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Abstract
Analyzing the national transplant database, which contains about 300,000 kid-
ney transplant patients treated in over 290 transplant centers, may guide the dis-
ease management and inform the policy of kidney transplantation. Cox models
stratified by centers provide a convenientmeans to account for the clustered data
structure, while studying more than 160 predictors with effects that may vary
over time. As fitting a time-varying effect model with such a large sample size
may defy any existing software,we propose a blockwise steepest ascent procedure
by leveraging the block structure of parameters inherent from the basis expan-
sions for each coefficient function. The algorithm iteratively updates the optimal
blockwise search direction, alongwhich the increment of the partial likelihood is
maximized. The proposed method can be interpreted from the perspective of the
minorization-maximization algorithm and increases the partial likelihood until
convergence. We further propose a Wald statistic to test whether the effects are
indeed time varying. We evaluate the utility of the proposed method via simu-
lations. Finally, we apply the method to analyze the national kidney transplant
data and detect the time-varying nature of the effects of various risk factors.
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1 INTRODUCTION

End-stage renal disease (ESRD) is one of the most deadly
and costly diseases in the United States (Saran et al., 2018),
and kidney transplantation is themost preferred treatment
(Wolfe et al., 1999). Despite much effort to improve sur-
vival, the mortality of kidney transplant recipients is still
thrice higher than that of the general population. Iden-
tifying risk factors associated with posttransplant mor-
tality is pivotal in prolonging the survival of transplant
patients and optimizing organ allocations (Snyder et al.,
2016). The widely used proportional hazards model (Cox,
1972) assumes that the effects of covariates are constant

over time, which is often violated. For example, contrary to
the common belief that obesity is a risk factor for mortal-
ity, Kalantar (2005) andDekker et al. (2008) showed obesity
has a short-term protective effect, but is a risk factor in the
long run. Models that feature time-varying effects provide
valuable clinical information. The national kidney trans-
plant data, obtained from the U.S. Organ Procurement and
Transplantation Network (OPTN), contain more than 160
predictors for over 300,000 patients who underwent trans-
plantation between 1988 and 2012. Analyzing this dataset
may guide the disease management and inform the trans-
plantation policy. Existing statistical methods (Hastie and
Tibshirani, 1993) that perform well for moderate sample
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sizes and small-dimensional data do not scale to these data
because of the large size of the involved at-risk sets (He
et al., 2017a). Of special interest is how time-varying effect
models can be extended to accommodate large-scale time-
to-event data.
Another important aspect of our motivating example

is that patients came from multiple transplant centers.
In the absence of adjustment for center effects, the esti-
mation of covariate effects may be biased due to uncon-
trolled confounding by centers (Pan, 2002; Kalbfleisch and
Wolfe, 2013; He and Schaubel, 2015). One could estimate
the center effects through frailty models (He et al., 2017b).
However, the commonly frailty approach assumes that the
center effects are constant over time, which is often vio-
lated (He and Schaubel, 2014, 2015) and much work is
needed to implement time-varying frailty models that can
be applicable to the national kidney transplant database.
We propose to adopt a stratified model with stratum-
specific baseline hazards, which avoids modeling the cen-
ter effects explicitly and simplifies the computation of the
partial likelihood by downsizing the at-risk sets.
Methods have been proposed for relative risk models

with time-varying effects: Zucker and Karr (1990) con-
ducted a nonparametric estimation of the time-varying
effects; a specialized algorithm for this problem was pro-
vided by Hastie and Tibshirani (1993); Gray (1992, 1994)
proposed using fixed knots spline functions. He et al.
(2017a) implemented a quasi-Newton algorithm; He et al.
(2017b) further considered a frailty model with time-
varying effects. Kernel-based partial likelihood approaches
have also been developed (Tian et al., 2005). Some recent
studies (Honda and Härdle, 2014; Yan and Huang, 2012)
have proposed variable selection of time-varying effects
using penalized methods such as adaptive lasso (Zhang
and Lu, 2006; Zou, 2006). Xiao et al. (2016) combined the
ideas of local polynomial smoothing and group nonnega-
tive garrote to achieve these goals. Alternatively, Hofner
et al. (2013) proposed a componentwise likelihood boost-
ing algorithm for survival data that permits the inclusion of
both parametric and nonparametric time-varying effects.
These methods may not be applicable to studies with

large sample sizes or many covariates. When implement-
ing them, datasets are usually expanded in a repeatedmea-
surement format, where the time is divided into small
intervals which contain a distinctive event. The covariate
values and outcomes for all at-risk subjects at each inter-
val are stacked to form a working dataset, which becomes
infeasible for a large sample size. As a remedy, a rou-
tine based on the Kronecker product has been suggested
(Perperoglou et al., 2006). Even with this tool, for large-
scale kidney transplant data, existing methods easily over-
whelm powerful computers.

Moreover, time-varying effects are often represented
by basis expansions using B-splines. The parameter vec-
tor, consisting of coefficients of the bases, possesses a
block structure, of which the dimension increases quickly
as the number of predictors grows. This leads to unsta-
ble estimates for the commonly used Newton (Perper-
oglou et al., 2006) and quasi-Newton (He et al., 2017a)
methods. To see this, we conducted a simulation (Set-
ting B of Section 4) to assess the biases of the Newton
approach, gradient ascent, and stochastic gradient ascent
implemented by adaptive moment estimation (ADAM)
(Diederik et al., 2015); see Figure 1. Alternative stochas-
tic gradient approaches such as Annealing (Robbins and
Monro, 1951), Momentum (Qian, 1999), Adagrad (Duchi
et al., 2011), and Adadelta (Zeiler, 2012) were also con-
ducted; their performances were worse than ADAM and
not shown. The Newton approach introduces large biases,
and gradient-based methods are less efficient by overlook-
ingHessianmatrices. The issue becomesmore exacerbated
for the analysis of the kidney transplant database, wherein
many comorbidities have rare frequencies.
We propose a blockwise steepest ascent (BSA) proce-

dure for stratified time-varying effectmodels, whichmakes
the following contributions. First, BSA iteratively updates
the optimal blockwise search direction, avoids compli-
cated computation of inverting the observed information
matrix, and, hence, is computationally efficient for large-
scale problems. Second, BSA converts a high-dimensional
optimization problem into a sequence of low-dimensional
ones. Simplicity is achieved by substituting a surrogate
function that is separable for different blocks of param-
eters. Third, BSA can be interpreted from the perspec-
tive of the minorization-maximization (MM) algorithm
(Lange, 2012). The updated estimates ensure the increment
of likelihood. Fourth, unlike the classical gradient-based
procedures, which typically rely on a first-order approx-
imation and a large number of iterations, the proposed
BSA utilizes a blockwise second-order approximation and
achieves faster convergence; see Figure 1. Finally, choosing
a proper learning rate for classical gradient-basedmethods
can be cumbersome, whereas BSA is less sensitive to the
choice of learning rates and our numerical properties help
clarify the required learning rates and their roles in vari-
ous methods.
The remainder of this article is organized as follows.

We describe the proposed BSA procedure and testing algo-
rithm for time-varying effects in Section 2. Convergence
properties are considered in Section 3. Numerical prop-
erties are examined in Section 4 through simulations. We
apply BSA to analyze the national kidney transplant data
in Section 5. The article concludes with a discussion in
Section 6.
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F IGURE 1 Comparisons of iterations, computation time and biases; Setting B with N = 10,000 and P = 5; the Newton approach is
implemented by R Survival package, the stochastic gradient ascent is implemented by the ADAM approach. The timings were taken on a HP
workstation with 4-core 3.50-GHz Intel Core E5-1620v3 processor and 32 GB RAM. This figure appears in color in the electronic version of this
article, and any mention of color refers to that version

2 METHOD

2.1 Stratified time-varying effect model

Let 𝐷𝑖𝑗 denote the time lag from transplantation to death
and 𝐶𝑖𝑗 be the censoring time for patient 𝑖 in center 𝑗,
𝑖 = 1, … , 𝑛𝑗 , and 𝑗 = 1,… , 𝐽. Here 𝑛𝑗 is the sample size in
center 𝑗, and 𝐽 is the number of centers. The total num-
ber of patients is 𝑁 =

∑𝐽

𝑗=1
𝑛𝑗 , the observed time is 𝑇𝑖𝑗 =

min{𝐷𝑖𝑗, 𝐶𝑖𝑗}, and the death indicator is given by 𝛿𝑖𝑗 =
𝐼(𝐷𝑖𝑗 ≤ 𝐶𝑖𝑗). Let𝐗𝑖𝑗 = (𝑋𝑖𝑗1, … , 𝑋𝑖𝑗𝑃)𝑇 be a 𝑃-dimensional
covariate vector. We assume that 𝐷𝑖𝑗 is independent from
𝐶𝑖𝑗 given𝐗𝑖𝑗 . Consider a stratum-specific hazard function

𝜆(𝑡|𝐗𝑖𝑗) = 𝜆0𝑗(𝑡) exp{𝐗𝑇𝑖𝑗𝜷(𝑡)},
where 𝜆0𝑗(𝑡) is the baseline hazard for stratum 𝑗. To esti-
mate the time-varying coefficients 𝜷(𝑡) = {𝛽1(𝑡), … , 𝛽𝑃(𝑡)},
we span 𝜷(⋅) by a set of cubic B-splines defined on a given
number of knots:

𝛽𝑝(𝑡) = 𝜽
𝑇
𝑝𝐁(𝑡) =

𝐾∑
𝑘=1

𝜃𝑝𝑘𝐵𝑘(𝑡), 𝑝 = 1,… , 𝑃,

where 𝐁(𝑡) = {𝐵1(𝑡), … , 𝐵𝐾(𝑡)}𝑇 forms a basis, 𝐾 is the
number of basis functions, and 𝜽𝑝 = (𝜃𝑝1, … , 𝜃𝑝𝐾)𝑇 is a
vector of coefficients with 𝜃𝑝𝑘 being the coefficient for the
𝑘th basis of the 𝑝th covariate. With a length-𝑃𝐾 parame-
ter vector 𝜽 = 𝑣𝑒𝑐(𝚯), the vectorization of the coefficient
matrix 𝚯 = (𝜽1, … , 𝜽𝑃)𝑇 by row, the log-partial likelihood
function is

𝓁(𝜽) =

𝐽∑
𝑗=1

𝑛𝑗∑
𝑖=1

𝛿𝑖𝑗

⎡⎢⎢⎢⎣
𝐗𝑇𝑖𝑗𝚯𝐁(𝑇𝑖𝑗) − log

⎧⎪⎨⎪⎩
∑
𝑖′∈𝑅𝑖𝑗

exp{𝐗𝑇
𝑖′𝑗
𝚯𝐁(𝑇𝑖𝑗)}

⎫⎪⎬⎪⎭
⎤⎥⎥⎥⎦
,

(1)

where 𝑅𝑖𝑗 = {𝑖′ ∶ 1 ≤ 𝑖′ ≤ 𝑛𝑗, 𝑇𝑖′𝑗 ≥ 𝑇𝑖𝑗} is the at-risk set for
stratum 𝑗. Note that 𝜽 has 𝑃 “blocks” of subvectors, that
is 𝜽𝑝, 𝑝 = 1,… , 𝑃, each corresponding to a covariate, will
inform the development of our proposed blockwise steep-
est ascent algorithm.

2.2 Review of Newton approach

When both 𝑁 and 𝑃 are moderate, maximization of (1)
can be achieved by a Newton approach, which requires
computation of the gradient and Hessian matrix, given by
▿𝓁(𝜽) =

∑
𝑗

∑
𝑖
Ψ𝑖𝑗(𝜽) and

▿2𝓁(𝜽) = −

𝐽∑
𝑗=1

𝑛𝑗∑
𝑖=1

𝛿𝑖𝑗𝐕𝑖𝑗(𝚯, 𝑇𝑖𝑗) ⊗
{
𝐁(𝑇𝑖𝑗)𝐁

𝑇(𝑇𝑖𝑗)
}
,

(2)

respectively. Here⊗ is the Kronecker product, and

Ψ𝑖𝑗(𝜽) = 𝛿𝑖𝑗

⎧⎪⎨⎪⎩
𝐗𝑖𝑗 −

𝐒
(1)
𝑖𝑗
(𝚯, 𝑇𝑖𝑗)

𝐒
(0)
𝑖𝑗
(𝚯, 𝑇𝑖𝑗)

⎫⎪⎬⎪⎭
⊗𝐁(𝑇𝑖𝑗), (3)

where

𝐕𝑖𝑗(𝚯, 𝑇𝑖𝑗) =
𝐒
(2)
𝑖𝑗
(𝚯, 𝑇𝑖𝑗)𝑆

(0)
𝑖𝑗
(𝚯, 𝑇𝑖𝑗) − {𝐒

(1)
𝑖𝑗
(𝚯, 𝑇𝑖𝑗)}

⊗2

{𝑆
(0)
𝑖𝑗
(𝚯, 𝑇𝑖𝑗)}2

,

𝐒
(𝑟)
𝑖𝑗
(𝚯, 𝑇𝑖𝑗) =

∑
𝑖′∈𝑅𝑖𝑗

exp{𝐗𝑇
𝑖′𝑗
𝚯𝐁(𝑇𝑖𝑗)}𝐗

⊗𝑟
𝑖′𝑗
,
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for 𝑟 = 0, 1, 2. For a column vector 𝐯, 𝐯⊗0 = 1, 𝐯⊗1 = 𝐯,
and 𝐯⊗2 = 𝐯𝐯𝑇 .
Computational burden mainly comes from two sources.

First, summations across all the risk sets are cumber-
some, especially when 𝑁 is large. Second, with a large 𝑃,
inversions of Hessian matrices are costly. In summary, the
computation complexities of the Newton method for the
unstratified time-varying effect model and the stratified
time-varying effect model are at the order of 𝑂(𝑁2𝑃2𝐾2 +
𝑃3𝐾3) and 𝑂(𝑁2𝑃2𝐾2∕𝐽 + 𝑃3𝐾3), respectively. Though
stratified models reduce the first term by a factor of 𝐽,
the Newton approach is still numerically challenging or
even impractical for large sample and high-dimensional
problems. This motivates us to propose a feasible approach
that reduces the computation complexity to an order of
𝑂(𝑁2𝑃𝐾2∕𝐽 + 𝑃𝐾3); see the next section.

2.3 Proposed blockwise steepest ascent

Given a current estimate 𝜽, we consider a first-order Tay-
lor’s expansion:

𝓁(𝜽 + 𝛼𝝁) = 𝓁(𝜽) + 𝛼▿𝓁(𝜽)𝑇𝝁 +
1

2
𝛼2𝝁𝑇▿2𝓁(𝜽 + 𝑤𝝁)𝝁,

where 𝝁 is the update direction of 𝜽, 𝛼 is a small posi-
tive value, 𝑤 ∈ [0, 𝛼], and the term ▿𝓁(𝜽)𝑇𝝁 is the direc-
tional derivative along 𝝁. If ▿𝓁(𝜽)𝑇𝝁 > 0, the direction 𝝁
is an ascent direction of 𝜽 to increase 𝓁(𝜽). We identify
an update direction (with a unit norm), along which 𝓁(𝜽)
ascends most rapidly. This motivates us to find a steepest
ascent direction,

𝝁⋆ = argmax
𝝁

{▿𝓁(𝜽)𝑇𝝁 || ||𝝁||† = 1}, (4)

where || ⋅ ||† is a vector norm on ℝ𝑃𝐾 . As the choice of
norm ||𝝁||† plays a crucial role in computational effi-
ciency and numerical stability, we propose to use a block-
quadratic norm by leveraging the block structure of the
parameter vector 𝜽,

||𝝁||† = 𝑃∑
𝑝=1

||||𝝁𝑝||||𝐇𝑝(𝜽), (5)

where ||𝝁𝑝||𝐇𝑝(𝜽) is a quadratic norm, defined as ||𝝁𝑝||𝐀 =
(𝝁𝑇𝑝𝐀𝝁𝑝)

1∕2 for a positive semidefinite matrix 𝐀. Here 𝝁𝑝
is a 𝐾-dimensional vector corresponding to the 𝑝th block
of 𝝁, and𝐇𝑝(𝜽) is a 𝐾 × 𝐾-dimensional matrix.
A simple choice is to set 𝐇𝑝(𝜽) as an identity matrix,

leading to a blockwise gradient ascent method with low
computation cost at each iteration; however, its conver-
gence can be slow, especially when the condition numbers

of the observed informationmatrix are large; see Section 3.
To address this problem, for 𝑝 = 1,… , 𝑃, we choose

𝐇𝑝(𝜽) = −
[
▿𝓁(𝜽)𝑇𝑝{−▿

2𝓁(𝜽)𝑝}
−1▿𝓁(𝜽)𝑝

]
▿2𝓁(𝜽)𝑝, (6)

where ▿𝓁(𝜽)𝑝 is the 𝑝th block of the gradient vector
and ▿2𝓁(𝜽)𝑝 is the block diagonal of the Hessian matrix
defined in (2), corresponding to the 𝑝th variable. Here
the scalar ▿𝓁(𝜽)𝑇𝑝{−▿2𝓁(𝜽)𝑝}−1▿𝓁(𝜽)𝑝 is a normalization
factor.
With the Cauchy–Schwarz inequality,

▿𝓁(𝜽)𝑇𝝁 ≤

𝑃∑
𝑝=1

||||▿𝓁(𝜽)𝑝||||𝐇−1𝑝 (𝜽)||||𝝁𝑝||||𝐇𝑝(𝜽)
≤

{
max
𝑝

(||||▿𝓁(𝜽)𝑝||||𝐇−1𝑝 (𝜽)
)} 𝑃∑

𝑝=1

||||𝝁𝑝||||𝐇𝑝(𝜽).
With 𝝁 satisfying

∑
𝑝
||𝝁𝑝||𝐇𝑝(𝜽) = 1, we have

▿𝓁(𝜽)𝑇𝝁 ≤ max
𝑝

(||||▿𝓁(𝜽)𝑝||||𝐇−1𝑝 (𝜽)
)
.

The resulting blockwise steepest ascent direction

𝝁⋆ = argmax
𝝁

{▿𝓁(𝜽)𝑇𝝁 || ||𝝁||† = 1}
= (0, … , 0, 𝝁𝑇

𝑝⋆
, 0, … , 0)𝑇, (7)

maximizes the directional derivative, that is

▿𝓁(𝜽)𝑇𝝁⋆ = max
𝑝

(||||▿𝓁(𝜽)𝑝||||𝐇−1𝑝 (𝜽)
)
,

and let

𝑝⋆ = argmax
𝑝

(||||▿𝓁(𝜽)𝑝||||𝐇−1𝑝 (𝜽)
)
, (8)

with 𝝁𝑝⋆ given by

𝝁𝑝⋆ =
{
𝐇𝑝⋆(𝜽)

}−1
▿𝓁(𝜽)𝑝⋆. (9)

We summarize the proposed algorithm as follows:
BSA Algorithm

(a) Initialize 𝜽(0) = 𝟎. For𝑚 = 1, 2, 3, …, identify 𝑝⋆ as in
(8).

(b) Update the estimate by 𝜽(𝑚)
𝑝⋆

= 𝜽
(𝑚−1)

𝑝⋆
+ 𝜈 𝝁𝑝⋆ .

(c) The iteration continues until the directional deriva-
tive ▿𝓁(𝜽(𝑚))𝑇𝝁⋆ or the relative change in the log-
partial likelihood is less than a convergence threshold
(e.g., 10−6).
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We comment that the blockwise algorithm ranks the
importance of each predictor and measures how fast the
log-partial likelihood would increase by including each
predictor; the proposed algorithm converts a difficult opti-
mization problem into a simpler surrogate function that is
separable across blocks of the parameter vector and avoids
iterative inversions of high dimensional Hessian matrices;
the learning rate, 𝜈, can be chosen to be a small posi-
tive value, for example, 0.05. Further clarification for the
choice of 𝜈 is provided in Section 3.

2.4 Minorization-maximization–based
interpretation

The proposedmethod can be interpreted from the perspec-
tive of theMMalgorithm, which reaffirms the ascent prop-
erty and helps clarify the numerical advantage of the pro-
posed procedure. To see this, we note the block-quadratic
norm considered in (5) leads to a minority surrogate
function

𝑔(𝜽|𝜽) = 𝓁(𝜽) + ▿𝓁(𝜽)𝑇(𝜽 − 𝜽) − 1

2𝜈
(𝜽 − 𝜽)𝑇𝐇(𝜽)(𝜽 − 𝜽),

where 𝜈 is a small positive value to be specified and𝐇(𝜽) =
diag{𝐇1(𝜽),𝐇2(𝜽), … ,𝐇𝑃(𝜽)} is a block-diagonal matrix,
and𝐇𝑝(𝜽) is defined in (6). Here, the blocks correspond to
the basis expansions for each variable.With 𝑔(𝜽|𝜽) = 𝓁(𝜽),
Proposition 1 in Section 3 shows that, given a suitable 𝜈,
𝑔(𝜽|𝜽) ≤ 𝓁(𝜽) for all 𝜽. Thus, 𝑔(𝜽|𝜽) serves as a minority
surrogate function of 𝓁(𝜽). Leveraging the block-diagonal
structure of𝐇(𝜽), theminority surrogate function 𝑔(𝜽|𝜽) is
separable across the blocks of parameters. Therefore, this
“minorization” step reduces a high-dimensional optimiza-
tion problem to simpler ones.
The blockwise update [as in (8) and (9)] maximizes

𝑔(𝜽|𝜽) subject to the constraint that only one variable is
updated at each iteration. This ‘‘maximization” step, cou-
pled with the previous “minorization” step, is essentially
a MM-based steepest ascent procedure, which iteratively
pursues the optimal blockwise update direction.

2.5 Connection with existing
optimization approaches

It is instructive to assess several commonly used norms for
(4) and tie them to the existing steepest ascent approaches.
For example, an 𝓁2 norm corresponds to the gradient
ascent method:

𝝁⋆ = argmax
𝝁

{▿𝓁(𝜽)𝑇𝝁 || ||𝝁||2 = 1} = ▿𝓁(𝜽)/||▿𝓁(𝜽)||2.
As illustrated in Figure 1 and Web Figures S1 and S2 in
the Supporting Information, the convergence of gradient-

basedmethods is slow, especially when the observed infor-
mation matrix is ill-conditioned (i.e., near singular). One
may consider a quadratic norm ||𝝁||𝐀 = (𝝁𝑇𝐀𝝁)1∕2 with
𝐀 = −▿2𝓁(𝜽), with the update direction coinciding with
the Newton update, which becomes numerically unstable
or even impractical for large-scale data. Also, an 𝓁1 norm
leads to the coordinate-wise gradient boosting procedure
(Bühlmann and Yu, 2003, 2006; He et al., 2016). However,
this procedure does not take into account the group struc-
ture and will lead to sparse basis presentations and is not
suitable for estimating time-varying effects.

2.6 Testing for time-varying effects

To testwhether the effects are time varying,weuse the con-
stant property of B-splines, that is, if 𝜃𝑝1 = ⋯ = 𝜃𝑝𝐾 , the
corresponding covariate effect is time independent. Specify
a matrix 𝐂𝑝 such that 𝐂𝑝𝜽 = 𝟎 corresponds to the contrast
that 𝜃𝑝1 = ⋯ = 𝜃𝑝𝐾 . Following He et al. (2017a), a Wald
statistic can be constructed by

(𝐂𝑝𝜽)
𝑇
[
𝐂𝑝{−▿

2𝓁(𝜽)}−1𝐂𝑇𝑝

]−1
(𝐂𝑝𝜽),

where 𝜽 is obtained through the proposed BSA.
In the kidney transplant database with large 𝑁 and 𝑃,

computation of the observed informationmatrix is infeasi-
ble as discussed in Section 2.2, though gradients are easier
to compute. We consider a modified statistic

𝑆𝑝 = (𝐂𝑝𝜽)
𝑇{𝐂𝑝𝐕

−1(𝜽)𝐂𝑇𝑝}
−1(𝐂𝑝𝜽), (10)

where 𝐕(𝜽) =
∑𝐽

𝑗=1

∑𝑛𝑗
𝑖=1
Ψ𝑖𝑗(𝜽)Ψ𝑖𝑗(𝜽)

𝑇 is an approxima-
tion of the empirical information matrix (McLachlan and
Krishnan, 2007), with Ψ𝑖𝑗 defined in (3). Under the null
hypothesis that the effect is time independent, 𝑆𝑝 is asymp-
totically chi-square distributed with 𝐾 − 1 degrees of free-
dom. To incorporate potential correlations among patients
within strata, a robust inference procedure (Lin and Wei,
1989; Schaubel and Cai, 2005) can be adopted.

2.7 Variable selection with
high-dimensional covariates

Our proposed BSA algorithm can also be extended to
accommodate a large 𝑃 small𝑁 problem. Specifically, BSA
is a groupwise procedure. With only one variable updated
at each iteration, variable selection can be achieved if
the procedure is set to stop at a finite number of steps.
Effectively, the step number is a tuning parameter and
can be determined by cross-validation. Compared with the
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penalizedmethods, BSA is flexible and easily implemented
without the need to apply constrained optimizations, and
the parallel computing algorithms can be integrated with
separable minority surrogate functions. Further discus-
sion and empirical results are provided in the Supporting
Information.

3 CONVERGENCE PROPERTIES

We impose the following conditions:

(A) For any initial value 𝜽(0), the matrices, 𝐇𝑝(𝜽), 𝑝 =
1,… , 𝑃, are positive definite in the super-level set {𝜽 ∶
𝓁(𝜽) ≥ 𝓁(𝜽(0))};

(B) The negative log-partial likelihood function satisfies
lim||𝜽||2→∞ −𝓁(𝜽) = ∞.

Condition (A) guarantees the existence of the BSA
update; condition (B) ensures that the super-level set is
compact, and the maximum value of 𝓁(𝜽) is attained, and
a cluster point of BSA exists. We show that there exists a
learning rate 𝜈 such that the proposed algorithm satisfies
the ascent property.

Proposition 1 (Ascent Property). Suppose conditions (A)
and (B) hold. For 𝜈 > 0 satisfying

sup
{𝜽∶𝓁(𝜽)≥𝓁(𝜽(0))}(
𝜆𝑚𝑎𝑥

[
{𝐇(𝜽(𝑚−1))}−1∕2{−▿2𝓁(𝜽)}{𝐇(𝜽(𝑚−1))}−1∕2

])
< 1∕𝜈,

(11)

then 𝑔(𝜽|𝜽(𝑚−1)) ≤ 𝓁(𝜽) for all 𝜽, where 𝜆𝑚𝑎𝑥(⋅) represents
the largest eigenvalues.

Proposition 1 shows that 𝑔(𝜽|𝜽(𝑚−1)) serves as aminority
surrogate function of 𝓁(𝜽). Thus, the resulting estimates
𝜽(𝑚) from the BSA ensure the ascent property,

𝓁(𝜽(𝑚)) ≥ 𝑔(𝜽(𝑚)|𝜽(𝑚−1)) ≥ 𝑔(𝜽(𝑚−1)|𝜽(𝑚−1)) = 𝓁(𝜽(𝑚−1)).
Proposition 1 also informs the choice of the learning

rate 𝜈 and gives an upper bound of 𝜈 (which is small)
to ensure the ascent property. For example, in classical
gradient-based procedures, 𝐇(𝜽(𝑚−1)) equals an identity
matrix and the updates at each iteration are computed
based on gradient information only. When the conditional
number of the observed information matrix is large, a suf-
ficiently small learning rate is needed in Proposition 1 to
ensure that the estimates in each iteration of the gradient-
based procedure serve as refinements of the previous step,

which requires a large number of iterations andmore com-
putation time. Thus, empirically we find that the perfor-
mance of gradient-based methods is more sensitive to the
choice of the learning rate. In contrast, the proposed BSA
is based on the block diagonal of the observed informa-
tion matrix, which is an improved approximation com-
pared to the identity matrix used in the gradient methods.
Thus, a learning rate of 0.05 typically ensures the inequal-
ity in Proposition 1. Our numerical experience also indi-
cates that BSA is less sensitive to the choice of the learning
rate.

Proposition 2 (Numerical Convergence). Suppose condi-
tions (A) and (B) hold. Then every cluster point of the iter-
ates 𝜽(𝑚) = 𝑀(𝜽(𝑚−1)) generated by the iteration map𝑀(𝜽)
of the BSA algorithm is a stationary point of 𝓁(𝜽). Further-
more, the set of stationary points  is closed, and the limit of
the distance function is zero:

lim
𝑚→∞

inf
𝜽∈

||𝜽(𝑚) − 𝜽||2 = 0.
Moreover, if the observed informationmatrix−▿2𝓁(𝜽) is pos-
itive definite in the super-level set defined in condition (A),
any sequence of 𝜽(𝑚) possesses a limit, 𝜽, and this limit is a
stationary point and hence maximizes the log-partial likeli-
hood in (1).

The convergence mode involved in this proposition is
with respect to a sequence of real vectors and not embed-
ded in a probability space. All technical proofs have been
deferred to the Supporting Information.

4 SIMULATIONS

We compare the computational speed and parameter esti-
mation of the proposed BSA with various methods, and
then assess the performance of the proposed testing pro-
cedure for time-varying effects. Ten knots are used in all
settings in Sections 4.1 and 4.3. In Section 4.2, we vary
the numbers of knots to assess its influence on the perfor-
mance. Following the suggestion by Gray (1992), the loca-
tions of knots in further analyses are chosen to include an
equal number of events within each time interval.

4.1 Evaluation of computational speed

We first consider the following simulation setting (termed
Setting A). Death times are generated from an exponen-
tial model with a baseline hazard 0.5. Censoring times
are generated from the uniform distribution over (0,3),
with a censoring proportion of approximately 20–30%.
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Continuous predictors are generated from a multivariate
normal distribution, with mean zero and an AR1 covari-
ance matrix with an autocorrelation parameter of 0.6. We
vary the sample size between 𝑁 = 10, 000 (from 10 cen-
ters) and 𝑁 = 351, 719 (from 290 centers). The number
of covariates varies from 𝑃 = 10 to 𝑃 = 164. We choose
𝛽2(𝑡) = sin{3(𝜋𝑡∕4)} and 𝛽4(𝑡) = −(𝑡∕3)2 exp(𝑡∕2) to rep-
resent time-varying effects. The remaining covariate coef-
ficients are set to be 1. For each data configuration, 100 data
are generated.
With 𝑁 = 10, 000 and 𝑃 = 10, the computation time for

the Newtonmethod (implemented by R Survival package),
the quasi-Newton method (implemented in Rcpp through
R package RcppArmadillo in combination with the R func-
tion optim), the likelihood-based boosting (implemented
by R package COX𝑓𝑙𝑒𝑥Boost), and the proposed BSA is 0.17
min, 15.43 min, 10.36 h, and 0.12 min, respectively. The
original quasi-Newton work of He et al. (2017a) was imple-
mented in R, but we reimplement it in Rcpp for improved
speed. With 𝑁 = 351, 719 and 𝑃 = 164 as in the motivat-
ing example, all of the aforementioned competingmethods
fail due to their intensive computation, and the proposed
method takes 11.64 h. The experiments are conducted on a
HPworkstationwith 4-core 3.50-GHz Intel Core E5-1620v3
processor and 32 GB RAM.

4.2 Estimation of time-varying effects

To mimic the motivating real data, we consider a simula-
tion setting (termed Setting B) and generate binary covari-
ates (0 or 1) withmeans between 0.05 and 0.2. The number
of covariates varies from 5, 10, 20 to 50, and the sample size
is chosen to be 𝑁 = 10, 000 from 10 center. The remaining
setups are the same as Setting A.
Table 1 compares the average computing time, the

average biases, and the average integrated mean square
error (IMSE) over the simulated time points for the New-
ton approach, the gradient ascent, the stochastic gradi-
ent ascent with step size determined by ADAM algorithm
(Diederik et al., 2015), and the proposed BSA, under sim-
ulation Setting B with 𝑁 = 10, 000 and various numbers
of covariates.
Table 1 shows that the Newton approach incurs large

biases and IMSE; the gradient ascent and the stochastic
gradient ascent improve upon the biases, but converge
slowly; the proposed BSA is computationally efficient and
achieves the smallest biases in all scenarios. Web Figure S2
further compares the average estimated coefficients across
various iterations of the proposed method and the gra-
dient ascent, using simulation setting B. Compared with
gradient-based procedure, the proposed BSA is less sen-
sitive to the choice of learning rate, which confirms the

TABLE 1 Average computation time (in seconds), average
estimation error (Bias), and average integrated mean square error
(IMSE) for various methods; based on Setting B with N = 10,000

P Method Time Bias IMSE
5 Newton 0.22 0.646 0.592

Gradient ascent 169.33 0.249 0.202
Stochastic gradient ascent 183.51 0.290 0.256
Blockwise steepest ascent
(BSA)

25.60 0.156 0.136

20 Newton 1.10 0.305 0.169
Gradient ascent 687.15 0.136 0.058
Stochastic gradient ascent 415.43 0.140 0.070
BSA 43.48 0.075 0.055

50 Newton 9.05 0.147 0.086
Gradient ascent 1620.21 0.150 0.050
Stochastic gradient ascent 757.07 0.118 0.038
BSA 95.27 0.064 0.030

numerical properties provided in Section 3. Figure 2 com-
pares the average estimates and the 95% empirical per-
centiles over 100 simulation replications for the conven-
tional Newton approach and the BSA algorithm. We vary
the number of basis functions from 5 to 10. The simulation
setup is based on Setting A with 10 variables. The perfor-
mance of the Newton is more sensitive to the number of
basis functions, which can be explained in part as follows:
in the late stage of the follow-up period, the at-risk set is
small, causing unstable estimation of the Hessian matrix.
The proposed BSA is less sensitive to the number of basis
functions, achieving more stable results. Web Table S1
compares the biases and IMSE for various approaches
which select the number of basis functions based on the
simulation setting B. Fivefold cross-validation achieves the
smallest estimation biases in all scenarios and outperforms
alternative approaches such as Akaike information cri-
terion and Bayesian information criterion. Web Table S2
and Figures S3 and S4 compare the performance of vari-
ous methods under the simulation setting with heteroge-
neous center effects. Web Table S2 and Figure S4 further
assess a simulation setting with a high censoring propor-
tion (approximately between 50% and 60%).

4.3 Testing for time-varying effects

Finally, to assess the testing performance for time-varying
effects, we consider a simulation setting (termed Setting C)
with two continuous predictors. The corresponding coeffi-
cients are set to be 𝛽1 = 1 and 𝛽2(𝑡) = 𝛾sin{3(𝜋𝑡∕4)}with 𝛾
varying between 0 and 3, representing the magnitude of
the time-varying effects. We vary the number of centers
from 10 (with 1000 subjects per center) to 100 (with 100
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F IGURE 2 Average estimated coefficient functions (solid lines) and 95% empirical percentiles (dashed lines) for different number of
spline basis functions; 100 simulation iterations; Setting A with N = 10,000 and P = 10. This figure appears in color in the electronic version of
this article, and any mention of color refers to that version

F IGURE 3 Comparisons of Type-I error and power for testing of time-varying effects at significance level 0.05; Setting C with N = 2000;
two continuous covariates are generated with coefficients 𝛽1 = 1 and 𝛽2(𝑡) = 𝛾sin{3(𝜋𝑡∕4)}, where 𝛾 varies between 0 and 3, representing the
magnitude of the time-varying effects; the average type-I error rate is only evaluated for the time-invariant 𝛽1(𝑡), and the average power is only
evaluated for the time-variant 𝛽2(𝑡). This figure appears in color in the electronic version of this article, and any mention of color refers to that
version
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TABLE 2 Baseline characteristics of kidney transplantation data

Variable Categories Counts Proportions
Donor type Deceased 229,465 65.2%

Living 122,254 34.8%
Recipient gender Male 211,880 60.2%

Female 139,839 39.8%
Recipient race White 248,254 70.6%

Black 82,816 23.5%
Asian 15,347 4.4%
Other 5,302 1.5%

Recipient BMI Underweight 16,866 4.8%
Normal 109,385 31.1%
Overweight 152,765 43.4%
Obesity 72,703 20.7%

Recipient age < 10 years 6,596 1.9%
[10, 18) years 12,405 3.5%
[18, 25) years 18,059 5.1%
[25, 35) years 47,894 13.6%
[35, 45) years 68,963 19.6%
[45, 55) years 84,151 23.9%
[55, 65) years 76,081 21.6%
[65, 75) years 34,281 9.7%
≥ 75 years 3,289 0.9%

Recipient antiviral therapies Yes 169,037 48.1%
No 182,682 51.9%

Recipient immunosuppressant medications Yes 341,677 97.1%
No 10,042 2.9%

Recipient: polycystic kidney disease Yes 31,558 9.0%
No 320,161 91.0%

Waiting time on dialysis Short (< 1 years) 135,585 38.5%
Medium (1 − 5 years) 165,012 46.9%
Long (> 5 years) 51,122 14.5%

Cold ischemia time High (> 20 h) 91,861 26.1%
Low (≤20 h) 259,858 73.9%

Expanded criteria donor Yes 31,126 8.8%
No 320,593 91.2%

Donor Cause of Death: Stroke Yes 82,474 23.4%
No 269,245 76.6%

subjects per center). The remaining setups are the same as
Setting A.
Comparing the proposed testing algorithm with the test

based on the scaled Schoenfeld residuals (implemented
by R Survival package), Figure 3 reports the empiri-
cal Type-I error and the empirical power based on Set-
ting C. The proposed algorithm (10) outperforms the
Schoenfeld method with a higher power and a smaller
Type-I error. Web Table S3 further assesses the empiri-
cal Type-I error and the empirical power for the robust

inference procedure, using simulation setting C with
100 centers.

5 ANALYSIS OF THE NATIONAL
KIDNEY TRANSPLANT DATASET

Data are obtained from the U.S. OPTN. Included in
our analysis are 351,719 patients (from 293 centers) who
underwent kidney transplantation between January 1988
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F IGURE 4 Data analysis results: estimated coefficient functions (solid lines) and 95% pointwise confidence interval (dashed lines) for
time-varying effects. This figure appears in color in the electronic version of this article, and any mention of color refers to that version

and December 2012. Failure time is defined as the time
from transplantation to graft failure or death, whichever
occurred first. To study the 10-year posttransplant survival,
patient survival is censored 10 year posttransplant or at the
end of study in 2012. The overall censoring rate was 62%.
Covariates (𝑃 = 164) in this study include baseline recipi-
ent characteristics such as age, race, gender, BMI, time on
dialysis, indicator of previous kidney transplant, immuno-
suppression, and cormorbidity conditions (e.g., glomeru-
lonephritis, polycystic kidney disease, diabetes, and hyper-
tension), and donor characteristics such as blood type,
cold ischemic time, and donor type. Race is categorized
as White, African American, Asian, and the other. Cold
ischemia time is categorized as low (20 h or less) and high
(longer than 20 h). Donors are categorized as living, of
standard criteria, and of expanded criteria. Waiting time
on dialysis is categorized as low (less than 1 year), medium

(1–5 years), and high (greater than 5 years). More details
are given in Table 2.
To determine the number of basis functions, we per-

form fivefold cross-validation (Verweij and van Houwelin-
gen, 1993) and choose 10 basis functions for further anal-
ysis. Our proposed test identifies a total of 12 variables
with significant time-varying effects; see Figure 4 with 95%
pointwise confidence intervals (dashed lines) as well as
additional results provided in Web Figure S5. Figures 4A
and 4B show that antiviral therapies and antirejection
immunosuppressant medications have a strong protec-
tive effect shortly after transplantation, but the association
weakens over time. One possible explanation is that these
therapies prevent rejection of new kidneys and declining
rates of acute rejection have led to improvements in short-
term kidney transplant survival, but the effects may wane
over time (Muntean and Lucan, 2013). Figure 4C supports
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the previous findings (Meier et al., 2000) that long waiting
on dialysis (greater than 5 years) negatively impacts post-
transplant survival. Figure 4D indicates that the effects of
stroke, the most frequent donor cause of death, varies over
time, showing an increased risk ofworsening recipient out-
comes initially, followed by a slightly weakening associ-
ation over time. Though stroke is a predictor for worse
survival for kidney transplantation, it is associated with
a low rate of rejection immediately after the renal trans-
plantation (Frohnert et al., 1997), which may lead to time-
varying associations.
Figure 4E indicates that the survival of African Ameri-

cans continues to be poorer than that of non-AfricanAmer-
icans. The change of its covariate effect after transplant
may be partly due to higher immunological risk among
American Africans, leading to higher acute rejection rates
and graft loss (Harding et al., 20017). We have detected
some novel signals. For example, polycystic kidney dis-
ease (PKD) is themost common genetic kidney disease and
is present among 2–9% of ESRD patients (Rozanski et al.,
2005). With conflicting reports of renal allograft outcomes
for PKD patients (Hadimeri et al., 1997), Figure 4G sug-
gests time-varying associations of PKDwith survival; thus,
accounting for time-varying effects provides valuable clin-
ical information that could have been missed otherwise.
Finally,Web Figure S5c shows thatmale recipients is a pro-
tective factor immediately after the renal transplantation
and then has a much worse prognosis than female. One
possible explanation is that women have better immuno-
suppressant compliance than men, and females undergo
follow-up visits and show more concern to protect graft
function (Puoti et al., 2016).

6 DISCUSSION

Detecting and accounting for time-varying effects are
particularly important in the context of clinical studies
(Dekker et al., 2008; Yu et al., 2014; Chen et al., 2015; Estes,
2018). However, in survival analysis, the computational
burden to model time-varying effects increases quickly as
the sample size or the number of predictors grows. We
propose a blockwise steepest ascent method, which itera-
tively updates the optimal blockwise direction alongwhich
the directional derivative is maximized and, hence, the
approximate increment in log-partial likelihood is greatest.
Numerical results show that the proposed algorithm pro-
vides sufficient and rapid updates, achieving much com-
putational efficiency.
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licly available R package BSATV, hosted on the GitHub
(https://github.com/UM-KevinHe/TimeVaryingCox).
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