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1. Supplementary Figures 

 

Figure S1. Highlighting key interactions at the mouth of the CD1d binding groove with A) 

KRN7000, B) Disaccharide 3, and C) Monosaccharide 2. 
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Docking Study: 

To evaluate which pose best replicates the important interactions characteristic of the human CD1d 

with α-Galactosylceramide we reported both the S-score with the lowest value (the first series of 

docking posed that superimposed together; Figure S3) and the least value of RMSD (RMSD be-

tween the docked and the input structure).  The lowest energetic values of both the "S score" and 

the "E_refine" as well as a low RMSD of conformer 1 is selected as the best pose and used for 

further MD simulation. The RMSD of above 2 Å reflects the significant differences between the 

different poses. The lowest energy pose is extremely similar to the X-ray crystal structure, although 

the carbohydrate adopts a slightly different pose when exposed to the water solvent. 

               Conformer 1       Conformer 2 

S score      -16.0875            -14.6502 

E_refine     -55.6458            -45.2061 

RMSD        2.0928               3.0557 
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Figure S2. A) The superimposed binary structure of diverse docking poses obtained from rigid 

docking results for KRN7000 (1ZT4; The crystal structure of human CD1d with α-Galacto-

sylceramide). These structures obtained are comparable to those in the crystal structure. The low-

est energy docked structure is essentially identical with the crystal structure of the dimeric com-

plex; B) The crystal structure of KRN7000 (green) superimposed with the optimal docked struc-

ture (grey).  
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Figure S3. RMSD plot representing the complex of human CD1d bound to A) KRN7000; B) 

monosaccharide 2; and C) disaccharide 3. 
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Figure S4. Visualization of the modelled ternary complex highlighting differences in key inter-

actions. Structure is obtained from the energy minimum conformation from the MD simulation 

(extracted from the 5 ns NPT). A) TCR∩KRN7000@CD1d; B) TCR∩2@CD1d ;C) 

TCR∩3@CD1d 

.
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2. Spectra of New Compounds 

Figure S5. 1H NMR (500 MHz d6-Me2SO-CDCl3 (5:1, v/v) of compound 2. Spectrum is superimposable with that provided 

in Kinjo et al.[1] 

Figure S6. 1H NMR (500MHz, MeOD) of compound 2. 
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Figure S7. 1H NMR (500MHz, MeOD) of compound 3. 

Figure S8. 13C NMR (125MHz, MeOD) of compound 3 
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Figure S9. 1H NMR (300MHz, CDCl3) of compound 7. 

Figure S10. 1H NMR (300MHz, CDCl3) of compound 8 
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Figure S11. 1H NMR (300MHz, CDCl3) of compound 9 

Figure S12. 1H NMR (300MHz, CDCl3) of compound 9a 

 



S10 
 

Figure S13. 1H NMR (300MHz, MeOD) of compound 9b 

Figure S14. 1H NMR (300MHz, CDCl3) of compound 10 
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Figure S15. 1H NMR (300MHz, CDCl3) of compound 10a 

Figure S16. 1H NMR (300MHz, CDCl3) of compound 10b 
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Figure S17. 1H NMR (300MHz, CDCl3) of compound 10c 

Figure S18. 1H NMR (300MHz, CDCl3) of compound 10d 
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Figure S19. 1H NMR (300MHz, CDCl3) of compound 10e 
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Figure S20. 1H NMR (500MHz, CDCl3) of compound 15 

Figure S21. 13C NMR (125MHz, CDCl3) of compound 15. 
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Figure S22. 1H NMR (500MHz, CDCl3) of compound 16. 

 

Figure S23. 13C NMR (125MHz, CDCl3) of compound 16. 
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Figure S24. 1H NMR (500MHz, CDCl3) of compound 17. 

Figure S25. 13C NMR (125MHz, CDCl3) of compound 17. 
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Figure S26. 1H NMR (500MHz, CDCl3) of compound 17a. 

 

Figure S27. 13C NMR (125MHz, CDCl3) of compound 17a. 
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Figure S28. 1H NMR (500MHz, MeOD) of compound 18. 

Figure S29. 13C NMR (125MHz, MeOD) of compound 18. 
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Figure S30. 1H NMR (500MHz, MeOD) of compound 18a. 

Figure S31. 13C NMR (125MHz, MeOD) of compound 18a. 
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Figure S32. 1H NMR (500MHz, MeOD) of compound 20. 

 

Figure S33. 13C NMR (125MHz, MeOD) of compound 20. 
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Figure S34. 1H NMR (500MHz, CDCl3) of compound 20a. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S35. 13C NMR (125MHz, CDCl3) of compound 20a. 
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Figure S36. 1H NMR (500MHz, CDCl3) of compound 21. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S36. 13C NMR (125MHz, CDCl3) of compound 21.  
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