 2D and 3D space, and a 3D refinement 

network that reconstructs final volumetric images. By simply changing the geometry module based 

on pre-defined acquisition schemes, the same network structure can be trained to reconstruct 

volumetric MRI from both cine and radial samples. The trained model was evaluated for 7 abdominal 

patients in support of 3D target tracking during a 5-min time period.  The median distances between 

the GTV centroid positions predicted by the model and derived from the ground truth in the 

superior-inferior direction were less than 1 mm on average and around 1 mm in the other two 

directions, for both cine and radial acquisitions.  
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While consistency of model estimation with acquired data at sampled k-space locations has been 

utilized to constrain the image reconstruction process, the geometry of encoding an image subject 

into Fourier samples at different k-space locations has not been fully exploited. In this study, we 

introduced a network that generates new 2D representations based on known spatial encoding 

patterns of different representations (e.g. different planar or radial angles) and a geometry module 

that bridges the 2D representations and 3D images based on the sampling geometry and known 

transform between k-space and image space. Incorporating such geometric prior that is 

deterministic with the imaging system leverages the learning task of deep neural network and 

permits image reconstruction from ultra-sparse k-space samplings with sub second acquisition time. 

Furthermore, both network-learnt and geometric priors are not bound to a specific imaging session 

or acquisition position, which makes the method desirable for real time imaging guidance over an 

entire radiotherapy course that is delivered over multiple days, as demonstrated by testing the 

model on separate datasets acquired more than one month later than the training dataset.   

Future work will address several limitations of the current method. Firstly, the proposed deep 

learning model is patient-specific, meaning that separate models need to be trained for different 

patients. Also, the training process requires a 4D MRI dataset, which may not be readily available. 

Future work will investigate both patient-specific model training using a single static MRI with 

synthetic motion phases, and a population-based model with a larger number of patients. Other 

network structures for image synthesis and refinement may also be interesting and should be 

investigated in the future. Secondly, target and organ motions are triggered by many factors and 

uncertainties introduced by non-breathing motion have been shown to be significant for 

radiotherapy 30,31,32. While the current work focuses on breathing motion tracking, the capability of 

the proposed method in tracking non-breathing motions such as organ peristalsis and slow 

anatomical rearrangements will be evaluated in future studies. We also noted that the size of the 

patient dataset used in the current study is limited with limited motion variations. One interesting 

study in future work could be a larger patient dataset with more significant motion variations. 
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Thirdly, the proposed sparse sampling scheme samples the superior-inferior direction more densely 

than other directions. This may contribute to the larger tracking error in anterior-posterior and left-

right directions. Future work will investigate other sampling schemes, such as 3D radial sampling for 

potentially improved tracking performance. Finally, the proposed model was trained and evaluated 

using image samples acquired on a 3T MRI scanner. Impacts of the low magnetic field strength of 

MR-Linac systems on the proposed method (e.g., the impact of low image signal-to-noise ratio on 

the model’s capability of extracting features) will be investigated in future studies to ensure the 

clinical applicability of the proposed method.  

5. Conclusion 

A geometry-informed deep learning model that reconstructs volumetric MRI from ultra-sparse k-

space samples has been developed in support of real time 3D motion tracking during MRI-guided 

radiotherapy. By exploiting geometric priors that are inherent to the imaging system, the learning 

task of the neural network is simplified and can be focused on learning patient-specific priors. 

Model-reconstructed volumetric MRI from both cine and radial samples with sub-second acquisition 

time shows sufficient accuracy in tracking 3D abdominal target motion. Furthermore, we 

demonstrated the robustness of the trained model to patient position and anatomy changes over 

time by testing the model using a longitudinal dataset, which makes the proposed method desirable 

for providing imaging guidance during a radiotherapy course that is fractionated over multiple days. 
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List of Figures 

 Figure 1. Three modules of the proposed deep learning framework (with radial MRI as an 

example). a. 2D generation network that synthesizes new 2D representations associated 

with unacquired k-space samples. b. Geometry module that utilizes both sampling pattern 

and known k-space-to-image domain transforms to generate volumetric representations. c. 

3D refinement network that refines image quality for final volumetric image reconstruction. 
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 Figure 2a. Example network-predicted rotating planar images from 2 orthogonal cine slices. 

Figure 2b. Example network-predicted radial projections from 2 radial projections. 
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 Figure 3a. Sample slices of volumetric input generated from the geometry module and 

output generated from the 3D refinement network for cine acquisition. Figure 3b. Sample 

slices of volumetric input generated from the geometry module and output generated from 

the 3D refinement network for radial acquisition. 
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 Figure 4. Sample slices of volumetric images reconstructed using the baseline model and the 

proposed model respectively, with cine slices and radial projections as inputs. 
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 Figure 5. Sample views of training, testing and model-reconstructed MRI images. Red and 

green contours show GTV volume defined by deforming a reference image to testing and 

model-reconstructed images respectively. 
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 Figure 6. Example motion traces of GTV centroid in superior-inferior direction. 
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Table 1. Quantitative evaluation of reconstructed image quality across 7 patients 

Acquisition/Reconstruction Scheme SSIM PSNR MSE 

Cine/Proposed 0.85±0.05 25.1±2.1 0.004±0.001 

Cine/Baseline 0.75±0.04 23.5±1.8 0.005±0.002 

Radial/Proposed 0.85±0.05 25.1±2.4 0.004±0.002 

Radial/Baseline 0.75±0.06 23.5±2.0 0.005±0.003 

 

Table 2. Median distances between predicted and ground truth GTV centroid positions across 

patients 

Acquisition scheme AP LR SI 

Cine 1.1±0.5 mm 1.0±0.5 mm 0.4±0.3mm 

Radial 1.2±0.6 mm 0.5±0.5 mm 0.5±0.4 mm 

 

 


