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Abstract 

The introduction of automobiles into the world inculcated innovation in many aspects of 

engineering, including design and manufacturing. Engineers worldwide continuously strive hard 

to develop cutting-edge technologies to augment the riders’ comfort, optimize traffic behavior, 

enhance safety and reduce fuel consumption. In the current scenario, advanced features, which 

include forward collision, traction control, adaptive cruise control, and lane change, augment 

safety. Along with these features, vehicle drive modes play a dual role of enhancing safety (e.g., 

traction control drive mode) and reducing energy consumption (e.g., fuel economy drive mode) in 

real-time. But a feature that ameliorates engine performance and optimizes the trip time was not 

investigated by the researchers until now. In this dissertation, a novel drive mode, “Intelligent 

Vehicle Drive Mode” (IVDM), was proposed, which augments the vehicle engine performance 

(VEP) in real time. 

In the current vehicle system, more than twenty drive modes are integrated that augment the safety 

and driver comfort, but none intervenes in the driver behavior vector (DBV).  In this research, 

IVDM predicts the DBV, which optimizes the engine operating conditions (EOC). The metric of 

optimal EOC was defined using the vector engine operating point (EOP) and heating, ventilation, 

and air conditioning (HVAC) system. Deep learning (DL) models were developed by mapping the 

vehicle-level vectors (VLV) with EOP and HVAC parameters using real-time datasets obtained 

from the field tests performed using the Cadillac segment provided by General Motors Inc. The 

trained functions were utilized to predict the future states of DBV, reflecting augmented vehicle 

engine performance (VEP). An iterative analysis was performed by empirically estimating the 
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future states of VLV in the allowable range of DBV and was fed into the DL model to predict the 

performance vectors. The defined vehicle engine performance (VEP) metric was applied to the 

predicted vectors, and thus optimal DBV is the instantaneous output of the IVDM. Finally, the 

proposed concept was quantified by analyzing the instantaneous engine efficiency (IEE) and the 

smoothness measure of the instantaneous engine map (IEM). 

Impact Statement: Real-time vehicle engine performance (VEP) is significantly affected by 

environmental conditions, HVAC systems, and the driver behavior vector (DBV). In this research, 

the featured vehicle drive mode that is integrated into the automotive system was the focus and 

can accommodate the user’s input of either activation or deactivation. Vehicle drive modes were 

developed to augment the rider’s comfort and safety and to reduce fuel consumption but not to 

intervene with the DBV, which is strictly the user’s prerogative. 

The proposed “Intelligent Vehicle Drive Mode” (IVDM) is embedded with the functionality of 

obliging the driver’s command in all scenarios and predicting the driver behavior vector (DBV) to 

enhance the vehicle engine performance (VEP) without increasing the time of trip traversal. The 

IVDM accommodates two user inputs [range of speeds, range of cabin temperatures] which is 

utilized to predict the optimal DBV. Also, IVDM can be activated as a stand-alone application or 

in conjunction with any other drive modes, accommodating a vehicle speed > 25 MPH on a regular 

terrain profile under normal driving conditions. The IVDM, which possesses the unique capability 

of optimizing the [fuel consumption, trip time], could emerge as a new feature of the automotive 

system and is most applicable to vehicles with built-in advanced driver assistance, infotainment, 

and connectivity features.   
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Chapter 1 Introduction 

 

1.1. Background — Automotive Features 

The first commercial automobile developed by Karl Benz in 1886 consists of less than a hundred 

components and not more than ten features [1], whereas the advancement of vehicle technology in 

the year 2022 had reached the extent of integrating more than five thousand components supported 

by a hundred features [2]. All the features developed in the automotive system either enhance the 

efficiency of the vehicle (e.g., fuel economy drive mode, continuously variable transmissions) or 

augment the human driving experience (e.g., HVAC), which includes safety (e.g., adaptive cruise 

control (ACC), lane keep assist (LKA), and auto braking) [3].  

 

Figure 1: Feature safety statistics — Advanced driver assistance systems.  

[Source: General Motors Inc. and University of Michigan] 
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The advanced driver assistance systems (ADAS) integrated with vehicles have produced 

substantial positive results in reducing crashes, based on the recent study conducted in 

collaboration with the University of Michigan and General Motors Inc., which manifests the 

importance of these features, as shown in Figure 1.  

1.2. Automotive Feature Types 

The functionality of every feature is integrated into the system and is generally categorized into 

three aspects based on the type of user intervention and functionality.  

1.2.1. No User Intervention  

The first type would include features that function automatically without driver influence, e.g., 

automatic transmission, crankshaft, and spark ignition timing. Engineers have developed and 

integrated the functionalities of these elements into the automotive system.   

1.2.2. Limited User Intervention  

In the second category, the features are activated and deactivated upon the driver’s command. The 

user interface (Figure 2) is provided by the system to the driver to trigger the features, e.g., driver 

assistance systems and vehicle drive modes [4]. Although the user triggers these features in the 

vehicle, the functionality, and the magnitudes of the parameters in real time are automated, e.g., 

the acceleration produced by the traction control, dynamics of drive modes, lateral dynamic control 

of the lane centering, and forward collision and auto braking while encountering a host in the 

proximity [5]. 

1.2.3. Bounded User Intervention  

This feature is an extended version of limited user intervention with an additional degree of 

freedom to define the magnitudes of the parameters with boundary conditions. The simplest 

example includes the HVAC, where the user has the choice to activate the climate control and to 
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set cabin air temperature, e.g., CAT = [60 90] ℉. A similar case would include activating the 

adaptive cruise control (ACC) feature and user-defined adaptive cruise control set speed profile 

(ACCSSP), e.g., [25 85] miles per hour (MPH). 

 

Figure 2:  2021 Cadillac Escalade — User interface. [Source: General Motors Inc.] 

Among these features, only a few functionalities were developed to enhance the driving behavior, 

of which the most popular one is the vehicle drive mode. All the integrated drive modes correspond 

to feature type 2, “Limited user intervention” (1.2.2), and in the current scope of this dissertation, 

all the concepts developed were focused on developing a new feature (drive mode) for the 

automotive system. To begin with, the following section 1.3 elaborates on the existent drive modes 

integrated into the vehicle system, and the scope of the dissertation is proposed in Section 1.4.   

Vehicle Drive 

Mode 
Functionality 

All-wheel drive 

The All-wheel drive mode provides torque to all four axles and assists 

traction control, suitable for snow driving. [Goodarzi and Esmailzadeh, 

2007]  

Baja  
The Baja mode is activated explicitly during vehicle traversal over desert 

sand and can accommodate deflated tires to obtain more turnover stability. 
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[Sharma et al., 2015] 

Crab 
The crab mode is activated for rear-steer vehicles to accommodate lateral 

shifts for speeds under < 25 MPH. [Cariou et al., 2008] 

Custom 

The custom mode is limited to the vehicles equipped to sense the terrain (e.g. 

Cadillac (V) and Corvette (Z)) and allow the user to input the desired 

behavior.  

Economy/DFM/ 

AFM 

The fuel economy mode is driven by controlled or reduced acceleration and 

deactivates the ignition for one or more cylinders to reduce the fuel 

consumption.  

Fleet 
The fleet mode is equipped with infotainment and connectivity features 

applicable to autonomous, connected vehicles. [Baldacci et al., 2008] 

Hill descent  

This mode is activated automatically when the vehicle encounters a 

downslope of more than 4% and provides controlled deceleration while 

traversing sudden slopes. [Paul et al., 2016] 

Hold 

The hold mode is more applicable to hybrid and electric vehicles (e.g., 

Chevy Volt), which retains the battery’s state. This feature assists the vehicle 

to use the battery power optimally, especially when the battery charge is at a 

higher limit. [Chau C.K. et al., 2016] 

Mountain 

Mountain mode is similar to the hill descent mode, which provides stability 

and controlled acceleration on the contrast while climbing uphill (Slope > 

14%). [Paul et al., 2016] 

Off-road 
The off-road mode is commonly used for rugged navigation, resulting in 

poor surface contact and low traction. [Taghavifar and Mardani, 2017] 

Personal 

The personal drive mode integrated into the vehicle system allows the driver 

to set the maximum allowable speed and teen driver limitations [Davis, 

2019] 

Power 

The power mode produces higher torque by accommodating necessary 

changes in real-time, including reducing the ride height [Zhang and Mi, 

2011] 

Shuttle  
Shuttle mode is most applicable to the transit vehicles used for delivery 

[Chen et al., 2019] 

Snow/ Ice  
This mode is activated in real-time to provide intelligent traction control for 

slippery roads and augments the safety of the vehicle system.   

Sport  

The sport mode provides higher torque and throttle response, robust 

suspension, and stiffer steering, which provides additional stability. [Melman 

et al., 2021] 

Stealth  

The stealth mode activation is not advisable for inexperienced and low 

confidence drivers. This mode reduces the level of interior illumination to 

assist night driving. [Zou et al., 2012] 

Terrain/Crawl  
The terrain mode is activated for uneven surfaces to improve traction and 

stability and to control vehicle traverse. [Taghavifar and Mardani, 2017] 

Tour/Normal   

The touring mode is activated under normal driving conditions, which can 

function with All-wheel drive and fuel economy modes to optimize the 

vehicle performance. [Lairenlakpam et al., 2018].  

Tow/Haul  Haul mode is a customer choice used for logistical purposes for traversing 
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heavy goods and towing. [Gao et al., 2015] 

Track  

The track mode is developed for circuits and tracks with known geometry, 

providing a more aggressive transmission shift pattern than the sport mode. 

[Onder and Geering, 1995] 

Trailer 
This mode is activated when a trailer is attached to the vehicle to control the 

entire system’s longitudinal and lateral dynamics [Hac et al., 2008].  
 

Table 1: Vehicle drive modes—Integrated vehicle system 

 

1.3 Background—Vehicle Drive Modes 

More than twenty drive modes that allow the user to activate them in real time have been installed 

in the latest vehicles in the current technological advances, shown in Table 1. The personal drive 

mode integrated into the vehicle system allows the driver to set the maximum allowable speed and 

teen driver limitations [6]. In contrast, the custom mode is limited to vehicles activated for specific 

terrains, e.g., mountain regions (Cadillac (V) and corvette (Z)). The touring mode is activated 

under normal driving conditions, functioning with all-wheel drive mode (AWD) [7] and fuel 

economy modes [8]. The AWD mode provides the torque to all four axles, suitable for snow 

driving, and the fuel economy mode is driven by controlled acceleration and cancels the ignition 

for one or more cylinders to save fuel. Also, to provide controlled traction, hill descent, snow, and 

mountain modes are available for the user to activate while traversing sudden slopes and uphill 

and slippery roads [9].  

Three modes, namely power, sport, and track, are embedded into the vehicle to encourage racing 

enthusiasts [10]. When triggered, the sport mode provides higher torque and throttle response, 

robust suspension, and stiffer steering, whereas the power mode produces higher torque by 

accommodating necessary changes, including reducing the ride height [11]. Also, the track mode 

has been developed for circuits and tracks with known geometry, which provides a more 
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aggressive shift pattern of the transmission compared with sport mode. In these three modes, fuel 

efficiency is achieved by setting the threshold for the engine over speed [12].  

 

Figure 3: 2022 Electric Hummer: Drive mode — (A) Crab mode; (B) Baja mode  

A challenge to vehicle navigation is driving on uneven terrain, for which the off-road, 

terrain/crawl, and Baja drive modes have been developed to assist the user’s safety [13] (Figure 

3). The off-road mode is commonly used for navigation of rugged terrain that results in poor 

surface contact and low traction. The surfaces could consist of any type of earthly materials like 

water, stones, and mud. In contrast, the terrain mode is activated for uneven surfaces to improve 

traction, stability and control. The Baja mode is activated explicitly during the vehicle’s traversal 

over desert sand and can also accommodate deflated tires for obtaining more turnover stability 

[14]. Other miscellaneous drive modes include fleet mode, applicable to connected vehicles [15]; 

shuttle mode for delivery vehicles [16]; crab mode, activated for rear-steer vehicles to 

accommodate lateral shift [17]; haul mode while towing [18]; and trailer mode when a trailer is 

attached to the vehicle [19].   

1.4 Dissertation Statement and Scope — IVDM 

It is known from the existing literature that the driver behavior vector (DBV) holds more than a 

30% share in affecting engine operating conditions (EOC) [20]. The existing drive modes do not 
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influence the DBV [speed, longitudinal acceleration (LOT), lateral acceleration (LAT), yaw rate 

(YAR), cabin air temperature (CAT)], which is the user’s prerogative. Also, the functionality of 

these drive modes is embedded into the car, and the driver has limited control of activation or 

deactivation. Therefore, none of the drive modes augments the overall vehicle engine performance 

(VEP) and intervenes with the driver behavior vector (DBV).  

 

Figure 4: Dissertation scope and map — IVDM  

Hence, in this dissertation, a multi-parametric optimization problem is addressed, and a novel 

“Intelligent Vehicle Drive Mode” is proposed for development. The IVDM predicts the driver 

behavior vector (DBV) for future time steps in real time by obliging the user’s command to 

augment the vehicle engine performance (VEP). This new drive mode corresponds to the type 3 

feature “Bounded user intervention” (1.2.3), resulting in optimal engine and HVAC operating 

conditions (e.g., lower [IFCR, Trip time, ACRFP], higher [IET, IES], optimal [EST]). In this 

dissertation, the scope of the research is limited to the development of the computational model 

and quantifying the concept with real-time test data (Figure 4).  
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1.5 Dissertation Outline 

In this research, a computational model of the Intelligent Vehicle Drive Mode (IVDM) and its 

quantification is proposed. The current strategy aims to  

• Identify the functionality of the existing drive modes. The integrated drive modes and 

their effect on driver behavior were investigated in the research. The latest General Motors 

Inc. Cadillac vehicle segment was considered in the analysis. The categorization was 

performed based on the effect on lateral and longitudinal dynamics along with interaction 

with multiple terrains.  

• Propose the core feature requirements of IVDM: Feature development is a multistage 

process consisting of well-established protocols, in which defining the feature system 

requirements is the primary step. The requirements will define the parametric constraints 

and limitations to deploy the functionality effectively.   

• Identify the modeling parameters of IVDM: The proposed concept of IVDM enhances 

the engine operating conditions for future time steps in real time and optimizes the lateral 

dynamics for low curvatures. Hence the relevant vehicle parameters to achieve the task 

were identified, and their real-time behavior was analyzed using experimental procedures 

adopting automotive industry protocols.  

• Develop the optimization criteria:  The Intelligent Vehicle Drive Mode (IVDM) was 

developed to ameliorate the engine operating conditions (EOC) and identify the real-time 

analytical methods corresponding to enhanced efficacy.  

• Develop the algorithm for resolving simultaneous equations: The defined optimization 

criteria for EOC are not applicable for low curvatures. Hence, the concept of ISB was 
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utilized to develop the mathematical model relating the [Speed, radius of road curvature 

(RRC)]. 

• Identify the optimal predictive model apt for the vehicle data. The retrieved data were 

analyzed, and the optimally performing model needs to be identified among the many 

machine learning methods.  

• Develop the extended validation of the predictive model. The efficacy of the developed 

deep learning (DL) model needs to be validated with the datasets of multiple vehicle lines 

to corroborate the prediction of the driver behavior vector (DBV).  

• Develop a fail-safe methodology algorithm. In any real-time computational model, a fail-

safe algorithm would enhance the safety of the system performance. Hence the predicted 

results of the driver behavior vector (DBV) in the defined range were evinced with the 

developed fail-safe algorithm.   

• Develop the test cases and validation model. Validation and preparation of the applicable 

test cases are the final aspects of any research to conclude the implemented procedure. The 

novel feature was validated by selecting snippets of the real-time data and comparing the 

performance criteria for the two scenarios of predicted and constant driver behavior vector 

(DBV).  

• Develop the quantification model: The performance vectors were estimated for the 

predicted and constant DBV and are quantified using a new approach by estimating the 

IEE and smoothness measure of IEM. 
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1.6 Dissertation Map 

The entire dissertation is categorized into nine chapters detailing the procedures and assumptions 

adopted, as shown below. 

Chapter 2 “Intelligent Vehicle Drive Mode.” In this chapter, the basic functionality of the IVDM 

is discussed with relevant assumptions. The feature specifications of IVDM in the sense of system 

engineering perspective were defined along with the scope. Estimating the DBV by categorizing 

the road segments was discussed for two cases: Low curvatures at (1) Speeds = [15 25] MPH) and 

(2) Speeds > 25 MPH.   

Chapter 3 “Modeling parameters.” The IVDM predicts the DBV by optimizing the engine 

operating conditions. The parameters applicable to model the IVDM concept were identified in 

this chapter. The vehicle modeling parameters are categorized into three vectors [VLV, EOP, 

CATOP] for this project, and a real-time data retrieval procedure was adopted to develop the 

datasets applicable to predictive modeling. The experimental setup, path planning of test vehicles, 

utilizing the hardware and software to interface with the test vehicle, and methodology to retrieve 

selective data among the many recorded parameters applicable to the current research were 

discussed in this chapter.   

Chapter 4 “Vehicle Engine Performance—Criteria.” The criteria of optimal vehicle performance 

applicable to the modeling parameters of IVDM were defined in this chapter. The criteria includes 

the concepts of ideal steering behavior (ISB), engine operating point (EOP), HVAC, and 

smoothness measure vector (SMV).  

Chapter 5 “Estimation of Speed for Low Curvatures.” It is known from the existing literature that 

the effect of engine performance on low speeds is insignificant. Hence, the concept of ideal 

steering behavior (ISB) defined in Chapter 4 was applied to estimate the optimal speed for low 
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curvatures in the range [15 25] MPH. The non-linear simultaneous equations were solved using 

the known boundary values of the steering behavior vector (SBV) derived from the test cases. This 

chapter outlines the convex optimization and basic polynomial interpolation techniques used to 

estimate the desired speed.  

Chapter 6 “Deep Learning Modeling.” DL concepts have penetrated every aspect of engineering 

for the past decade, and multiple models have been developed to analyze the data. The current 

research focuses on supervised learning as the data retrieved is time-sensitive and readily available 

by real-time tests, as discussed in Chapter 4. However, identifying the apt predictive model for the 

vehicle data is required; hence, in this chapter, two deep learning (DL) models were developed 

using [NARX, LSTM] mapping [VLV, EOP, CATOP], and their performance was compared using 

standard statistical techniques.   

Chapter 7 “Prediction of Driver Behavior Vector.” In this chapter, the core concept of the 

proposed IVDM was developed computationally. The developed deep learning (DL) model 

(Chapter 6) was utilized to predict the future states of the engine performance parameters. This 

chapter applies vehicle engine performance (VEP) criteria to the predicted elements to estimate 

the optimal driver behavior vector (DBV) for future time steps.    

Chapter 8 “Results and Quantification.” The performance of predicted and constant driver 

behavior vector (DBV) is compared in this chapter by analyzing the resulting vehicle engine 

performance (VEP) criteria for two scenarios. An additional validation step is conducted to 

estimate the instantaneous engine efficiency (IEE) and smoothness measure vector (SMV) of the 

instantaneous engine map (IEM) to confirm the efficacy of the proposed approach.  
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Chapter 9 “Discussion.” The performance analysis of the predicted and constant DBV was 

discussed categorically for each parameter, and for every test case, the explanation is provided in 

this Chapter to highlight the enhanced engine operating conditions (EOC) by IVDM.  

Chapter 10 “Conclusion.” All the steps implemented in this research were briefly outlined in this 

chapter, beginning with the functionality of Intelligent Vehicle Drive Mode (IVDM). This work 

utilizes many engineering concepts of automotive systems and data analytics. The methods and 

results were discussed in conjunction with the enhanced engine operating conditions (EOC) due 

to IVDM.   

Chapter 11 “Future work.” The proposed IVDM is novel and has not been integrated into 

automotive systems. However, the current dissertation is limited to developing a computational 

model for internal combustion engine (ICE)-driven vehicles with appropriate assumptions. 

Therefore, the final chapter of this dissertation discusses the ideas of potentially extending this 

research to pragmatically deploy the IVDM in real-time vehicles by overcoming the assumptions 

and its application to electric vehicle systems. 



 

13 

 

Chapter 2 Intelligent Vehicle Drive Mode 

 

The core functionality of the Intelligent Vehicle Drive Mode (IVDM) is to predict the driver 

behavior vector (DBV) in real-time, reflecting optimal vehicle engine performance (VEP). The 

DBV is categorized into three main elements whose magnitudes are the user’s choice: speeding 

behavior [Speed, longitudinal acceleration (LOT)], steering behavior [lateral acceleration (LAT), 

yaw rate (YAR)], and cabin air temperature (CAT), as shown in Figure 5. In this chapter, the 

feature requirements of IVDM were discussed. 

 

Figure 5: Driver behavior vector — IVDM 

2.1 Properties of Intelligent Vehicle Drive Mode 

● Intelligent Vehicle Drive Mode (IVDM) can be triggered as a stand-alone application or 

with any integrated drive mode. 
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● IVDM is not applicable to the scenarios with Speeds limits < 15 miles per hour (MPH), 

which include parking lots, critical zones, or traffic congestion. The critical zones include 

construction, accidents, or school areas. 

• IVDM is not applicable to the arterial road segments with the speed limit zone of [15 25] 

MPH where the variation of engine operating point is insignificant and estimating the DBV 

for this scenario is not the scope of this dissertation.  

● IVDM is applicable to the road segments with radius of road curvatures (RRC) = [8.34 

42.57] m and with the range of allowable speeds [15 25] MPH.  

● IVDM applies to Speeds > 25 MPH as per the categorization of road segments [connecting 

roads, state ways, freeways] discussed in the Table 25.  

● IVDM is most applicable to any vehicle with built-in advanced driver assistance systems 

(ADAS) and advanced infotainment and connectivity (AICON) features (e.g., General 

Motors Inc. Cadillac vehicles with super and ultra-cruise features). 

● IVDM estimates the direct correlation between [Speed, RRC] for low curvatures utilizing 

the concept of ideal steering behavior (ISB) defined in Section 4.  

● IVDM activates the adaptive cruise control (ACC) feature for Speeds > 25 MPH to provide 

controlled longitudinal acceleration (LOT) and augmented safety to the vehicle.  

● IVDM predicts [adaptive cruise control set speed profile (ACCSSP), cabin air temperature 

set profile (CATSP)] by optimizing [engine operating point (EOP), cabin air temperature 

operating point (CATOP)] and estimates [lateral acceleration (LAT), yaw rate (YAR)] by 

assuming ideal steering behavior (ISB). The details of optimal [EOP, CATOP] and ISB are 

discussed in Chapter 4.  
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● Finally, IVDM predicts the driver behavior vector (DBV) in real time to augment vehicle 

engine performance (VEP). The default time and range of predicting [ACCSSP, CATSP] 

= [10s, 1000 m] and details of [allowable vehicle speeds (AVS), allowable vehicle cabin 

air temperatures (AVC)], are discussed in Chapter 6.  

2.2 Speeding Behavior 

The proposed functionality states that Intelligent Vehicle Drive Mode (IVDM) activates the 

adaptive cruise control (ACC) feature in real-time; thus, the ACC controller automatically 

estimates the parameter longitudinal acceleration (LOT) based on the adaptive cruise control set 

speed profile (ACCSSP). Among the many features integrated into the vehicle, the ACC system 

developed by reference [21] plays a vital role in affecting safety and vehicle performance. The 

intricate concept of adaptive cruise control (ACC) is to produce controlled acceleration without 

disengaging the cruise control when encountering a host vehicle in the user-defined proximity and 

strictly following the user command of set speed [22]. Also, it is easy to conclude from the existing 

literature [23] that activation of ACC results in augmented vehicle engine performance (VEP) and 

can be done for any speed > 25 miles per hour (MPH). Thus, activating ACC is the core 

functionality of Intelligent Vehicle Drive Mode (IVDM), and predicting the optimal adaptive 

cruise control set speed profile (ACCSSP) based on the dynamic state of the vehicle and type of 

road segment is discussed in the following sections [24].  

The road segments of either parking lots, low curvatures, or arterial roads have a speed limit (SL) 

= [15 25] MPH. The effect of engine performance at these speeds is insignificant, but for low-

curvature segments, the concept of ideal steering behavior (ISB) was adopted to estimate the 

optimal speed for a definite radius of road curvature (RRC) = [8.34 42.57] m. The detailed analysis 

and mathematical models developed are described in Chapter 5.  
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2.3 Steering Behavior 

The steering behavior consists of two elements, lateral acceleration (LAT) and yaw rate (YAR), 

and in real-time, these values are dependent on the radius of road curvature (RRC) obtained from 

the GPS coordinates and infotainment maps. To achieve optimal lateral dynamics, the authors of 

reference [25] extended the concept of estimating the driver behavior by introducing the concept 

of ideal steering behavior (ISB) in addition to hard braking and acceleration [26]. The ISB 

correlates the empirical parameter vehicle curvature (𝐴𝐵 = 𝑅𝑣𝑡) and RRC (𝐴𝐶 = 𝑅𝐴𝑡), as shown 

in Figure 6. Therefore, the minimal curvature difference (𝐵𝐶 = 𝑅𝑑𝑡) corresponds to ISB, and the 

relevant mathematical models in terms of the steering parameters [lateral acceleration (LAT), yaw 

rate (YAR), radius of road curvature (RRC)] models are defined in Chapter 4. Hence, Intelligent 

Vehicle Drive Mode (IVDM) would incorporate ISB, and the guidelines established by the US 

transportation authority to estimate the lateral acceleration (LAT) and yaw rate (YAR) for definite 

radius of road curvature (RRC) [27].  

 

Figure 6: Driver behaviour vector — Steering behavior   

2.4 Cabin Air Temperature  

In an internal combustion engine (ICE) vehicle, the thermal energy produced by the fuel 

combustion is exchanged between the ambience, engine components, HVAC, lubrication oil, and 
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coolant [28]. Among the many integrated features of the vehicle, the HVAC is the only system 

that maintains the cabin air temperature (CAT). The set CAT inputted by the user, is maintained 

by extracting heat from the engine surface (EST) and transferring thermal energy to the Air 

conditioning system (ACRFP). The environmental conditions (EAT) also play a vital role in 

establishing thermal equilibrium between the four elements [Cabin, Engine, HVAC, 

Environment], as shown in Figure 7. The red colored connecting elements represent the heat 

exchange from higher to lower temperatures, while the blue connections represent the cooling of 

the component. Hence, Intelligent Vehicle Drive Mode (IVDM) proposes a model that can 

generate an optimal cabin air temperature set profile (CATSP), potentially augmenting the HVAC 

and engine performance, whose criteria are defined in Chapter 4 [29]. 

 

Figure 7: Heat exchange: Vehicle interactive elements—Combustion engine
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Chapter 3 Intelligent Vehicle Drive Mode—Modeling Parameters 

 

The feature specifications discussed in Chapter 2.1 state that the functionality of IVDM is 

applicable for two scenarios, (1) estimating the speed for low curvatures, which enhances the 

lateral dynamics, and (2) predicting the [Speed, CAT] by optimizing the engine operating 

conditions and HVAC parameters. In this chapter the applicable parameters of IVDM required for 

developing the mathematical and predictive models were identified, which are the intrinsic part of 

the optimization criteria (discussed in Chapter 4). 

3.1 Vehicle-Level Vectors—VLV 

The vehicle-level vectors (VLV) include three components, namely, body module, driver behavior, 

and environmental factors. The body module vector is embedded with the age of the vehicle [time 

step, odometer], tire pressure, Euler angles [Pitch, Roll], shape of the vehicle [aerodynamic drag], 

and load [trailer, passengers]. The tire pressure (TP) and external load affect the normal and 

traction forces exerted on the wheels, affecting the engine power requirement [30]. The body 

design influences aerodynamic resistance and, thereby, instantaneous fuel consumption rate 

(IFCR) [31]. Odometer value reflects the engine’s age, and the driver behavior vector (DBV) 

consists of the elements discussed in Chapter 2 [Speed, longitudinal acceleration (LOT), lateral 

acceleration (LAT), yaw rate (YAR), cabin air temperature (CAT)]. The environmental factors 

consist of interactive vehicle elements in real time while traversing any terrain, including external 

air temperature (EAT), radius of road curvature (RRC), and gradient. The EAT (℉) influences the 

engine’s thermal stress [32], whereas the terrain data (curvature and gradient) obtained from the 
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inbuilt infotainment maps and GPS coordinates affect the vehicle dynamics. Also, the gradient is 

proportional to the vehicle’s Euler angles; hence, there is no loss of generality in considering pitch, 

roll, and yaw angles as inputs replacing the gradient [33]. The parameters steering angle, humidity 

(HUM—%rh), absolute wind velocity vector (WIND - [𝑊𝑥 + 𝑊𝑦] m.𝑠−1) and atmospheric pressure 

(ATP—N.𝑚−2) were not included in this research as the variation of these parameters on engine 

operating conditions was observed to be insignificant. The real-time analysis was performed under 

normal driving conditions assuming no slip, i.e., the traction force generated at the wheels is 

proportional to the normal forces [34]. Thus, vehicle slip, and variation of rolling friction 

coefficient data are not applicable in this research.  

3.2 Engine Operating Point—EOP 

In an internal combustion engine (ICE)-driven vehicle, the only external input is the air-fuel 

mixture ignited to produce downward thrust onto the piston surface. The flame impingement 

produces engine torque and is transmitted to the engine components, which results in engine speed. 

It is a well-established industrial methodology to represent the engine’s performance with the three 

parameters of instantaneous engine torque (IET), instantaneous engine speed (IES), and 

instantaneous fuel consumption rate (IFCR) projected as engine operating point (EOP) on the 

engine map generated for every vehicle [35]. Thus, optimal EOP was considered as the parameter 

representing the vehicle engine performance (VEP—Chapter 4).  

3.3 HVAC Parameters—CATOP 

In the existing literature, cabin thermal comfort was maintained by optimizing the air conditioning 

system (ACS), applying lower fuel or power consumption constraints. However, the experimental 

results show that the percentage of fuel saved per trip by adopting this procedure is < 1%. Hence, 

in this dissertation, two parameters [EST (℉), ACRFP (PSI)] that reflect HVAC performance are 
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identified, deviating from the traditional concept of optimizing fuel economy. The EST is 

maintained in a specific range by transferring heat to four main elements—engine oil, cabin, 

coolant, and external ambience—to maintain the optimal thermal stress on the engine components. 

The ACS is affected by multiple parameters, including ACRFP, compressor load, and energy 

consumed. However, variations of load and energy consumed are insignificant due to minor 

changes in cabin air temperature (CAT) (℉). Therefore, by analyzing the real-time testing data 

(Chapter 3.6), the ACRFP showed substantial variations based on changes in EAT (℉) and CAT 

(℉). Thus, in this dissertation, the vectors [EST, ACRFP] were empirically defined as cabin air 

temperature operating point (CATOP) representing the HVAC performance [29].   

3.4 Data Retrieval  

To understand the properties of the defined vectors [VLV, EOP, CATOP], it is necessary to 

retrieve the applicable data. In general, the data can be retrieved using two standard approaches: 

(1) generating synthetic data using software tools and (2) performing real-time experiments by 

traversing the test vehicle on predefined paths.  

3.4.1 Synthetic Data Generation  

It is a known industrial practice to test the developed algorithms by generating synthetic data using 

data analytic tools. The main two main advantages of adopting this procedure are (l) less time 

consuming, where the required data sets can be generated instantly with known properties, and (2) 

less expensive, as it requires only basic tools to implement without any copy right constraints. But 

it is impossible to recreate the real-time scenario of [terrain, environment, dynamic state of the 

vehicle] in a virtual simulation. Hence the best methodology to retrieve the data is to adopt real-

time testing (approach 2).  
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3.4.2 Real-time Data Generation  

To develop the concept of IVDM, the real-time vehicle data were retrieved by applying the 

principles of vehicle data architecture. To begin with, this research was performed by obtaining all 

the required approvals to utilize the Cadillac test vehicle segment provided by General Motors Inc. 

The details of the experimental procedure and test cases developed are discussed in the following 

Chapters 3.5 and 3.6. 

 

Figure 8:  Hardware hookup diagram: neoVI — FIRE 2  

[Source: Intrepid CS and General Motors Inc.] 

3.5 Experimental Setup—Data Retrieval   

A two-step procedure was employed to retrieve the data from the vehicle controller area network 

(CAN) bus [36]. The hardware neoVI - FIRE 2 was directly connected to the test vehicle (Figure 

8), and the data retrieval was performed using the software Vehicle Spy (Figure 9). The software 

tool Vehicle Spy developed by Intrepid CS records data in real time [35] and allows the user to 

selectively retrieve the signal data required for analysis (Figure 9). The data retrieval was done by 

selecting a frequency of 10Hz for the elements vehicle-level vectors (VLV) and engine operating 
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point (EOP). The snippets of HVAC parameters were collected at a frequency of 10m (odometer 

reading), as CAN bus would require at least 300ms to record variations CAT (℉) during the steady 

state.  

 

Figure 9: CAN data retrieval—Vehicle Spy graphical user interface                                     

[Source: Intrepid CS and General Motors Inc.] 

3.6 Real-time Testing   

The test cases were developed for two scenarios, namely, (1) driving the vehicle on a constant 

curvature (Speed = [15 25] MPH, RRC = 18.4m) by multiple drivers and (2) by activating the 

adaptive cruise control (ACC) feature with the set speed in the range [25 75] miles per hour (MPH), 

targeting all the road segments shown in Table 25 and Figure 10. The test vehicle 2019 Cadillac 

Escalade was driven on a constant curvature (RRC = 18.4m) to retrieve the data for case (1), and 

details are discussed in Chapter 5.3. The second test (Speeds > 25 MPH) was conducted utilizing 

five vehicles, a 2020 Cadillac CT5, 2019 Cadillac XT6, 2021 Cadillac CT4, 2021 Cadillac 

Escalade ESV, and 2021 Cadillac Escalade AWD. The test cases were developed by driving the 
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vehicle under two external air temperature scenarios—EAT > 65 ℉ and EAT < 45 ℉—and the 

properties of the data sets are shown in Tables 18–24.  

 

Figure 10: Path traversed—Michigan, USA [Source: Google Maps]
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Chapter 4 Engine Operating Conditions—Optimization Criteria 

 

The engine operating conditions (EOC) are primarily defined by three main elements of the 

system: reliability, durability, and energy efficiency. In this dissertation, energy efficiency, which 

is enhanced with optimal engine and HVAC operating conditions, is focused on. The concept of 

ideal steering behavior (ISB) and constraints for optimal [engine operating point (EOP), cabin air 

temperature operating point (CATOP)] were defined in the following sections, reflecting 

augmented vehicle engine performance (VEP).  

4.1 Ideal Steering Behavior 

It is known from the existing literature that the effect of steering on engine performance is 

insignificant. As discussed in Chapter 2.3 the parameters [LAT (𝐿𝑎), YAR (𝑌𝑎)] are an integral part 

of the driver behavior vector (DBV), and the concept of ISB was used to estimate these values. 

Extending the model developed by reference [25], equations (1) and (2) were defined, including all 

steering behavior parameters [𝑉𝑠, 𝐿𝑎, 𝑌𝑎, 𝑅𝑅𝐶] reflecting ISB. Resolving the simultaneous 

equations (quadratic and linear), it was observed that, [𝐿𝑎, 𝑌𝑎] = [0, 0] for high 𝑅𝑅𝐶 ~ ∞ , and it is 

easy to see that LOF (~ 0) has an infinite set of solutions that satisfy the constraint 𝑅𝑅𝐶. 𝑌𝑎
2 = 𝐿𝑎. 

Hence, the parameters [LAT, YAR] can be estimated for definite RRC if the speed value (𝑉𝑠) is 

known, and the detailed analysis is presented in Chapter 5-6 [27].  

                                     2𝑅𝑅𝐶 =  
𝑉𝑠

2

𝐿𝑎 
+  

𝑉𝑠

𝑌𝑎
,  𝑉𝑠  =  

−𝐿𝑎 + √𝐿𝑎
2  + 8𝑅𝑅𝐶.𝐿𝑎.𝑌𝑎

2

2.𝑌𝑎
                                              (1) 

                                                 𝐿𝑂𝐹 = 𝑚𝑖𝑛 [𝑎𝑏𝑠(𝑌𝑎. 𝑉𝑠 −  𝐿𝑎)]                                                                (2) 
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4.2 Euclidean Distance—Ideal EOP  

In this research the metric for engine’s capability was defined by three parameters, [engine torque 

caliber (ETC), engine speed caliber (ESC), Euclidean distance (ED)], directly related to vehicle 

engine performance (VEP). These parameters represent the torque produced per unit of fuel 

consumption [ETC], speed produced per unit torque [ESC], and the Euclidean distance [ED] of 

the operating engine operating point (EOP) from the ideal EOP under normal driving conditions 

[24]. Vehicles traversing arterial road segments with speed limits ranging [25 45] MPH have an 

operating EOP closer to the ideal EOP (lower ED), as shown in the engine map (Figure 11A). An 

engine map is a traditionally accepted convolute graph in the industry, plotted with operating EOPs 

calibrated at the manufacturing plant. The coordinate with the lowest instantaneous fuel 

consumption rate (IFCR) is assumed to be the ideal EOP, and the line segment conjoining the 

operating and ideal EOP is empirically defined as the engine performance vector. In Sections 5 

and 6, the predictive model of [EOP, ACCSSP] is discussed, and Figure 11B is the pictorial 

representation of the instantaneous engine map (IEM), categorizing two ACCSSP profiles 

(predicted and constant). The magnitude of the engine performance vector represents the Euclidean 

distance (ED) (3), and instantaneous engine speed (IES) is ignored in estimating the Euclidean 

distance (ED), as higher IES is desired to reduce the trip time [Kolachalama and Malik, 2021].   

                                    ED = √(𝐼𝐸𝑇𝑖 −  𝐼𝐸𝑇𝑘)2 +   (𝐼𝐹𝐶𝑅𝑖 −  𝐼𝐹𝐶𝑅𝑘)2                                      (3) 

                                                              ETC = 
𝐼𝐸𝑇

𝐼𝐹𝐶𝑅
                                                                             (4) 

 

                                                              ESC = 
𝐼𝐸𝑆

𝐼𝐸𝑇
                                                                             (5) 

 

The vehicle speeds for freeways range [65 85] MPH, which correspond to higher IES and 

fluctuating [IET, IFCR], depending on the dynamic state of the vehicle. Also, the state ways with 

speed limit (SL) in the range [45 65] MPH are considered the green zone (low IFCR). Hence, the 
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generic criteria for augmented engine operating conditions (EOC) would be lower [ED, IFCR] and 

higher [IET, IES, ETC, ESC].  

 

Figure 11: VEP Vector — (A) Engine Map: 2007 Toyota Camry 2.4L I4; (B) IEM 

[Source: Ricardo baseline standard car engine: Tier 2 fuel. EPA ALPHA vehicle simulations. 

Version: June 20, 2016]. The engine map for the 2007 Toyota Camry 2.4L I4, who’s ideal EOP = 

[170 Nm, 2400 RPM, 230 g/kwhr], is shown in Figure 11A. The conversion to SI units was 

performed assuming the fuel is gasoline [Calorific Value (𝐶𝑣), Density (𝜌𝑓)] = [45 MJ.𝐾𝑔−1, 750 

Kg.𝑚−3], and thus the ideal EOP = [170 Nm, 251.33 rad.𝑠−1, 159 1E-8 𝑚3𝑠−1]. A 2020 Cadillac 

CT5 test vehicle was utilized in the current research (Chapter 6), who’s ideal EOP was assumed 

to be [250 Nm, 140 rad.𝑠−1, 180 1E-8 𝑚3𝑠−1]. 

4.3 HVAC Criteria—CATOP 

In this research, the parameters [EST (℉), ACRFP (PSI)] were defined as cabin air temperature 

operating point (CATOP). The optimal thermal stress on the engine components and engine oil 

viscosity result when EST (𝐸𝑆𝑇𝑖) = 194 ℉ [Borman and Nishiwaki, 1987]. The retrieved data 

shown in Tables 18–24 depict that the recorded EST ranges [165 220] ℉. Also, the engine oil 

temperature (EOT) has a range of [192 196] ℉, which is maintained by the coolant to maintain 
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the required viscosity. Hence, there is no loss of generality in assuming ideal engine surface 

temperature EST (𝐸𝑆𝑇𝑖) = 194 ℉ as the optimization criteria. The empirical parameters [A1, A2], 

shown in equations (6) and (7), represent the conformance between the operating EST (𝐸𝑆𝑇𝑜) and 

ideal EST (𝐸𝑆𝑇𝑖). Hence, minimum values of [A1, A2] are desired for optimal HVAC.  

                           𝐴1 =  (𝐸𝑆𝑇𝑜  −  𝐸𝑆𝑇𝑖)  , 𝑖𝑓 𝐸𝑆𝑇𝑜  > 𝐸𝑆𝑇𝑖 = 194 ℉.                                      (6) 

                           𝐴2 =  (𝐸𝑆𝑇𝑖  −  𝐸𝑆𝑇𝑜)  , 𝑖𝑓 𝐸𝑆𝑇𝑜  ≤  𝐸𝑆𝑇𝑖 = 194 ℉.                                      (7) 

The refrigerant integrated into the air conditioning system (ACS) system of the General Motors 

Inc. Cadillac vehicle is assumed to be R134a, and augmented functionality of ACS was achieved 

by limiting the maximum value of operating ACRFP (𝐴𝐶𝑅𝐹𝑃𝑜). The upper boundary limits of 

ACRFP (𝐴𝐶𝑅𝐹𝑃ℎ) are defined in Table 27 in correlation with the EAT (℉), and the intermittent 

boundary values of ACRFP for EAT = [65 110] ℉ were estimated by basic linear interpolation.  

 

Figure 12: Linear interpolation: R134 ACS refrigerant — [EAT, ACRFP]. 
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Therefore, minimum B defined in equations (8) and (9) was considered the optimal HVAC 

criterion corresponding to ACRFP [Kolachalama and Malik, 2021]. Thus, B is always non-

negative when EAT ≥ 65 ℉, but when EAT < 65 ℉, the parameter B is not significant in our 

analysis [29].  

                           𝐵   =  (𝐴𝐶𝑅𝐹𝑃𝑜 − 𝐴𝐶𝑅𝐹𝑃ℎ) , 𝑖𝑓 𝐴𝐶𝑅𝐹𝑃𝑜  > 𝐴𝐶𝑅𝐹𝑃ℎ (PSI)                           (8) 

                         𝐵   =  0  , 𝑖𝑓 𝐴𝐶𝑅𝐹𝑃𝑜  ≤  𝐴𝐶𝑅𝐹𝑃ℎ  or EAT < 65 ℉                                         (9) 

4.4 Smoothness Measure Vector 

 

The combustion of fuel and the flame impingement phenomena in the engine produces torque with 

fluctuating magnitudes. Engineers developed multiple techniques to minimize the torque 

fluctuations by introducing the flywheel and generator [38] and optimizing the spark ignition 

timing and camshaft mechanism [39]. The parameter instantaneous engine speed (IES) follows a 

smooth curve, whereas instantaneous fuel consumption rate (IFCR) and instantaneous engine 

torque (IET) have oscillating behavior. Therefore, the smoothness measure vector (SMV) of the 

parameters [engine operating point (EOP), cabin air temperature operating point (CATOP)] and 

[Euclidean distance (ED), engine torque caliber (ETC), engine speed caliber (ESC)] was 

considered in our analysis, and the vehicle engine performance (VEP) criteria are shown in Table 

28 [Kolachalama and Malik, 2021]. The smoothness measure vector (SMV) was estimated using 

the built-in toolboxes of MATLAB, and the spline function was utilized to fit the data points [24] 

[29]. The SMV was defined using the traditional statistical techniques 𝑅2/Adjusted 𝑅2 and 

SSE/RMSE, represented by equation (10). 

 SMV = [𝑅2, Adjusted 𝑅2, SSE, RMSE] (10) 

𝑅2is a statistical measure of how close the data are to the fitted regression line, whereas Adjusted 

𝑅2 is a modified version of 𝑅2 adjusted for the number of predictors in the model, which is always 
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lower than 𝑅2. The mathematical model below derives the expression of the technique 

𝑅2/Adjusted 𝑅2. Assuming that the marked value is 𝑦𝑖 and the fitted value is 𝑓𝑖, the mean value is 

derived by equation (11); thus, the sum of squares of residuals (𝑆𝑆𝑟𝑒𝑠) and the total sum of squares 

(𝑆𝑆𝑡𝑜𝑡 ) are estimated by equations (12) and (13). Therefore, 𝑅2/Adjusted 𝑅2 is determined by 

equations (14) and (15) for the sample size and explanatory variable size [n, p].  

 𝑦   = 
∑ 𝑦𝑖

𝑛
𝑖=1

𝑛
  (11) 

 𝑆𝑆𝑡𝑜𝑡 =  ∑ (𝑦𝑖  − 𝑦 )2𝑛
𝑖=1   (12) 

 𝑆𝑆𝑟𝑒𝑠  =  ∑ (𝑦𝑖  −  𝑓𝑖)2𝑛
𝑖=1   (13) 

 𝑅2  =  1 −  
𝑆𝑆𝑟𝑒𝑠

𝑆𝑆𝑡𝑜𝑡
  (14) 

 𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑅2  =  1 − (1 − 𝑅2 ) 
𝑛−1

𝑛−𝑝−1
  (15) 

Sum of squares error (SSE) is the residual sum of squares of the conformance between the 

predicted and fitted curves, and the square root of the mean SSE represents RMSE. Higher values 

of 𝑅2/Adjusted 𝑅2 and lower SSE/RMSE are considered a good fit for the curve [24] [29]. 

𝑅2/Adjusted 𝑅2 values range between [0 1], representing the percentage of match, whereas 

SSE/RMSE have the same units of the parameters, as shown in equation (16). 

 𝑅𝑀𝑆𝐸 =  √
𝑆𝑆𝑟𝑒𝑠

𝑛
 (16)
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Chapter 5 Estimation of Vehicle Speed: Low Curvatures 

 

Vehicle speed is the primary factor that influences the automotive system’s safe traversal for low 

curvatures. [Chen et. al and Chowdhury et.al] have developed many techniques to estimate the 

optimal speed [40] and speed range [41] for traversing such curvatures. These values are estimated 

by considering the factors of steering behavior [42] and terrain data [43]. [Merrit et. al and 

Bonneson et.al] describe the technique to estimate the maximum safe speed using the ball bank 

indicator method, which has been traditionally accepted in the automotive industry for a century. 

In this method, an empirical relationship is developed between curvature speed and the deflection 

of the indicator device.  [Bonneson et. al and Carlson et.al] challenge the existing ball bank 

indicator method by estimating the speed using curvature information provided by the 

GPS/compass. [Carlson et.al] correlates the results between the ball bank indicator and 

accelerometer methods for multiple curvatures. In contrast, [Lusetti et.al, Glaser et.al, and Wang 

et.al] proposed a methodology to estimate the safe speed by including radius of road curvature 

(RRC), friction factor (f), and elevation coefficient (e).    

The guidelines established by the US transportation authority recommend the range of speed for a 

definite radius of road curvature (RRC) [52]. In this dissertation, a challenging problem was 

addressed that estimates a unique speed for a definite radius of road curvature (RRC). Also, it is 

interesting to investigate a mathematical model connecting all the steering parameters to generate 

a unique speed for low curvatures by analyzing the retrieved vehicle data. [Kolachalama et.al] 

developed a deep learning (DL) model to predict the engine operating point (EOP) mapping the 



 

31 

 

vehicle-level vectors (VLV). However, deep learning (DL) models may not be apt for estimating 

optimal curvature speed because the variations in EOP are insignificant for low speeds [15 25] 

MPH. Hence, in this chapter a unique vehicle speed for a definite radius of road curvature (RRC) 

was estimated utilizing the ideal steering behavior (ISB) model defined in Chapter 4. The ISB 

model was developed by assuming no change in the parameters of vehicle posture [35] and slip 

[36], which directly affect the traction for low speeds. Also, the range of the steering parameters 

was obtained by real-time vehicle testing of 2019 Cadillac Escalade on a constant curvature 

(RRC=18.4m) by four human drivers (adapting “human-like” driving behavior) under normal 

driving conditions. 

5.1 Existing State of Art 

The concept of ideal steering behavior (ISB) relating all steering parameters [ 𝑉𝑠,  𝑌𝑎, 𝐿𝑎, 𝑅𝑅𝐶] 

was shown in Chapter 4 and Section 5.3. The existing methodologies that gained importance to 

estimate the curvature speed and their limitations are discussed in this section.   

5.1.1 Linear Method  

In this method, the vehicle speed for low curvatures is estimated by the ratio of [𝐿𝑎] and [𝑌𝑎]. This 

ratio is integrated into the LOF, (2) and therefore, it does not consider the effect of radius of road 

curvature (RRC).  

                                                                       𝑉𝑠 =  
𝐿𝑎

𝑌𝑎
                                                                    (17) 
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5.1.2 Accelerometer Method 

The accelerometer method is a well-known technique used to determine speed by measuring the 

lateral acceleration (LAT). This approach produces satisfactory results but does not consider the 

parameter yaw rate (YAR).  

                                                         𝑉𝑠
2 = 𝐿𝑎. 𝑅𝑅𝐶                                                              (18) 

5.1.3 Geometric Design Method 

The geometric design technique is commonly adopted for curvatures and considers elevation (𝑒) 

and friction factor (𝑓) coefficients in estimation, as shown in the following empirical relation (19). 

However, this method does not consider the effect of steering behavior parameters.  

                                                    𝑉𝑠
2 = 15(0.01. 𝑒 +  𝑓)𝐿𝑎. 𝑅𝑅𝐶                                                 (19) 

5.1.4 Ball Bank Indicator Method  

The ball-bank indicator consists of a curved glass tube with a floating weighted ball filled with a 

liquid. The ball-bank indicator is mounted, and as the vehicle travels around a curve, the ball floats 

outward in the curved glass tube due to the centrifugal force exerted in the driver reference frame, 

e.g., 16 degrees of deflection for speeds of 20 MPH or less. In this method, the range of speeds is 

estimated by an empirical relation consisting of the deflection of the instrumental angle, which 

does not include accurate mathematical models and steering parameters.  

5.1.5 Global Positioning System/Compass Method 

This method is implemented based on a compass heading and curve length measurements taken at 

the critical portion of the curve.  The major limitation to this method is the deflection of the 

compass measured by the instrument, which has low precision and does not consider steering 
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behavior. Also, a range of speeds might result in similar deflections, and thus this method cannot 

estimate a unique speed. 

Hence, in this work, equations (1) and (2) defined in the Chapter 4 were assumed to be appropriate 

models that include all the steering parameters. The iterative analysis of these parameters based 

on the boundary values of the retrieved data quantifies the developed function as shown in the 

following sections.   

 

Figure 13: Low curvatures: Driver data—Steering parameters  

5.2 Data Retrieval—Analysis 

In this project, the integrated advanced data architecture in the vehicle was utilized to perform the 

analysis as described in Chapter 3.4. The test vehicle, 2019 Cadillac Escalade, provided by General 

Motors Inc., was utilized and four drivers were selected to traverse the vehicle on the track with 

RRC=18.4m. The sensorial data of steering behavior vector (SBV) was retrieved using the 

integrated controller area network, which directly provide the magnitudes in real time.  The 
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steering parameter data retrieved from four drivers is shown in Figure 13, and hence the boundary 

values of [𝑉𝑠, 𝐿𝑎, 𝑌𝑎] for RRC= 18.4m were estimated. The iterative analysis was performed by 

utilizing the derived boundary conditions and adapting the ideal steering behavior (ISB), whose 

results were discussed in Chapter 5.4. 

5.3 Iterative Analysis 

The boundary values of the steering parameters were known from Figure 13, and the range of yaw 

rate (𝑌𝑎) for all four drivers is [0.325 0.472] rad.𝑠−1 for RRC = 18.4m, whereas speed (𝑉𝑠) and 

lateral acceleration (𝐿𝑎) have the range of [4.6 9.8] m.𝑠−1 and [1.5 5.5] m.𝑠−2. The iterative 

analysis was performed by varying [𝑌𝑎, 𝐿𝑎] in the estimated range, and 𝑉𝑠 is derived by inputting 

these values in equation (1). Figure 14 shows the surface plot of the iterative analysis but does not 

correlate the unique magnitudes of [𝑉𝑠, 𝐿𝑎, 𝑌𝑎] for definite RRC. Hence, basic statistical methods 

were adopted to estimate the steering parameters by appropriate assumptions of the boundary 

values, as shown in Table 2.  

 

Figure 14: Low curvatures: Iterative analysis [Speed, LAT, YAR] — ISB. 
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RRC 

(m) 

Speed 

(m.𝑠−1) 

Lateral acceleration (LAT)  

    (m.𝑠−2) 
Yaw rate (YAR) 

(rad.𝑠−1) 

8.34     [3.88 9.08] [3.89 7.89] [0.72 0.87] 

10 [3.98 9.18] [3.13 7.13] [0.59 0.74] 

15 [4.35 9.55] [1.94 5.94] [0.39 0.54] 

18.4 [4.60 9.80] [1.50 5.50] [0.32 0.47] 

20 [4.83 10.03] [1.43 5.43] [0.29 0.44] 

25 [5.41 10.61] [1.21 5.21] [0.24 0.39] 

30 [6.09 11.29] [1.15 5.15] [0.21 0.36] 

35 [6.87 12.07] [1.19 5.19] [0.19 0.34] 

40 [7.75 12.95] [1.30 5.30] [0.18 0.33] 

42.57 [8.25 13.45] [1.38 5.38] [0.17 0.32] 

 

Table 2: Low curvatures: Range of values—Steering behavior vector 

5.4 Implementation 

To resolve the simultaneous equations (1) and (2) [Chapter 4.1] with three variables [𝑉𝑠, 𝐿𝑎, 𝑌𝑎], 

the following two methods were adopted to estimate a unique speed for definite radius of road 

curvature (RRC) using the boundary values defined in Table 2.  

5.4.1 Convex Optimization 

Method 1: The two equations defined representing ISB, consists of three unknown variables [𝑉𝑠, 

𝐿𝑎, 𝑌𝑎], with known boundary values. Hence, a unique set of [𝑉𝑠, 𝐿𝑎, 𝑌𝑎] for definite RRC, could 

be derived using known numerical techniques in the existing literature.  But to reduce the 

complexity, in this method, the built-in convex optimization functions (solve) of MATLAB were 

adopted in the range of recorded values of [Speed, LAT, YAR]. The detailed mathematical models 

is the not scope of this thesis, but the solutions obtained by adopting this technique are dependent 

on the initial values, and the results for different initial coordinates produced similar results for 

RRC = 18.4 m as shown in Table 3. Thus, a similar approach was adopted for RRC = [8.34 42.57] 

m by assuming an acceptable range of values (Table 2), results of which are presented in Table 4. 
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Figure 15 was plotted with the resulting values of [RRC, Speed (𝑉𝑠)], and it was observed that 

quadratic fit is the most applicable correlation. Thus, the following empirical relation (20) was 

developed, which achieved more than 99% confidence in estimating the speed in comparison with 

the adopted convex optimization technique.  

                                 𝑉𝑠 =  0.001. (2.1 𝑅𝑅𝐶2  +  22𝑅𝑅𝐶)   +  6.37                                            (20) 

 

 Convex optimization 

Initial Coordinate 

𝑋𝑜= [𝑉𝑠, 𝑌𝑎, 𝐿𝑎 ] 

Speed 

(m.𝑠−1) 

Yaw rate 

(rad.𝑠−1) 

Lateral acceleration  

    (m.𝑠−2) 

[4.6, 0.32, 1.5] 7.412 0.4028 2.985 

[7.2, 0.39, 3.5] 7.415 0.4030 2.988 

[9.8, 0.47, 5.5] 7.413 0.4029 2.986 

 

Table 3: Low curvatures: Steering parameters—Estimation of speed (RRC = 18.4 m) 

 Polynomial Convex optimization 

RRC 

(m) 

Speed 

(m.𝑠−1) 

Speed 

(m.𝑠−1) 

 

Lateral acceleration  

    (m.𝑠−2) 

Yaw rate 

(rad.𝑠−1) 

8.34        6.699       6.699 5.381 0.803 

10 6.799 6.797 4.620 0.679 

15 7.169 7.176 3.433  0.478 

18.4 7.481 7.477 3.039 0.406 

20 7.644 7.642  2.920 0.382 

25 8.223 8.222 2.704 0.328 

30 8.906 8.906 2.644 0.296 

35 9.693 9.696  2.686  0.277 

40 10.585 10.585 2.801 0.264 

42.57 11.084 11.083 2.885  0.260 

 

Table 4: Low curvatures: Convex optimization—Steering parameters. 
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  Figure 15: Low curvatures: Ideal steering behavior (ISB) — Convex optimization 

5.4.2 Polynomial Interpolation 

Method 2: In this method a simple technique of quadratic polynomial interpolation was adopted 

by assuming the mean value of yaw rate from the test case as the desired yaw rate. Hence 𝑌𝑎 = 

0.406 rad.𝑠−1 for RRC = 18.4 m was inputted into the constraint 𝑅𝑅𝐶. 𝑌𝑎
2 =  𝐿𝑎  and equation 2 

to obtain [𝑉𝑠, 𝐿𝑎 , 𝑌𝑎 ] = [7.485 m.𝑠−1, 3.045 m.𝑠−2, 0.406 rad.𝑠−1]. As a next step, two other 

boundary coordinates were obtained assuming the recommended maximum allowable speeds for 

the curvatures, i.e., 15 MPH (6.7 m.𝑠−1) for RRC = 8.34 m and 25 MPH (11.07 m.𝑠−1) for RRC 

= 42.57 m. Thus, the required three coordinates for quadratic interpolation are framed in Table 5, 

and the results for the range RRC = [8.34 42.57] m are shown in Table 6 and Figure 16. Similar to 

the previous method, a correlation between the two parameters [RRC, Speed (𝑉𝑠)] was developed 

as shown in the following equation (21).  
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         Figure 16: Low curvatures: Ideal steering behavior (ISB) — Polynomial interpolation 

                                𝑉𝑠  =  0.001. (2 𝑅𝑅𝐶2  +  23.4𝑅𝑅𝐶)  +  6.36                                           (21) 

                     

Quadratic Interpolation 

Segment RRC (m) 
 

Speed (m.𝑠−1) 

U-Turn 8.34 6.699 

Roundabout 18.4 7.48 

Cloverleaf 42.57 11.069 

 

Table 5: Low curvatures: Coordinates—Estimation of speed 

 

 Quadratic interpolation 

RRC 

(m) 

Speed 

(m.𝑠−1) 

Lateral acceleration  

    (m.𝑠−2) 
Yaw rate 

(rad.𝑠−1) 

8.34 6.699  5.381  0.803 

10 6.800 4.624 0.680 

15 7.173 3.431 0.478 

18.4 7.485 3.045 0.406 

20 7.649 2.926 0.382 

25 8.227 2.707 0.329 

30 8.907 2.644 0.297 

35 9.689 2.683 0.277 

40 10.574 2.796 0.264 

42.57 11.069  2.877 0.260 

                                             

                               Table 6: Low curvatures: Polynomial interpolation—Steering parameters 
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5.5 Validation—Speed Profile 

Investigating the results, method 1 (convex optimization) and method 2 (mean value for yaw rate) 

produced similar values for the speed profile. The quadratic correlation between the [RRC, Speed] 

was established in equations (20) and (21), which have equivalent coefficients, and thus, the core 

concept of estimating a unique speed for a definite RRC was projected. This research was 

performed with a limitation of single curvature test data (four drivers), and hence there is no loss 

of generality to assume that method 1 (convex optimization) is more accurate than method 2. The 

resulting steering behavior vector (SBV) was quantified by comparing it with the real-time data 

retrieved for the four test cases and estimating the performance parameters of vehicle curvature 

(𝑉𝑐), roll coefficient (𝑅𝑐), and slip coefficient (𝑆𝑐). The test vehicle 2019 Cadillac Escalade 

dimensions are presented in Table 7, and equations (22), (23), and (24) reflect the performance 

parameters [𝑉𝑐, 𝑅𝑐, 𝑆𝑐].   

Cadillac Escalade - Parameters 

Symbol Parameter Magnitude 

g Gravity 9.81 m.𝑠−2 

µ Friction 0.15 

[H, W] Height, Width [76.7, 81.1] Inches 

 

Table 7: Low curvatures: Parameters—Validation of the speed profile 

                                                         𝑅𝐶 = 
𝑉𝑠

2𝐻

𝑔𝑊𝑅 
                                                       (22) 

                                                         𝑆𝐶= 
𝑉𝑠

2

𝑔𝜇𝑅 
                                                         (23) 

                                                     2𝑉𝐶 =  
𝑉𝑠

2

𝐿𝑎 
+ 

𝑉𝑠

𝑌𝑎
                                                   (24) 

 

The plots of the parameters [𝑉𝑐, 𝑅𝑐, 𝑆𝑐] are depicted in Figure 17, and the roll and slip coefficients 

for the optimal speed were 𝑅𝐶 = 0.330 and 𝑆𝐶 = 2.33 for RRC = 18.4m. The 𝑉𝑐 matches the RRC 

for the optimal speed 𝑉𝑠= 7.48 m.𝑠−1, i.e., 𝑉𝑐= 𝑅𝑅𝐶 = 18.4m reflecting ideal steering behavior 
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(ISB). The estimated values of [𝑉𝑠, 𝐿𝑎 , 𝑌𝑎 ] = [7.485 m.𝑠−1, 3.045 m.𝑠−2, 0.406 rad.𝑠−1] for RRC 

= 18.4m falls within the range of the acceptable limit for safe traverse. Thus, adopting the proposed 

technique for estimating the speeds for low curvatures would augment the driving behavior, and 

the results were assumed to be satisfactory.  

 

 

         Figure 17: Low curvatures: Performance comparison—Driving behavior.  

5.6 Speed Profile for IVDM — Low Curvatures 

In this chapter, an empirical model to estimate a unique speed for low curvatures was proposed as 

one of the functionalities of IVDM. The constraint of ideal steering behavior (ISB) and basic 

statistical techniques were applied on the data retrieved, which resulted in a unique speed value of 

7.48 m.𝑠−1 for RRC = 18.4 m. The convex optimization and polynomial interpolation methods 

were adopted, and the speed estimated for every curvature (Table 4 and 6) falls in the range of the 
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allowable speed limits of [15 25] MPH recommended by the US Department of Transportation. 

The mathematical constraint 𝑅𝑅𝐶. 𝑌𝑎
2 = 𝐿𝑎 and the empirically developed quadratic relationship [ 

𝑉𝑠 = 0.001. (2.1 𝑅𝑅𝐶2  +  22𝑅𝑅𝐶)  +  6.37 ] between [RRC, Speed (𝑉𝑠)] is novel and produced 

acceptable results. The validation of the estimated speed was performed by comparing the 

performance parameters of vehicle curvature, roll, and slip coefficients for all the test cases.   

The estimated speed for a definite RRC (retrieved from infotainment maps), and the mathematical 

model could serve as a measure of driver behavior and feedback to the steering and powertrain 

controller for level 3+ autonomous vehicles, resulting in optimal lateral dynamics. In the current 

scenario, this research has limited data availability for a single curvature test, driven under normal 

driving conditions (no elevation and banking angle), no-slip (lateral and longitudinal), and no 

traffic congestion. Therefore, the proposed approach can be further validated with extensive testing 

using multiple drivers traversing different curvatures, considering all the critical scenarios, and the 

proposed concept could be extended for high curvatures RRC > 42.57 m.  
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Chapter 6 Deep Learning Models 

 

The automotive industry’s evolution has influenced every aspect of engineering, including 

materials science, thermal engineering, and control theory [54]. In the past two decades, the 

emergence of the new field of data science has opened the doors to many unsolved problems, and 

the analytical methods (machine learning) have intruded into every field of engineering. Machine 

learning techniques have been widely applied in the automotive industry to enhance overall vehicle 

performance [55]. Supervised deep learning (DL) models are commonly used to optimize engine 

control [56] and for calibration to enhance engine performance [57]. As mentioned in the previous 

chapters, this dissertation focuses on engine and HVAC, a core element of the automotive system 

whose efficiency is directly proportional to vehicle performance.   

 

Figure 18: Predictive model — Inputs [VLV] and outputs [EOP, CATOP] 
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The proposed IVDM predicts driver behavior vector (DBV) by optimizing the [EOP, CATOP] for 

future time steps. In this chapter, two predictive models are developed by mapping the vehicle-

level vectors (VLV) with the vectors [EOP, CATOP] using the retrieved vehicle data obtained from 

real-time testing (Chapter 3), based on Figure 18.  

To summarize the existing literature, [Malikopoulos et.al] was the first to develop data-driven 

techniques using driving behavior and spark ignition timing to predict fuel consumption. [Shayler 

et.al and Turkson et.al] used deep learning (DL) models to optimize calibratable parameters such 

as fuel injection, crankshaft timing, etc., resulting in enhanced engine performance. To predict the 

brake-specific instantaneous fuel consumption rate (IFCR) and exhaust temperature, [Parlak et.al] 

developed a deep learning (DL) algorithm using engine speed, mean effective brake pressure, and 

injection timing. [Togun et.al] explored the relationship between ignition timing, throttle position, 

and engine speed using the backpropagation neural network function to predict instantaneous fuel 

consumption rate (IFCR) and engine torque. [Rahimi-Ajdadi et.al] integrated multiple regression 

models into a neural network to improve the accuracy of predicting fuel consumption as a function 

of speed, load, and vehicle type. [Wu et.al] developed a forecasting system to estimate the fuel 

intake based on static vehicle model parameters such as engine type, vehicle type/model, 

transmission type, and vehicle load but did not use dynamic vehicle parameters. [Liu et.al] used 

driver behavior and dynamic traffic information to predict IFCR and torque and subsequently 

deduced the desired control model. [Song et.al] adopted vector quantization techniques of driving 

patterns to develop a predictive model for energy management of fuel cell vehicles. References 

[68]–[74] predicted engine torque and engine speed using multivariate inputs. 
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6.1 Predictive Model 

The deep learning (DL) models developed by the researchers predict only one or two elements of 

the [engine operating point (EOP), cabin air temperature operating point (CATOP)] but not all five. 

The concept of IVDM was developed to predict the DBV by optimizing all five of the elements 

[IET, IES, IFCR] and [EST, ACRFP] which play a prominent role in effecting engine performance. 

More importantly, prior works utilize only a limited number of inputs to obtain results, unlike in 

our work. Our input vector consists of all factors that impact the [EOP, CATOP] at the vehicle 

level, especially dynamic factors such as driver behavior vector (DBV), environment, and body 

module parameters, as shown in Figure 18. When activated, the proposed Intelligent Vehicle Drive 

Mode (IVDM) predicts the DBV elements [adaptive cruise control set speed profile (ACCSSP), 

cabin air temperature set profile (CATSP)] by optimizing the vectors [EOP, CATOP] and estimates 

[yaw rate (YAR), lateral acceleration (LAT)] utilizing ideal steering behavior (ISB). In this section, 

individual supervised predictive models were developed for five Cadillac vehicle lines [CT4, CT5, 

Escalade AWD, Escalade ESV, XT6] by mapping the vehicle-level vectors (VLV) with the 

elements [EOP, CATOP], as shown in Figure 18. The retrieved data were analyzed as time-

sensitive; thus, a Nonlinear autoregressive network with exogenous inputs (NARX) and Long short-

term memory (LSTM) DL methods were the obvious choices of the current research [Kolachalama 

et al., 2021]. Hence, the apt deep learning (DL) model for vehicle data is identified in the following 

chapters, and performance analysis was conducted using a traditional statistical measure vector 

(STMV). The ARIMA DL model, shall function based on the weighted moving average of the input 

vector to predict the state of the output, which is not applicable to real-time automotive data as the 

magnitudes of most of the parameters depend on their previous states. Also, ARIMA models has a 
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limitation on the input vector size and thus in this research only the performance of [NARX, LSTM] 

was compared identify the apt technique.  

6.2 Properties of DL Models—NARX and LSTM  

The default properties built into MATLAB were utilized to initialize the process, as shown in Table 

29, and deep learning (DL) models were developed using m-script, the details of which are 

provided in the following subchapters 6.3.1 and 6.3.2.  

6.2.1 NARX 

The Nonlinear autoregressive network with exogenous inputs (NARX) is a recurrent dynamic 

network with feedback connections enclosing several network layers.  This model is based on the 

linear autoregressive method with additional input (ARX) model, which is commonly used in time-

series modeling. The future state of the output signal is regressed on previous values of the output 

signal and previous values of an independent (exogenous) input signal, which is implemented 

using a feedforward neural network. The NARX method produces the best results for non-linear 

dynamic systems, with two forms of open and closed-loop transformation.  

 

Figure 19: NARX DL model—Open-loop network diagram                                              
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The closed loop can predict multiple future states and is generally adopted by internal feedback 

when an external feedback vector is not available. In the current work, the vehicle is equipped with 

controller area network (CAN) architecture that provides the instantaneous magnitudes of the 

vectors [vehicle-level vectors (VLV), engine operating point (EOP), cabin air temperature 

operating point (CATOP)].  Thus, an open-loop network was implemented to develop the model, 

as shown in Figure 19, which is the default property of built-in MATLAB functionality 

[Kolachalama et al., 2021].   

The Nonlinear autoregressive network with exogenous inputs (NARX) method was adopted using 

the default training options with two input and feedback delays and a fixed hidden layer with ten 

neurons. The Levenberg-Marquardt backpropagation (LM) training function was chosen from 

among the available list of options, and its performance was validated by the traditional statistical 

technique root mean square error (RMSE) (Equation 16) [MATLAB 2021a]. The LM is the default 

supervised algorithm in MATLAB, as it is the optimal and fastest backpropagation algorithm in 

the toolbox. A detailed analytical model of LM is not within the scope of this dissertation, but the 

mathematical model of the Nonlinear autoregressive network with exogenous inputs (NARX) 

method is outlined in Chapter 6.5.  

6.2.2 LSTM 

Long short-term memory (LSTM) predicts the output by considering the long-term dependencies 

of the entire set of inputs and possesses the properties of artificial recurrent neural networks (RNN) 

[87] [Kolachalama et al., 2021]. The core components of an LSTM network are the sequence input 

layer and LSTM layer, implemented for classification and regression tasks since there can be lags 

of unknown duration between actual events in a time series. In the current work, the prediction of 
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future states applies to the regression task where the network ends with a fully connected layer and 

a regression output layer, as shown in Figure 20.  

 

Figure 20: LSTM DL model — Architectural diagram 

Similar to the previous section, the default properties of Long short-term memory (LSTM) include 

the training function stochastic gradient descent with momentum optimizer (SGD), with unit 

gradient threshold and two hundred (200) hidden units. Further details of the intrinsic properties 

of the mathematical model are out of the scope of this dissertation; implementation of the deep 

learning (DL) models using the datasets retrieved is discussed in Chapter 6.4.   

6.3 Validation of Results—NARX and LSTM Modeling 

Long short-term memory (LSTM) produced the best results for classification and regression of 

biological data (e.g., antibody sequencing) in the existing literature and Nonlinear autoregressive 

network with exogenous inputs (NARX) was preferred for data with non-linear behavior 

dependent on previous time step. The performance analysis of the predictive model of engine 

operating point (EOP) using [NARX, LSTM] deep learning (DL) methods was done by varying 

the parameters [training size, test size, hidden layers/units], and it was proven that the NARX 

method outperformed LSTM for adaptive cruise control (ACC)-activated and deactivated datasets 

[Kolachalama et al., 2021]. In this section, extended validation is performed using a similar 

methodology for the five Cadillac test vehicle datasets depicted in Tables 18–24 to predict the 
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vectors [EOP, CATOP] by mapping vehicle-level vectors (VLV).  The available data sets were 

categorized into training (70% of data) and validation (30% of data). As is typically done for 

improved performance, the data were normalized to have zero mean and unit variance. 

The resulting plots compare the retrieved data (blue) and predicted values (orange) using 

[Nonlinear autoregressive network with exogenous inputs (NARX), Long short-term memory 

(LSTM)] methods for randomly selected snippets, as shown in Figures 31–35 (NARX) and Figures 

37–42 (LSTM). The first row of the figure represents the three elements of EOP, and the units of 

[instantaneous engine torque (IET), instantaneous engine speed (IES)] are Nm and rad.𝑠−1, 

whereas instantaneous fuel consumption rate (IFCR) was recorded on a scale of 1E-8 𝑚3𝑠−1. The 

second row consists of the cabin air temperature operating point (CATOP) vector [EST, ACRFP], 

measured in [℉, PSI]. The numerical performance of the developed deep learning (DL) models 

were validated by adopting traditional statistical measure vector (STMV) = [root mean square error 

(RMSE), first order derivative (FOD), signal-to-noise ratio (SNR)] on the conformance between 

actual and predicted values, as shown in Tables 30–31.  

The NARX method produced a maximum RMSE IET = 2.465 (CT4—Set 1), whereas the LSTM 

network produced a minimum RMSE IET = 18.515 (XT6—Set 2). The element IES was predicted 

with equal competence by NARX (FOD <1.129) and LSTM (FOD <1.42), but LSTM lacked the 

required consistency savvy (mean IFCR FOD = 11.9) to match the NARX output (mean IFCR 

FOD = 10.22) for all the datasets. Similarly, the NARX prediction had 75% lower RMSE EST and 

18% lower FOD ACRFP when compared to LSTM output. It is easy to see that despite the 

stochastic variation, the predicted curves aligned to the actual values, and by visualizing, the fit of 

NARX prediction is smoother when compared with LSTM graphs and thus the signal-to-noise 

ratio (SNR) results play a low-priority role. Also, the average computational time required for 
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developing the NARX training function was 71.195s, whereas Long short-term memory (LSTM) 

required 125.83s. Hence, the developed NARX DL model can predict the [EOP, CATOP] vector 

with enhanced accuracy, and the results for the test cases were assumed to be satisfactory.  

In this research, the scope was limited to a single-vehicle test case for developing the 

computational model for Intelligent Vehicle Drive Mode (IVDM) leveraging the 2020 Cadillac 

CT5 datasets (Tables 21-24). Hence, specific snippets of data with adaptive cruise control set speed 

profile (ACCSSP) = [30 75] miles per hour (MPH) (Table 32) were selected, and another 

validation check was performed for the developed nonlinear autoregressive network with 

exogenous inputs (NARX) DL model. The plots of predicted [EOP, CATOP], comparing the 

actual values, were shown individually in the Figures 43–47, Figures 48–52 (EAT > 65 ℉), and 

Figures 53–57 (EAT < 45 ℉). The computational efficacy of prediction was projected using the 

statistical measure vector (STMV), as shown in Tables 33-35. The IET RMSE values were <1.7, 

and IES FOD was < 0.27 for all the datasets, whereas the IFCR SNR has an acceptable range of 

[6.36 985.73]. Similarly, the EST RMSE < 2.3 (EAT > 65 ℉) and < 0.9 (EAT < 45 ℉), whereas 

ACRFP SNR has a range of [2.2 16.1]. Therefore, the efficacy of the NARX deep learning (DL) 

model was proven, and the results were assumed to be satisfactory. Also, an increased number of 

datasets and enhanced validation would enrich prediction precision.  

However, in any scenario, adopting deep learning (DL) techniques for engineering purposes is a 

complete black box methodology, and the results of these algorithms may not be reproducible or 

deterministic. Nevertheless, the DL model may produce different outputs at multiple instances of 

time for the same input. Hence, an intelligent engineering solution would require describing the 

mathematical model of the Nonlinear autoregressive network with exogenous inputs (NARX) DL 

method analytically and conceptually. Also, the proposed concept of Intelligent Vehicle Drive 
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Mode (IVDM) would affect the critical safety functionality of the lateral and longitudinal 

dynamics of the automotive system. Therefore, to resolve this issue, a fail-safe algorithm was 

developed (Chapter 7.7), and a brief description of the mathematical model adopted for the NARX 

DL method is presented in Chapter 6.5.  

6.4 NARX DL Method—Mathematical Modeling 

The NARX deep learning (DL) model is the simplest among all techniques considering previous 

states (e.g., last three states) to predict the future state. This model is the linear representation of 

the dynamic system in discrete-time and can accommodate multiple exogenous inputs. The model 

relates the current value of a time series to the past values of the same vector and the current and 

past values of the driving (exogenous) series. The following equation (25) represents the linear 

model of NARX [MATLAB 2021a]. 

                                      𝑌𝑘+1  =  ∑ 𝑎𝑖𝑌𝑘−𝑖+1
𝑛𝑎
𝑖=1   +  ∑ 𝑏𝑖𝑈𝑘−𝑖+1

𝑛𝑏
𝑖=1                                            (25) 

[𝑎𝑖, 𝑏𝑖]—Derived coefficients for the outputs and exogenous inputs. 

[𝑛𝑎, 𝑛𝑏]—The length of the previous states of vector: outputs and inputs. 

[𝑌𝑘, 𝑈𝑘]—The magnitude of the output and input vector at the time step 𝑘. 

However, in the current scope of this dissertation, the focus was to develop the feature 

requirements and computational model of Intelligent Vehicle Drive Mode (IVDM) along with 

extensive validation. Hence the detailed, customized algorithm of the nonlinear autoregressive 

network with exogenous inputs (NARX) DL model for the vehicle data is planned as future work.  

In the current work, built-in functions of MATLAB with default properties were utilized to develop 

the core concept of IVDM, and further elements of the research are pursued in Chapters 7–9. 
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Chapter 7 Prediction of Driver Behavior Vector 

 

To reiterate the proposed concept, when triggered, Intelligent Vehicle Drive Mode (IVDM) 

predicts the driver behavior vector (DBV) elements [adaptive cruise control set speed profile 

(ACCSSP), cabin air temperature set profile (CATSP)] by optimizing [EOP, CATOP] in real time 

and estimates [yaw rate (YAR), lateral acceleration (LAT)] utilizing the concept of ideal steering 

behavior (ISB). In this chapter, the detailed procedure adopted, and relevant assumptions 

incorporated are discussed.  

7.1  Background—Prediction of CATSP 

It is known from the existing literature [78] that the cabin air temperature (CAT) is reduced by the 

air conditioning system (ACS) [75] and increased by extracting heat from the engine surface [76–

77]. [Khayyam et.al] adopted an adaptive control technique to alter the functioning of the ACS 

based on environmental conditions and driver behavior. This method produced simulation results 

that project 1% more energy-saving than the conventional fuzzy logic control used by [Nasution 

et.al]. The fuzzy logic control developed in [80] contained an iterative analysis of cabin air 

temperature (CAT) and the ACS compressor load to evaluate the system’s performance, including 

reduced energy consumption [80]. [Khayyam et.al] developed an ACS to produce a desirable cabin 

air temperature (CAT) and maintain the air quality in conjunction with the engine controller by 

activating cruise control. [Khayyam et.al and Huang et.al] investigated the parameters of the mass 

flow rate of the air by dynamically adjusting the blower speed and air-gates opening under various 

thermal loads, which resulted in reduced energy consumption. [Fayabakhsh et.al] developed a heat 
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balance method for estimating the thermal load encountered by the cabin using a predictive model 

mapping the driving conditions. This method could potentially predict thermal comfort in real-time 

and thus reduce the power consumption of the air conditioning system (ACS). Finally, [Cvok et.al] 

developed an optimized control model for three stages to enhance the efficiency of the ACS. These 

stages include optimizing the ACS operating point based on the control inputs and relevant 

actuators. 

7.2  Background—Prediction of ACCSSP 

Identifying the optimal adaptive cruise control set speed profile (ACCSSP) by considering the 

dynamic state of the vehicle for a definite coordinate on the terrain is an unsolved, challenging task 

for engineers. In the existing literature, researchers have performed the parametric optimization of 

adaptive cruise control (ACC) output by analyzing the real-time data of driver behavior, traffic 

congestion, terrain, and environmental factors. References [88] – [93] considered driver behavior 

as the key input to develop the control algorithm using analytical techniques and to tune the outputs 

of the ACC system. The enhancements of vehicle connectivity opened doors to obtain real-time 

traffic congestion information. References [94] – [98] adopted deep learning (DL) models to 

estimate the ACCSSP and desired acceleration based on traffic congestion data retrieved in real 

time. References [99] – [107] adopted terrain data to estimate the ACC control parameters to reduce 

instantaneous fuel consumption rate (IFCR) using the known mathematical models.  

7.3  Prediction of Driver Behavior Vector — [ACCSSP, CATSP] 

The steps applicable to Intelligent Vehicle Drive Mode (IVDM) prediction of driver behavior 

vector (DBV) utilizing the functionality (Chapter 2), datasets (Chapter 3), criteria (Chapter 4), and 

deep learning (DL) models (Chapter 6) are defined in this section. The prediction of DBV elements 

[ACCSSP (MPH), CAT (℉)] was made by the four-step process described in Figure 21, and the 
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applicable equation sets are shown in Table 8. The ACCSSP (> 25 MPH) was predicted by 

optimizing the engine operating point (EOP) assuming CAT (℉). Similarly, the CATSP (℉) was 

predicted by optimizing the cabin air temperature operating point (CATOP) and ACCSSP resulting 

from the previous step [Kolachalama and Malik, 2021].  

 

Figure 21: Prediction of driver behavior vector — IVDM process 

 

The default range of [allowable vehicle speeds (AVS), allowable vehicle cabin air temperatures 

(AVC)] to predict [ACCSSP, CATSP] was estimated by relations (26) and (27), assuming [𝐷𝐶𝐴𝑇, 

𝐸𝐴𝑇𝑜] = [70, 65] ℉. The speed limit (SL) of the road segment in real-time could be retrieved from 

the built-in advanced infotainment and connectivity (AICON) features of the vehicle system, and 

the functionality of the Signum function—Sign of the real number (SIGN) mathematical model 

was utilized to estimate AVC = [65 70] ℉ (EAT ≥  𝐸𝐴𝑇𝑜 ℉) or [70 75] ℉ (EAT  < 𝐸𝐴𝑇𝑜 ℉).  

                                               AVS = [SL-5, SL+5] MPH                                                          (26) 

                                             AVC = [𝑀𝑖𝑛𝐶𝐴𝑇, 𝑀𝑎𝑥𝐶𝐴𝑇] ℉                                                   (27) 

𝑀𝑖𝑛𝐶𝐴𝑇 = 𝑚𝑖𝑛 [𝐷𝐶𝐴𝑇 − 5𝑥;  𝐷𝐶𝐴𝑇 + 5𝑥]; 
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𝑀𝑎𝑥𝐶𝐴𝑇 = 𝑚𝑎𝑥 [𝐷𝐶𝐴𝑇 − 5𝑥;  𝐷𝐶𝐴𝑇 + 5𝑥] 

𝑥  =  𝑆𝐼𝐺𝑁 (𝐸𝐴𝑇 − 𝐸𝐴𝑇𝑜); 

7.4  Estimation of Future Input States 

Step 1: The empirical relations defined in Table 8 were utilized to estimate the future input values 

(𝑉𝐿𝑉𝑘+1) of the deep learning (DL) model relative to the current state of the vehicle (𝑉𝐿𝑉𝑘) (Figure 

21). The speed (𝑆𝑘+1) was varied in the default range of allowable vehicle speeds (AVS), and the 

odometer parameter (𝑂𝑘+1) was calculated by basic linear interpolation using [𝑆𝑘+1, 𝐿𝑜(𝑘+1)], 

assuming a constant time step.  

𝑇𝑘+1  = 𝑇𝑘  +   𝑑𝑇 

𝐸𝐴𝑇𝑘+1  = 𝐸𝐴𝑇𝑘 

2𝑅𝑅𝐶𝑘+1 =  
𝑆𝑘+1

2

𝐿𝑎(𝑘+1) 
+ 

𝑆𝑘+1

𝑌𝑎(𝑘+1)
, 

 

𝑚𝑖𝑛 [𝑎𝑏𝑠(𝑌𝑎(𝑘+1). 𝑆𝑘+1 − 𝐿𝑎(𝑘+1))] 

𝑊𝑦 ≈ 0 m.𝑠−1 

Wind velocity  

𝑂𝑘+1  = 𝑂𝑘  +  𝑆𝑘 . 𝑑𝑇 

𝑇𝑃𝑘+1  = 𝑇𝑃𝑘  
 𝐿𝑜(𝑘+1)  =  𝑔𝜇𝑟+ 𝑔𝑠𝑖𝑛(𝜃𝑔(𝑘+1))+

𝜌𝑎𝐶𝑑.𝐴𝑐

2.(𝑀𝑐+𝑀𝐿)
. (𝑆𝑘+1 + 𝑊𝑦 )2  

𝜌
𝑎

 = 1.225 kg.𝑚−3 

Density of air 

𝑆𝑘+1 = [𝑆𝐿 − 5, 𝑆𝐿 + 5] 
MPH  

𝐶𝐴𝑇𝑘+1  = 𝐶𝐴𝑇𝑘  𝑜𝑟  [65 70] ℉ 𝑜𝑟 [70 75] ℉ g = 9.81 m.𝑠−2 

Gravity 

𝐶𝑑= 0.31.  

Drag coefficient 

 

 Mass of the Vehicle 𝑀𝑐=1769.69 kg,                                              

Mass of the external load  𝑀𝐿=78.7 kg ;  

Area of cross section 𝐴𝑐 = 1.71 𝑚2  

𝜇
𝑟
= 0.013 

Rolling coefficient 

 

Table 8: Equation set—Prediction of DBV.        

The magnitude of LOT (𝐿𝑜(𝑘+1)) was estimated by calculating the force required to overcome the 

resistance [rolling, gradient, aerodynamics] for maintaining the adaptive cruise control set speed 

profile (ACCSSP), while the yaw rate (YAR) (𝑌𝑎(𝑘+1)) and LAT (𝐿𝑎(𝑘+1)) were estimated 

assuming ideal steering behavior (ISB). The 𝐶𝐴𝑇𝑘+1 was varied in the default range of allowable 

vehicle cabin air temperatures (AVC), whereas 𝑇𝑃𝑘+1 was assumed to be the same as in the 
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previous time step. The General Motors Inc. Cadillac is equipped with advanced driver assistance 

systems (ADAS) and advanced infotainment and connectivity (AICON) features (super and ultra-

cruise), which would generate the vectors RRC (𝑅𝑅𝐶𝑘+1), gradient (𝛳𝑘+1), and 𝐸𝐴𝑇𝑘+1 based on 

the GPS coordinates. An example of an estimated 𝑉𝐿𝑉𝑘+1 is shown in Table 9.       

Time 

Step 

Odometer 

(Miles) 

Speed  

(MPH) 

RRC 

(m) 

YAR 

(rad/s) 

LAT  

(m.𝑠−2) 

LOT 

 (m.𝑠−2) 

EAT  

(℉) 

CAT  

(℉) 

𝑇0 1000.000 [65 75] 8304.140 0.216 0.118 0.438 [78.3], [40.1] [65 70], [70 75] 

𝑑𝑇1 1000.002 [65 75] 8304.140 0.216 0.118 0.375 [78.3], [40.1] [65 70], [70 75] 

𝑑𝑇2 1000.004 [65 75] 8304.140 0.216 0.118 0.313 [78.3], [40.1] [65 70], [70 75] 

𝑑𝑇3 1000.006 [65 75] 9342.158 0.192 0.105 -0.125 [78.3], [40.1] [65 70], [70 75] 

𝑑𝑇4 1000.008 [65 75] 24912.420 0.072 0.039 -0.188 [78.3], [40.1] [65 70], [70 75] 

𝑑𝑇5 1000.010 [65 75] 74737.261 0.024 0.013 -0.063 [78.3], [40.1] [65 70], [70 75] 

𝑑𝑇6 1000.012 [65 75] 74737.261 0.024 0.013 0.250 [78.3], [40.1] [65 70], [70 75] 

𝑑𝑇7 1000.014 [65 75] 37368.631 0.048 0.026 0.250 [78.3], [40.1] [65 70], [70 75] 

𝑑𝑇8 1000.016 [65 75] 24912.420 0.072 0.039 0.188 [78.3], [40.1] [65 70], [70 75] 

𝑑𝑇9 1000.018 [65 75] 24912.420 0.072 0.039 0.188 [78.3], [40.1] [65 70], [70 75] 

𝑇1 1000.019 [65 75] 9342.158 0.192 0.105 0.313  [78.3], [40.1] [65 70], [70 75] 

Table 9: Estimated inputs—Deep learning model (10 Time steps = 1 s)  

 

7.5  Prediction of Output States—DL Model 

Step 2: The input sets 𝑉𝐿𝑉𝑘+1 were estimated for all the values of allowable vehicle speeds (AVS) 

range (e.g., [65, 75] MPH), and thus eleven sets of inputs were generated. These matrices were fed 

into the developed NARX deep learning (DL) model, and therefore a corresponding eleven sets of 

𝐸𝑂𝑃𝑘+1 were predicted. Similarly, six sets of 𝐶𝐴𝑇𝑂𝑃𝑘+1 were predicted by varying the cabin air 

temperature (CAT) in the allowable vehicle cabin air temperatures (AVC) = [65 70] ℉.  

7.6  Implementation of VEP Criteria 

Step 3: The vehicle engine performance (VEP) criteria defined in Chapter 4 were applied to the 

predicted vectors [𝐸𝑂𝑃𝑘+1, 𝐶𝐴𝑇𝑂𝑃𝑘+1], and the results for ten time-steps are shown in Tables 10–

11. The six top-performing optimal ACC speeds and CAT’s were selected for each VEP criteria, 

as shown in Tables 12–13. Among these values, the top three modes were selected as the eligible 
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vehicle speeds (EVS) ([71, 70, 69] MPH) and eligible vehicle cabin air temperatures (EVC) ([68, 

70, 67] ℉ or [72, 71, 70] ℉) for the time step 𝑇𝑘+1. A similar process was implemented for one-

hundred-time steps, and therefore the [ACC, CAT] matrix was framed as shown in Table 14.  

Data ACC Speed—Iterative Analysis  

EOP Speed 65 66 67 68 69 70 71 72 73 74 75 

 

 

IET 

Dist 1.6E+04 3.1E+04 4.7E+04 6.2E+04 7.8E+04 9.4E+04 1.1E+05 1.2E+05 1.4E+05 1.6E+05 1.7E+05 

𝑅2 0.76 0.83 0.77 0.74 0.77 0.77 0.75 0.77 0.75 0.78 0.76 

Adj 𝑅2 0.4 0.57 0.43 0.36 0.44 0.43 0.39 0.44 0.37 0.44 0.4 

SSE 6.26 4.47 5.94 6.69 5.82 5.94 6.34 5.76 6.49 5.72 6.16 

RMS 0.4 0.33 0.39 0.41 0.38 0.38 0.4 0.38 0.4 0.38 0.39 

 

 

IES 

Area 1.8E+04 3.5E+04 5.3E+04 7.1E+04 8.9E+04 1.1E+05 1.2E+05 1.4E+05 1.6E+05 1.8E+05 2.0E+05 

𝑅2 1 1 1 1 1 1 1 1 1 1 1 

Adj 𝑅2 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 1 0.99 0.99 

SSE 0.003 0.002 0.003 0.003 0.003 0.003 0.002 0.001 0.001 0.001 0.001 

RMS 0.009 0.007 0.008 0.008 0.009 0.008 0.007 0.006 0.005 0.006 0.006 

 

 

IFCR 

Area 2.8E+04 5.6E+04 8.4E+04 1.1E+05 1.4E+05 1.7E+05 1.9E+05 2.2E+05 2.5E+05 2.7E+05 3.0E+05 

𝑅2 0.78 0.78 0.72 0.74 0.8 0.75 0.81 0.74 0.76 0.68 0.67 

Adj 𝑅2 0.46 0.45 0.31 0.35 0.5 0.37 0.53 0.36 0.4 0.22 0.17 

SSE 4913.31 4737.99 5613.29 4967.08 3726.95 4633.05 3429.65 4679.59 4418.54 5766.31 6140.52 

RMS 11.19 10.99 11.97 11.26 9.75 10.85 9.35 10.92 10.62 12.13 12.52 

 

 

ETC 

Area 5.4E+01 1.1E+02 1.6E+02 2.2E+02 2.8E+02 3.3E+02 3.9E+02 4.5E+02 5.0E+02 5.6E+02 6.2E+02 

𝑅2 0.788 0.781 0.724 0.739 0.802 0.751 0.814 0.745 0.759 0.689 0.671 

Adj 𝑅2 0.469 0.452 0.309 0.348 0.504 0.377 0.535 0.362 0.398 0.222 0.176 

SSE 0.02 0.02 0.025 0.023 0.017 0.022 0.016 0.023 0.022 0.03 0.033 

RMS 0.022 0.023 0.025 0.024 0.021 0.023 0.02 0.024 0.024 0.028 0.029 

 

 

ESC 

Area 1.1E+02 2.2E+02 3.3E+02 4.5E+02 5.6E+02 6.7E+02 7.8E+02 9.0E+02 1.0E+03 1.1E+03 1.2E+03 

𝑅2 0.822 0.869 0.824 0.801 0.826 0.817 0.799 0.812 0.783 0.807 0.792 

Adj 𝑅2 0.554 0.672 0.56 0.503 0.565 0.542 0.497 0.529 0.457 0.517 0.479 

SSE 0 0 0 0 0 0 0 0 0 0 0 

RMS 0.003 0.002 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 

 

 

ED 

Area 1.9E+04 3.7E+04 5.5E+04 7.2E+04 9.0E+04 1.1E+05 1.2E+05 1.4E+05 1.6E+05 1.7E+05 1.9E+05 

𝑅2 0.787 0.783 0.725 0.743 0.802 0.751 0.815 0.747 0.761 0.689 0.671 

Adj 𝑅2 0.467 0.457 0.311 0.358 0.504 0.378 0.538 0.368 0.402 0.222 0.176 

SSE 4896.87 4721.42 5595.32 4950.75 3716.68 4620.39 3421.22 4665.06 4404.92 5749.95 6123.26 

RMS 11.18 10.978 11.951 11.241 9.74 10.86 9.345 10.912 10.604 12.115 12.502 

Table 10: VEP criteria—Iteration of AVS (10 Time steps = 1 s) 
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CAT A1 A2 B 

Area 𝑅2  
Adj 

𝑅2 
SSE RMS Area 𝑅2  

Adj 

𝑅2 
SSE RMS Area 𝑅2  

Adj 

𝑅2 
SSE RMS Area 

ACCSSP = 70 MPH; EAT = 78.75 ℉ 

65 114.5 0.994 0.986 1.495 0.194 1931 0.998 0.994 61.03 1.242 2252 0.995 0.989 158.9 2.004 

66 175.2 0.995 0.987 2.749 0.264 1994 0.998 0.994 64.36 1.275 2365 0.996 0.989 167.8 2.059 

67 216.5 0.992 0.979 6.555 0.407 2020 0.998 0.994 67.47 1.306 2379 0.996 0.990 149.4 1.943 

68 203.8 0.992 0.981 5.391 0.369 1872 0.997 0.993 67.63 1.307 2399 0.996 0.990 155.5 1.983 

69 178.2 0.993 0.982 3.933 0.315 1688 0.997 0.993 52.16 1.148 2402 0.996 0.990 167.6 2.058 

70 201.9 0.995 0.986 3.773 0.309 1612 0.998 0.994 44.56 1.061 2416 0.996 0.990 162.6 2.027 

ACCSSP = 70 MPH; EAT = 38.3 ℉ 

70 47.069 0.990 0.976 0.551 0.118 40.095 0.987 0.968 0.938 0.154 0.000 0.000 0.000 0.000 0.000 

71 45.876 0.990 0.975 0.557 0.119 40.662 0.987 0.968 0.961 0.156 0.000 0.000 0.000 0.000 0.000 

72 45.408 0.990 0.975 0.561 0.119 41.013 0.987 0.968 0.978 0.157 0.000 0.000 0.000 0.000 0.000 

73 45.575 0.990 0.975 0.566 0.120 41.169 0.987 0.968 0.988 0.158 0.000 0.000 0.000 0.000 0.000 

74 46.270 0.990 0.975 0.569 0.120 41.162 0.987 0.968 0.993 0.158 0.000 0.000 0.000 0.000 0.000 

75 47.368 0.990 0.975 0.572 0.120 41.026 0.987 0.967 0.993 0.158 0.000 0.000 0.000 0.000 0.000 

Table 11: VEP criteria—Iteration of AVC (10-time steps = 100 m) 

 

Area 𝑅2  Adj 𝑅2 SSE RMS Area 𝑅2  Adj 𝑅2 SSE RMS Area 𝑅2  Adj 𝑅2 SSE RMS 

IET IES IFCR 

75 69 69 70 70 75 68 68 75 75 65 66 66 75 75 

74 70 70 69 69 74 71 71 71 71 66 69 69 66 66 

73 65 65 71 71 73 70 70 68 68 67 75 75 69 69 

72 68 68 72 72 72 69 69 70 70 68 65 65 65 65 

71 71 71 68 68 71 67 67 72 72 69 70 70 70 70 

70 73 73 73 73 70 72 72 74 74 70 67 67 72 72 

ETC ESC ED 

75 66 66 66 66 75 69 69 70 70 65 66 66 75 75 

74 69 69 65 65 74 70 70 69 69 66 69 69 66 66 

73 75 75 69 69 73 68 68 71 71 67 75 75 69 69 

72 65 65 75 75 72 65 65 72 72 68 65 65 70 70 

71 70 70 70 70 71 71 71 73 73 69 70 70 65 65 

70 67 67 67 67 70 66 66 68 68 70 67 67 72 72 

Table 12: VEP criteria — Optimal ACC speeds (10 Time steps = 1 s) 

 

A1 A2 B  

Area 𝑅2  Adj 𝑅2 SSE RMS Area 𝑅2  Adj 𝑅2 SSE RMS Area 𝑅2  Adj 𝑅2 SSE RMS 

EAT = 78.75 ℉ 

65 66 66 65 65 70 66 66 70 70 70 67 67 67 67 

66 70 70 66 66 69 65 65 69 69 69 68 68 68 68 

69 65 65 70 70 68 67 67 65 65 68 70 70 65 65 

EAT = 38.3 ℉ 

72 70 70 70 70 70 71 71 70 70 70 70 70 70 70 

73 71 71 71 71 71 70 70 71 71 71 71 71 71 71 

71 72 72 72 72 72 72 72 72 72 72 72 72 72 72 

Table 13: VEP criteria — Optimal CAT values (10 Time steps = 100 m) 
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ACC Speed Matrix (10 seconds) CAT Matrix (1000 m) 

𝑇1 𝑇2 𝑇3 𝑇4 𝑇5 𝑇6 𝑇7 𝑇8 𝑇9 𝑇10 𝑑𝑇1 𝑑𝑇2 𝑑𝑇3 𝑑𝑇4 𝑑𝑇5 𝑑𝑇6 𝑑𝑇7 𝑑𝑇8 𝑑𝑇9 𝑑𝑇10 

69 68 66 75 74 67 67 75 67 75 67 70 67 65 66 65 68 67 65 69 

71 70 65 68 72 71 72 66 75 71 65 67 70 69 67 70 65 69 66 68 

68 71 67 65 65 74 73 68 73 65 70 68 68 67 65 69 66 65 68 67 

Table 14: Optimal ACC Speed (10s) and CAT Matrix (1000 m)—100-time steps 

7.7  Algorithm—Generation of [ACCSSP, CATSP]   

Step 4A: Estimation of ACCSSP 

The ACC matrix has three speed values for each second. Thus, a maximum of 310 ACCSSPs are 

possible for 10 seconds, and the following conditions were defined to identify a unique ACCSSP 

[24].  

1. Assuming the ACC speed at 𝑇𝑘 is 𝑆𝑘, and if the eligible vehicle speeds (EVS) at 𝑇𝑘+1are either 

𝑆𝑘+1, 𝑆𝑘, or 𝑆𝑘-1, then 𝑆𝑘+1 = 𝑆𝑘+1. 

2. If the EVS at 𝑇𝑘+1 is neither 𝑆𝑘+1, 𝑆𝑘, nor 𝑆𝑘-1, then 𝑆𝑘+1 = 𝑆𝑘. 

3. If 𝑆𝑘+1 = 𝑆𝑘 for more than a hundred-time steps, 𝑆𝑘+1= 𝑆𝑘+1 if 𝑆𝑘+1 ≤ SL+5 or 𝑆𝑘+1= 𝑆𝑘- 1 if 

𝑆𝑘= SL+5. 

Step 4B: Estimation of CATSP 

Similarly, the cabin air temperature (CAT) matrix has three eligible values for 100 m. The CATSP 

for 1000m was predicted using the following conditions defined based on external air temperature 

(EAT) [29]. 

1. Assuming the CAT at 𝑑𝑇𝑘 is 𝐶𝑘, if the eligible vehicle cabin air temperature (EVC) at 𝑑𝑇𝑘+1 

is either 𝐶𝑘+1, 𝐶𝑘, or 𝐶𝑘-1.   

Case 1: 𝐸𝐴𝑇𝑘  ≥  𝐸𝐴𝑇𝑜 ℉, then 𝐶𝑘+1 = 𝐶𝑘+1 (𝐶𝑘+1 ≤ 𝑚𝑎𝑥𝐶𝐴𝑇 ℉). 

Case 2: 𝐸𝐴𝑇𝑘 < 𝐸𝐴𝑇𝑜 ℉, then 𝐶𝑘+1 = 𝐶𝑘-1 (𝐶𝑘-1 ≥  𝑚𝑖𝑛𝐶𝐴𝑇 ℉). 
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2. If the EVC at 𝑑𝑇𝑘+1 is neither 𝐶𝑘+1, 𝐶𝑘, nor 𝐶𝑘-1, then 𝐶𝑘+1 = 𝐶𝑘 (𝑚𝑖𝑛𝐶𝐴𝑇 ℉ ≤  𝐶𝑘 ≤ 

𝑚𝑎𝑥𝐶𝐴𝑇 ℉). 

3. If 𝐶𝑘+1 = 𝐶𝑘 for more than a hundred-time steps, then 

Case 1: 𝐸𝐴𝑇𝑘  ≥  𝐸𝐴𝑇𝑜 ℉, then 𝐶𝑘+1 = 𝐶𝑘+1, if 𝐶𝑘+1≤ 𝑚𝑎𝑥𝐶𝐴𝑇 ℉ or 𝐶𝑘+1 = 𝐶𝑘- 1, if 𝐶𝑘 = 

𝑚𝑎𝑥𝐶𝐴𝑇 ℉.  

Case 2: 𝐸𝐴𝑇𝑘 < 𝐸𝐴𝑇𝑜 ℉, then 𝐶𝑘+1 = 𝐶𝑘-1, if 𝐶𝑘-1≥ 𝑚𝑖𝑛𝐶𝐴𝑇 ℉ or 𝐶𝑘+1 = 𝐶𝑘+ 1, if 𝐶𝑘 = 

𝑚𝑖𝑛𝐶𝐴𝑇 ℉. 

The algorithm proposed in Step [4A, 4B] was implemented on the [ACC, CAT] matrices 

(Table 14) by a unit step increment of [𝑆0, 𝐶0] in the range of [allowable vehicle speeds (AVS), 

allowable vehicle cabin air temperatures (AVC)]. The possible [ACCSSPs, CATSPs] are 

shown in Figures 22–23, and a unique [ACCSSP, CATSP] was obtained by assuming [initial 

ACC speed (IAS) (𝑆0), initial cabin air temperature (ICAT) (𝐶0)] = [70 MPH, 65℉], as shown 

in Figures 24–25.   

 

Figure 22: Generated ACCSSP—Speed range = [65 75] MPH.   
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Figure 23: Generated CATSP—CAT range = [65 70] ℉.   

 

 

 

 
 

Figure 24: Generated ACCSSP—Initial ACC Speed = 70 MPH  
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Figure 25: Generated CATSP—Initial CAT = 65 ℉    
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Chapter 8 Results and Validation 

 

The functionality of Intelligent Vehicle Drive Mode (IVDM) was applied to the snippets selected 

from the 2020 Cadillac CT5 data sets for the ACCSSP = [30 70] MPH. The plots of predicted 

[ACCSSP, CATSP] resulting from implementing all the steps defined in Chapter 7 for the test 

cases are depicted in Figures 58–62 and 63–67. The performance of the predicted and constant 

[ACCSSP, CATSP] was compared using the parameters defined in Section 4: vehicle engine 

performance (VEP) criteria, whose output is presented in Tables 15 and 16.  

The computational methods adopted in this research were quantified using a new precise approach 

by estimating the instantaneous engine efficiency (IEE) (𝑛𝑒) and the smoothness measure vector 

(SMV) of the instantaneous engine map (IEM). The ratio of power output and rate of energy input 

was calculated to estimate IEE (equation 28) [mean, deviation, variance], assuming the fuel used 

was gasoline and its properties [calorific Value (𝐶𝑣), density (𝜌𝑓)] = [45 MJ.𝐾𝑔−1, 750 Kg.𝑚−3] 

were unchanged with the effect of temperature and pressure [Ahmed and Bhatti, 2010].  

                                   𝑛𝑒 =
𝐼𝐸𝑇.𝐼𝐸𝑆

𝐶𝑣.𝜌𝑓.𝐼𝐹𝐶𝑅
                                                          (28) 

The IEM is plotted on a two-dimensional plane using [instantaneous engine torque (IET) and 

instantaneous engine speed (IES)], and the smoothness measure vector (SMV) was measured using 

the criteria defined in Chapter 4.4, whose outcome is shown in Figures 68–72.  
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Parameter ACC = 30 MPH ACC = 40 MPH ACC = 50 MPH ACC = 60 MPH ACC = 70 MPH 

Criteria Constant Predict Constant Predict Constant Predict Constant Predict Constant Predict 

Performance Vectors 

Distance 3.00E+4 3.02E+4 4.00E+4 4.10E+4 5.00E+4 5.04E+4 5.99E+4 6.09E+4 6.99E+4 6.94E+4 

IET 2.05E+5 2.05E+5 1.60E+5 1.60E+5 2.30E+5 2.30E+5 2.49E+5 2.49E+5 2.45E+5 2.45E+5 

IES 2.84E+5 2.84E+5 1.39E+5 1.39E+5 1.66E+5 1.66E+5 1.69E+5 1.69E+5 2.39E+5 2.39E+5 

IFCR 5.63E+5 5.62E+5 2.26E+5 2.26E+5 3.53E+5 3.53E+5 4.26E+5 4.27E+5 5.90E+5 5.90E+5 

ETC 4.06E+2 4.06E+2 7.13E+2 7.12E+2 6.61E+2 6.62E+2 5.93E+2 5.93E+2 4.09E+2 4.09E+2 

ESC 1.44E+3 1.44E+3 8.65E+2 8.67E+2 7.21E+2 7.21E+2 6.85E+2 6.84E+2 1.94E+3 1.90E+3 

ED 4.68E+5 4.68E+5 1.27E+5 1.27E+5 2.66E+5 2.66E+5 3.42E+5 3.42E+5 5.08E+5 5.08E+5 

Performance Vectors - Conformance (Predicted - Constant) 

Distance 199.000 999.500 400.000 999.000 -499.000 

IET -223.508 -74.710 -56.149 53.121 -18.207 

IES -54.606 284.891 2.013 -59.833 20.534 

IFCR -803.247 171.972 -95.391 33.725 -147.311 

ETC -0.043 -0.906 0.064 -0.036 0.198 

ESC 3.071 2.158 0.176 -0.396 -33.250 

ED -792.187 161.953 -107.700 45.969 -222.340 

Smoothness Measure - 𝑅2 

IET 0.997 0.997 0.999 0.999 0.995 0.995 0.999 0.999 0.999 0.999 

IES 0.999 0.999 0.999 0.999 0.999 0.999 0.979 0.979 0.999 0.999 

IFCR 0.998 0.998 0.972 0.972 0.989 0.989 0.992 0.992 0.998 0.998 

ETC 0.996 0.996 0.970 0.971 0.987 0.987 0.979 0.979 0.992 0.992 

ESC 0.995 0.995 0.998 0.998 0.999 0.999 0.997 0.997 0.998 0.998 

ED 0.998 0.998 0.972 0.972 0.990 0.990 0.993 0.993 0.998 0.998 

Smoothness Measure - Adj 𝑅2 

IET 0.993 0.993 0.996 0.996 0.988 0.987 0.998 0.998 0.998 0.998 

IES 0.996 0.996 0.998 0.997 0.999 0.999 0.948 0.947 0.998 0.998 

IFCR 0.995 0.995 0.929 0.930 0.973 0.973 0.981 0.981 0.995 0.995 

ETC 0.991 0.991 0.926 0.927 0.968 0.968 0.947 0.947 0.981 0.981 

ESC 0.988 0.989 0.994 0.994 0.998 0.998 0.993 0.993 0.995 0.995 

ED 0.995 0.995 0.930 0.931 0.974 0.974 0.984 0.984 0.994 0.994 

Smoothness Measure - SSE 

IET 8.26E+3 8.22E+3 74.064 72.920 570.321 572.589 6.47E+2 6.50E+2 3.52E+3 3.51E+3 

IES 8.82E+3 8.88E+3 14.117 15.934 91.594 90.776 1.10E+3 1.11E+3 14.170 14.635 

IFCR 9.94E+4 9.96E+4 1.60E+4 1.58E+4 2.44E+4 2.46E+4 4.95E+4 4.92E+4 5.75E+4 5.77E+4 

ETC 0.074 0.074 0.152 0.150 0.085 0.085 0.089 0.088 0.041 0.041 

ESC 1.045 1.019 0.002 0.002 0.004 0.004 0.013 0.013 53.374 46.723 

ED 9.90E+4 9.91E+4 1.58E+4 1.56E+4 2.24E+4 2.25E+4 4.62E+4 4.59E+4 5.43E+4 5.45E+4 

Smoothness Measure - RMSE 

IET 4.535 4.524 0.429 0.426 1.191 1.194 1.269 1.272 2.960 2.957 

IES 4.685 4.701 0.187 0.199 0.477 0.475 1.653 1.662 0.188 0.191 

IFCR 15.730 15.741 6.301 6.263 7.795 7.819 11.096 11.061 11.958 11.983 

ETC 0.014 0.014 0.019 0.019 0.015 0.015 0.015 0.015 0.010 0.010 

ESC 0.051 0.050 0.002 0.002 0.003 0.003 0.006 0.006 0.364 0.341 

ED 15.698 15.708 6.270 6.233 7.468 7.492 10.725 10.691 11.621 11.646 

Table 15: Prediction of ACCSSP—Performance analysis 

 



 

64 

 

Parameter EAT (℉) CAT (℉) Area Conformance 

 

 𝑹𝟐 Adj 𝑹𝟐 SSE RMSE 

ACCSSP = 30 MPH 

 

EST 

(A1+A2) 

 

82.076 
69 412.431  

-66.097 

0.936 0.841 28.869 0.858 

Predicted 346.334 0.803 0.506 223.958 2.391 

37.985 
70 695.211  

-0.457 

0.989 0.971 13.008 0.576 

Predicted 694.754 0.989 0.972 13.015 0.576 

 

ACRFP 

(B) 

82.076 
69 4796.364  

-271.024 

0.991 0.978 596.296 3.901 

Predicted 4525.340 0.988 0.969 703.936 4.239 

37.985 
70 28447.657  

-12.325 

0.992 0.980 8.751 0.473 

Predicted 28435.331 0.992 0.980 8.755 0.473 

ACCSSP = 40 MPH 

 

EST 

(A1+A2) 

 

85.289 
68 269.142 

0.051 
0.951 0.878 16.910 0.657 

Predicted 269.193 0.963 0.907 12.982 0.576 

37.634 
71 429.335 

-37.710 
0.991 0.977 7.832 0.447 

Predicted 391.625 0.990 0.975 9.661 0.497 

 

ACRFP 

(B) 

85.289 
68 5992.344 

-550.425 
0.968 0.919 447.093 3.378 

Predicted 5441.919 0.974 0.935 367.982 3.065 

37.634 
71 28028.615 

-6.797 
0.988 0.970 18.523 0.688 

Predicted 28021.818 0.988 0.970 18.590 0.689 

ACCSSP = 50 MPH 

 

EST 

(A1+A2) 

 

80.726 
67 561.773 

2.441 
0.962 0.905 7.244 0.430 

Predicted 564.214 0.959 0.898 7.967 0.451 

40.1 
72 876.469 

-1.070 
0.885 0.713 1.246 0.178 

Predicted 875.399 0.884 0.709 1.252 0.179 

 

ACRFP 

(B) 

80.726 
67 1904.872 

59.813 
0.981 0.952 382.367 3.124 

Predicted 1964.686 0.983 0.957 351.031 2.993 

40.1 
72 28276.442 

0.118 
0.980 0.951 0.613 0.125 

Predicted 28276.559 0.980 0.951 0.613 0.125 

ACCSSP = 60 MPH 

 

EST 

(A1+A2) 

 

79.44 
66 738.825 

-192.196 
0.961 0.902 13.422 0.585 

Predicted 546.629 0.957 0.893 17.459 0.668 

38.858 
73 783.449 

-3.056 
0.981 0.953 4.052 0.322 

Predicted 780.393 0.982 0.954 4.099 0.323 

 

ACRFP 

(B) 

79.44 
66 8978.425 

-2153.683 
0.909 0.772 13.125 0.579 

Predicted 6824.742 0.993 0.982 669.514 4.134 

38.858 
73 28658.279 

1.219 
0.988 0.970 0.004 0.010 

Predicted 28659.498 0.991 0.977 0.004 0.010 

ACCSSP = 70 MPH 

 

EST 

(A1+A2) 

 

76.1 
65 1427.487 

-904.718 
0.990 0.976 1.027 0.162 

Predicted 522.768 0.997 0.993 5.569 0.377 

36.518 
74 118.232 

-10.842 
0.934 0.835 2.274 0.241 

Predicted 107.390 0.944 0.861 2.069 0.230 

 

ACRFP 

(B) 

76.1 
65 1433.399 

253.377 
0.862 0.655 6501.550 12.882 

Predicted 1686.776 0.873 0.681 6049.353 12.426 

36.518 
74 28851.815 

2.671 
0.806 0.514 0.000 0.003 

Predicted 28854.486 0.980 0.950 0.000 0.002 

Table 16: Prediction of CATSP — Performance analysis 
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Additionally, the parameters [IFCR, Distance] for constant and predicted [ACCSSP, CATSP], 

were estimated and the results are presented in the following Table 17.  

Speed 

(MPH) 

Speed 

Profile 

IEE IEM Performance 

Mean Deviation 
Variance 

(1E-3 ) 

 

 𝑅2 Adj 𝑅2 RMSE 
IFCR 

(1E-3 𝑚3) 

Distance 

(1E+5 m) 

 

30 
Constant 0.3210 0.0424 0.0018 0.9968 0.7878 12.4481 4.7716 0.1338 

Predicted 0.3180 0.0415  0.0017 0.9983 0.8956 8.6682 4.7857 0.1401 

40 
Constant 0.3256 0.0281 0.7898 0.9998 0.9966 1.3902 3.4894 0.1785 

Predicted 0.3254 0.0281 0.7870 0.9999 0.9982 1.0034 3.4882 0.1811 

50 
Constant 0.3320 0.0313 0.001 0.9981 0.9560 5.1152 3.7634 0.2231 

Predicted 0.3339 0.0317 0.001 0.9961 0.9425 5.8793 3.7477 0.2146 

60 
Constant 0.3295 0.0286 0.8164 0.9964 0.7411 10.3102 3.8386 0.2677 

Predicted  0.3298 0.0286 0.8204 0.9933  0.8836 6.9115 3.8330 0.2628 

70 
Constant 0.3154 0.0221  0.4889  0.9991 0.9900 0.6721 3.6281 0.3123 

Predicted 0.3138 0.0219  0.4817 0.9998 0.9964 0.4067 3.6415 0.3181 

Table 17: Quantification of IVDM — IEE and IEM 
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Chapter 9 Discussion 

 

In this research, multiple engineering concepts were utilized to develop the concept of Intelligent 

Vehicle Drive Mode (IVDM). The steps included real-time testing, data acquisition through CAN, 

developing the deep learning (DL) predictive models, feature functionality of vehicle engine 

performance (VEP), empirical methods to estimate vehicle-level vectors (VLV) for future time 

steps, and iterative analysis to predict the driver behavior vector (DBV).  

The constant and predicted [adaptive cruise control set speed profile (ACCSSP), cabin air 

temperature set profile (CATSP)] were generated based on the developed concepts, as shown in 

Figures 58–67. The selected snippets of Speeds and CATs ranging [30 70] MPH and [65 75] ℉ 

were selected, to generate a unique [ACCSSP, CATSP] based on the [initial ACC speed (IAS), 

initial cabin air temperature (ICAT)]. The results of the performance analysis corresponding to the 

VEP criteria were shown in Tables 11 and 12. The smoothness measure vector (SMV)s for constant 

and predicted [ACCSSP, CATSP] were interpreted, and it was observed that in most cases, the 

predicted profile outperformed the constant values. The criteria for SMV were defined in Table 

28, and in 70% of the cases, the predicted [ACCSSP, CATSP] has higher [𝑅2 Adjusted 𝑅2] and 

lower [Sum of squares error (SSE) root mean square error (RMSE)], whereas 30% of the scenarios 

scored the same (Table 17).    

Among all the parameters (Chapter 4), the most critical elements of interest for VEP are [IFCR, 

Distance], and the conformance of predicted and constant ACCSSP test cases was shown in Table 

17. The predicted ACCSSP with the snippet speed = [30 50] MPH resulted in lower IFCR by 
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[803.247 95.391], with an additional distance traversed of [199 400] m. The constant ACCSSP 

with speed = [70] MPH resulted in higher IFCR [147.311], ED [222.34], and distance [499] m and 

lower [ESC ETC] = [20.54, 0.198], which depicts vehicle movement on higher-gradient terrain. 

The algorithm developed for this work also allots priority to lowering the trip time, and hence the 

predicted ACCSSP with speed snippet = [40 60] MPH resulted in higher Distance = [999.5 999] 

m and IFCR = [171.972, 33.725].   

Similarly, the performance of the predicted and constant [CATSP] was analyzed by the 

conformance vectors [EST, ACRFP] = [A1+A2, B], as shown in Table 16. The two test scenarios 

with EAT ≥ 65 ℉ and EAT < 45 ℉ were investigated, and lower values of the area [A1+A2] 

(EST) and B (ACRFP) are desired for enhanced HVAC performance. In the test case scenario with 

ACCSSP = 70 MPH, the predicted CATSP with EAT = [76.1 36.5] ℉ resulted in lower EST by 

[904.718, 10.842]. However, the ACRFP had higher magnitudes for the predicted CATSP, which 

was compensated for by the better smoothness measure vector (SMV), similar to the snippet with 

ACCSSP = 50 MPH. The [EST, ACRFP] for predicted CATSP were higher by 2.441 and 59.813 

for EAT = 80.72 ℉, which is not desirable, but the smoothness measure vector (SMV) of ACRFP 

for the predicted CATSP had higher [𝑅2, Adjusted 𝑅2] = [0.983 0.957] and lower [SSE RMSE] = 

[351.03 2.993]. Similarly, for EAT = 40.1 ℉, the EST for the constant CATSP was higher by 1.07, 

and the rest of the criteria had comparable values. Thus, enhanced performance was concluded by 

analyzing the VEP parameters for the test cases with ACCSSP = [30, 40, 60] MPH.   

Additionally, the efficacy of Intelligent Vehicle Drive Mode (IVDM) was quantified by estimating 

the [IEE, SMV IEM] and [IFCR, Distance] for another set of snippets selected in a similar speed 

range [30 70] MPH. The plots and analytical results are depicted in Figures 68–72 and Table 17. 

The smoothness measure vector (SMV) criteria defined in Chapter 4.4 were adopted for 
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instantaneous engine map (IEM), whereas higher IEE [mean] and lower IEE [deviation, variance] 

was desired for optimal VEP. It was observed that the IEM RMSE of the predicted ACCSSP had 

lower values than the constant ACCSSP for all the test cases except for ACCSSP = 50 MPH, where 

the RMSE = [5.115 5.879] shared similar magnitudes. The test case with constant ACCSSP = 30 

MPH had a lower IFCR = 4.77, but the vehicle traversed an additional 630 m with predicted 

ACCSSP. The IEE [mean, variance] for constant ACCSSP = 40 MPH were [0.3256, 0.7898E-3], 

and the predicted ACCSSP scored [0.3254, 0.787E-3]. Thus IEE [variance] of the predicted 

ACCSSP was lower, and the IEE [mean, deviation] shared similar values. This approach of 

analyzing the [IEE, IEM] was not discussed in the existing literature, and the computational results 

were assumed to be satisfactory. Therefore, the overall observation was that the predicted ACCSSP 

satisfied the desired criteria in most scenarios and the results best confirmed the validation of the 

proposed Intelligent Vehicle Drive Mode (IVDM). 

The analytic results depicted that IVDM ameliorated vehicle engine performance (VEP) by 

predicting [ACCSSP, CATSP], optimizing [EOP, CATOP]. The IVDM could emerge as a 

significant feature in automotive systems answering the following two main questions. 

What’s in it for the customer? The IVDM would optimize the two parameters [IFCR, distance] 

for every trip traversed.  

What’s in it for the engineer? The SMV for the predicted IEM showed better performance in 

every case depicted in Table 17, which minimized the vibrations transmitted by the engine along 

with achieving optimal efficiency. 
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Chapter 10 Conclusion  

 

This research proposes a novel drive mode named “Intelligent Vehicle Drive Mode” (IVDM), 

which augments the vehicle engine performance (VEP) in real time without increasing the trip 

time under normal driving conditions. The IVDM is not currently integrated into any vehicle 

segment and predicts the DBV [speed, longitudinal acceleration (LOT), lateral acceleration (LAT), 

yaw rate (YAR), cabin air temperature (CAT)] by optimizing the vectors [engine operating point 

(EOP), cabin air temperature operating point (CATOP)], obliging the driver’s commands in real 

time. The IVDM activates the adaptive cruise control (ACC) feature when triggered; thus, 

longitudinal acceleration (LOT) is automatically determined by the ACC controller, and the 

parameters [lateral acceleration (LAT), yaw rate (YAR)] are estimated by the defined 

mathematical models assuming ideal steering behavior (ISB). The prediction of [adaptive cruise 

control set speed profile (ACCSSP), cabin air temperature set profile (CATSP)] was done by 

applying the optimal engine operating conditions (EOC) criteria on the predicted parameters [EOP, 

CATOP]. Nonlinear autoregressive network with exogenous inputs (NARX) DL models were 

developed to map the vehicle-level vectors (VLV) and [EOP, CATOP], whose performance was 

validated using a traditional statistical measures vector (STMV). The quantification of the 

computational model was performed by comparing the engine operating conditions (EOC) 

parameters for constant and predicted [ACCSSP, CATSP] and analyzing the [instantaneous engine 

efficiency (IEE), instantaneous engine map (IEM)] using the single test vehicle 2020 Cadillac CT5. 

The results were satisfactory, and this concept could develop into a new feature in the vehicle. 
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Chapter 11 Future Work 

 

This research was performed with real-time datasets and valid assumptions were taken to develop 

the concept of the new drive mode. The validation was conducted with specific limitations which 

produced best results as described in the Chapter 9. Hence in this chapter, the following ideas were 

proposed which could augment the deployment of the Intelligent Vehicle Drive Mode (IVDM). 

 

11.1 Extended Validation — Multiple Vehicle Lines   

The computational model of IVDM validated the vehicle engine performance (VEP) criteria using 

the elements [engine operating point (EOP), cabin air temperature operating point (CATOP)] for 

the internal combustion engine (ICE)-driven segment with a single test vehicle, a 2020 Cadillac 

CT5, under normal driving conditions. As future work, the validation could be enhanced, including 

multiple vehicle lines, conducting tests for critical scenarios of mountain regions (> 14% slope), 

and considering slip and extreme weather conditions (EAT > 85 ℉ or < 25 ℉). Also, the concept 

of Intelligent Vehicle Drive Mode (IVDM) could be extended with new criteria for road segments 

of either parking lots or arterial roads (vehicles speed < 25 miles per hour (MPH)), whose effect 

on engine operating conditions (EOC) is insignificant. Also, the quantification was done with 10-

second snippets, for the test cases that showed lower conformance of results for the parameters 

[IFCR, distance]. Extended time period (1 hour) or distance (50 miles) segments can be selected 

to evaluate the efficacy of the proposed model.  
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11.2 Enhancing the Deep Learning Model — Additional Parameters  

In this research, the environmental factors [humidity (HUM - %rh), absolute wind velocity vector 

(WIND - [ 𝑊𝑥+ 𝑊𝑦] m.𝑠−1, atmospheric pressure (ATP - N.𝑚−2)], HVAC elements [engine fan 

speed, power, Nusselt number] were not included in the DL model. The valid assumptions that 

include insensitivity of gasoline fuel [calorific Value (𝐶𝑣), density (𝜌𝑓)] due to pressure and 

temperature changes and invariant CATSP to predict ACCSSP were undertaken to simplify the 

analytical approach. Also, built-in MATLAB functions with default properties were utilized to 

develop deep learning (DL) models. Therefore, the analysis can be extended by considering all the 

affecting parameters on VEP, and customized deep learning (DL) models could be developed for 

each vehicle model’s data to enhance prediction precision.  

11.3 Optimization Criteria — Priority Index  

The optimal performance criteria were defined with basic relations between the vector elements 

[EOP, CATOP] to simplify the analysis. Therefore, enhanced vehicle engine performance (VEP) 

criteria could be defined with categorical allocation of the priority index depending on the dynamic 

state of the vehicle, e.g., HVAC elements [EST (℉), ACRFP (PSI)] have more priority in extreme 

climatic conditions when EAT > 80 ℉ or EAT < 25 ℉, higher IET is required for the terrains with 

larger elevation coefficients (e), and smoothness measure of the EOP vector is necessary for 

uneven terrain. Additionally, along with the performance elements, the optimization criteria could 

be enhanced by including the engine and powertrain parameters reflecting vehicle health, i.e., 

durability, reliability, and rate of wear and tear of the engine components can be defined for the 

vehicles with the odometer reading > 80,000 miles.  
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11.4 Generating Smooth Profiles — [ACCSSP, CATSP] 

The failure soft action was implemented to generate unique [adaptive cruise control set speed 

profile (ACCSSP), cabin air temperature set profile (CATSP)], which produced satisfactory results 

of augmented engine operating conditions (EOC). However, the generated profile might not be the 

only optimal solution, and basic iterative analysis was adopted to estimate [eligible vehicle speeds 

(EVS), eligible vehicle cabin air temperatures (EVC)]; further research could ameliorate the results 

by developing an enhanced algorithm (e.g., reinforcement model adapting the driver behavior).  

11.5 Feature Development — Further Steps 

Feature development is a multi-stage process, and as the next step of this work, the plant simulation 

model controls algorithm, and software integration followed by validation could be deployed as 

shown in the Figure 26. Also, an interface could be developed between this drive mode (IVDM) 

and integrated path planning algorithms of autonomous systems to enhance driving behavior. 

 

Figure 26: Future work: Electric Vehicle — IVDM Proposed powertrain controls  

 

11.6 Electric Vehicle Implementation 

The emergence of electric and autonomous vehicles has triggered a new research path for the 

automotive sector in recent years. Hence, IVDM could be extended for the components of electric 

vehicles by defining new performance criteria for [battery operating point (BOP), motor operating 

point (MOP), inverter operating point (IOP), HVAC], that enhance the operating conditions of 

[battery, motor]. The deep learning (DL) model applicable to electrical vehicles is shown in Figure 
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27, and a brief description is presented in the following sections. Similar to the internal combustion 

engine (ICE) vehicles, substantial validation can be performed with multiple electric vehicle test 

vehicle segments (e.g., 2023 Cadillac Lyriq, Chevrolet Bolt/Volt, 2024 Chevrolet Silverado pickup 

truck, 2024 Chevrolet Equinox/Blazer) to enhance the efficacy of the proposed concept.  

 

Figure 27: Future work: Electric Vehicle — IVDM Proposed predictive model  

 

11.7  Electric Vehicle — Analysis   

Electric vehicles are zero-emission systems propelled by the battery pack module and driven by 

electric motors (single or multiple). The internal combustion engine (ICE) driven vehicle has more 

than three thousand (3000) moving components in the powertrain, whereas electric vehicles are 

less complex, consisting of less than three hundred (300) parts which reflect a simpler design. The 

analogous elements of the electric vehicle operating point include three vectors [motor operating 

point (MOP), inverter operating point (IOP), battery operating point (BOP)], similar to EOP [IET, 

IES, IFCR] [108]. The MOP consists of the parameters [instantaneous motor torque (IMOT), 

instantaneous motor speed (IMOS), instantaneous rotor temperature (IROT), instantaneous stator 

temperature (ISOT)], which needs to be calibrated for every vehicle line. In the recent 
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developments of electrical machines, direct current motors are obsolete due to the requirements of 

additional maintenance (e.g., replacing brushes at regular intervals). Therefore, alternating current 

motors have gained more importance in practical applications (e.g., Tesla Model S: three-phase 

induction motor; 1300 Nm of torque; 615 kW of power) and the torque transmission model was 

shown in Figure 28. 

 

Figure 28: Future work: Electric Vehicle — IVDM Torque transmission  

 

In an electric vehicle system, the direct current is discharged by the battery, and is fed into the 

motor as alternating current converted by the inverter [108]. Thus, BOP is an additional operating 

parameter intrinsic to the electric vehicle and defined with the elements [instantaneous battery 

charge (IBAQ), instantaneous battery current (IBAC), instantaneous battery temperature (IBAT)]. 

The inverter converts the direct current to alternating current under normal driving conditions, and 

during the braking process, a regenerative methodology is triggered, and alternating current 

generated by the motor is fed into the inverter, which recharges the battery. Thus, inverter 

operating point (IOP) was defined with [instantaneous inverter voltage (IINV), instantaneous 

inverter current (IINC), instantaneous inverter temperature (IINT)].  Therefore, minimal loss of 

energy is desired during the torque transmission phenomena, and hence the applicable optimization 

criteria for all the parameters are defined in the following sub-chapters.  
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11.8 Electric Vehicle — Optimization Criteria  

11.8.1 Battery Thermal Management 

In real-time, the dynamics of the Lithium-ion battery encounters a generic scenario where the anode 

can discharge into the electrolyte, which could cause a short circuit and potentially reduce the 

capacity of the battery. Hence, to enhance the performance, the battery pack module must be 

maintained in the range of allowable temperatures (Ideal IBAT range = [71 77] ℉), which is 

achieved by the thermal management system. In electric vehicles CAT is maintained by the heating 

element - instantaneous heating element temperature (IHEAT), which extracts direct current from 

the battery and discharges heat to the vehicle cabin. The flow model of the thermal energy exchange 

for the electric vehicle was shown in Figure 29. Similar to Figure 7, the heat exchange between the 

components is shown by the red colored connecting elements, whereas blue color corelates to 

cooling.  

 
Figure 29: Future work: Electric Vehicle — Heat exchange  

 

11.8.2 Motor Thermal Management 

The electric motor generates the required torque with alternating current as input, which is affected 

by the earth’s magnetic field and thus the altitude of operation. The firm Berman Motors developed 
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an empirical relation to estimate the optimal threshold for instantaneous stator temperature (ISOT) 

based on the altitude (Km) of operation (ALT > 1 Km), as shown in equations (29)–(30) (Figure 

30). The parameter IROT > ISOT in every generic scenario and empirical relationship for optimal 

IROT is still under investigation by the researchers. 

                 ISOT = 
3𝐴𝐿𝑇3

5
 - 

9𝐴𝐿𝑇2

2
 - 

216𝐴𝐿𝑇

25
 + 

583

5
  ℉  (4 Km ≥ ALT ≥ 1 Km)    (29) 

                             ISOT = 104 ℉ (ALT  ≤ 1 Km)                                                                       (30) 

 

Figure 30: Future work: Electric Vehicle — Relationship [ISOT, ALT]  

 

11.8.3 State of Battery Charge (𝑄) 

The battery analytics and its performance measure directly affect the instantaneous battery charge 

(IBAQ). To maintain optimal battery health, the following are desired conditions. The battery 

charge rate is not a measurable parameter because of the pre-existing conditions of the battery and 

well-defined charging equipment. In contrast, the battery charge rate depends substantially on the 

dynamic state of the vehicle (e.g., feature usage, driver behavior, vehicle dynamics, environmental 
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factors). The battery charge rate is a differential function (equation 32); thus, lower values and 

smooth curve behavior in real-time are desired for augmented battery performance. 

                                         Ideal IBAQ = [ 𝑄𝑚𝑖𝑛,  𝑄𝑚𝑎𝑥] = [10 90] %                              (31) 

 Ideal rate of IBAQ = 
𝑑𝑄

𝑑𝑡
 ;  If   𝑄 = [10 90] %, then  

𝑑𝑄

𝑑𝑡
 < 0 

                     If   𝑄 ≤  10  %, then  
𝑑𝑄

𝑑𝑡
 < 0 ;  If   𝑄 ≥90 %, then  

𝑑𝑄

𝑑𝑡
 > 0               (32) 

11.8.4 Electric Motor 

In the current scenario of electric vehicle segment of General Motors Inc., the following models 

had entered the phase of production [single motor (Chevrolet Volt), dual motor (Cadillac ESV), 

trio motor (Hummer Electric Vehicle)]. All the electrical motors produced are pre-defined with 

nominal operating conditions (e.g., 2022 Hummer Electric Vehicle: 255kW, 15400 Nm), and real-

time actual operating points of the motor are affected by the dynamic state of the vehicle. Hence, 

the optimal functionality of the electric motor is achieved when the [instantaneous motor torque 

(IMOT), instantaneous motor power (IMOP), instantaneous motor frequency (IMOF)] are 

maintained in the vicinity of the nominal operating conditions as defined by the following three 

empirical parameters [𝑀𝑇 , 𝑀𝑃,  𝑀𝐹]. 

                                      𝑀𝑇   =  [𝑎𝑏𝑠(𝑁𝑜𝑚𝑖𝑛𝑎𝑙 𝐼𝑀𝑂𝑇 −  𝐴𝑐𝑡𝑢𝑎𝑙 𝐼𝑀𝑂𝑇) ] ;                                 (33) 

                                      𝑀𝑃   =  [𝑎𝑏𝑠(𝑁𝑜𝑚𝑖𝑛𝑎𝑙 𝐼𝑀𝑂𝑃 −  𝐴𝑐𝑡𝑢𝑎𝑙 𝐼𝑀𝑂𝑃) ] ;                                 (34) 

                                      𝑀𝐹   =  [𝑎𝑏𝑠(𝑁𝑜𝑚𝑖𝑛𝑎𝑙 𝐼𝑀𝑂𝐹 −  𝐴𝑐𝑡𝑢𝑎𝑙 𝐼𝑀𝑂𝐹) ] ;                                 (35) 

                                      Ideal MOP = 𝑚𝑖𝑛 [𝑀𝑇 , 𝑀𝑃, 𝑀𝐹] ;                                                               (36) 

11.8.5 Inverter  

The inverter is the prominent component in the entire system, controlled by the built-in power 

electronics module. This component converts the direct current into alternating current based on 
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the demand; similarly, the alternating current is converted into the direct current during regenerative 

braking and charges the battery. During this exchange process, the module consumes a fraction of 

power for its functionality, and some part of the power is lost due to resistance (thermal loss) and 

the environment. The parameters [𝑃𝑑𝑐, 𝑃𝑎𝑐] represent the power of the currents (direct and 

alternating); thus, minimal loss of power is an obvious criterion for inverter functionality. The 

relations [𝑛𝑖𝑛𝐶, 𝑛𝑖𝑛𝐷] reflect the efficiency of the inverter while battery charging (regeneration) and 

discharging. 

                                                Regeneration: 𝑛𝑖𝑛𝐶  = 
𝑃𝑑𝑐
𝑃𝑎𝑐

                                                            (37) 

                                               Discharging:    𝑛𝑖𝑛𝐷  = 
𝑃𝑎𝑐
𝑃𝑑𝑐

                                                            (38) 

                         Ideal Inverter functionality = Higher [𝑛𝑖𝑛𝐶 , 𝑛𝑖𝑛𝐷]                               (39) 

11.8.6 Smoothness Measure Vector    

The final criteria of all the measured battery and motor parameters include the desired smoothness 

behavior of the curves plotted in real-time. Hence, the smoothness measure vector (SMV) = [𝑅2, 

Adjusted 𝑅2, Sum of squares error (SSE), root mean square error (RMSE)] defined in Chapter 4 

needs to be estimated for the proposed electric vehicle operating point EVOP = [MOP, IOP, BOP].    

 

 



 

79 

 

 

 
 

Appendices 



 

80 

 

Appendix A 

Tables: Datasets—Cadillac Test Vehicle Segment (ICE) 

Parameters Data Set 1 Data Set 2 

Inputs Mean Deviation Variance Mean Deviation Variance 

Odometer (km) 12723 7.000 0.00055 12750.47 7.321 0.0006 

Speed (MPH) 70.092 1.184 0.0169 69.8071 2.529 0.0362 

Longitudinal acceleration (m.𝑠−2) -0.0092 0.144 -15.755 0.0433 0.253 5.8505 

Lateral acceleration (m.𝑠−2) 0.0174 0.288 16.5578 -0.0313 0.300 -9.6047 

Yaw rate (deg.𝑠−1) 0.217 0.831 3.81748 0.0001 0.763 6157.353 

Cabin air temperature (℉) 68.786 0.329 0.0048 68.899 0.149 0.0022 

External air temperature (℉) 39.225 0.301 0.0077 40.819 0.653 0.0160 

Tire Pressure Left Front (kPa) 241.263 2.444 0.01013 240.850 1.636 0.0068 

Tire Pressure Left Rear (kPa) 235.894 0.642 0.00272 235.683 1.080 0.0046 

Tire Pressure Right Front (kPa) 243.69 1.070 0.00439 243.440 1.387 0.0057 

Tire Pressure Right Rear (kPa) 235.25 1.560 0.00664 234.195 1.990 0.0085 

Outputs Mean Deviation Variance Mean Deviation Variance 

IET (Nm) 149.93 60.210 0.40159 158.333 87.714 0.554 

IES (rad.𝑠−1) 183.151 7.129 0.03893 195.442 31.653 0.162 

IFCR (1E-8 𝑚3𝑠−1) 265.289 90.471 0.34103 311.094 177.058 0.569 

EST (°F) 204.996 0.869 0.00424 204.797 0.701 0.003 

ACRFP (PSI) 39.517 1.038 0.02627 41.442 1.042 0.025 

Table 18: 2019 Cadillac XT6— (Date: March 11, 2020) 
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Parameters Data Set 1 Data Set 2 

Inputs Mean Deviation Variance Mean Deviation Variance 

Odometer (km) 30343.02 0.426 0.000 30308.69 0.700 0.000 

Speed (MPH) 74.541 6.427 0.086 72.194 2.719 0.038 

Longitudinal acceleration (m.𝑠−2) 0.254 0.268 1.053 -0.109 0.151 -1.388 

Lateral acceleration (m.𝑠−2) 0.049 0.245 4.960 0.109 0.215 1.968 

Yaw rate (deg.𝑠−1) 0.121 0.573 4.749 -0.247 0.398 -1.615 

Cabin air temperature (℉) 69.000 0.000 0.000 70.000 0.000 0.000 

External air temperature (℉) 83.355 0.215 0.003 85.612 0.782 0.009 

Tire Pressure Left Front (kPa) 227.310 0.000 0.000 227.310 0.000 0.000 

Tire Pressure Left Rear (kPa) 248.000 0.000 0.000 248.000 0.000 0.000 

Tire Pressure Right Front (kPa) 227.310 0.000 0.000 227.310 0.000 0.000 

Tire Pressure Right Rear (kPa) 248.000 0.000 0.000 248.000 0.000 0.000 

Outputs Mean Deviation Variance Mean Deviation Variance 

IET (Nm) 105.647 71.676 0.678 130.339 62.899 0.483 

IES (rad.𝑠−1) 196.371 15.530 0.079 186.821 7.514 0.040 

IFCR (1E-8 𝑚3𝑠−1) 234.445 142.880 0.609 231.247 99.410 0.430 

EST (°F) 200.499 1.979 0.010 198.760 3.202 0.016 

ACRFP (PSI) 108.982 2.256 0.021 106.842 2.062 0.019 

Table 19: 2021 Cadillac CT4— (Date: August 07, 2020) 

 
Parameters Data Set 1 (AWD) Data Set 2 

Inputs Mean Deviation Variance Mean Deviation Variance 

Odometer (km) 34394.04 0.662 0.000 13001.92 0.889 0.000 

Speed (MPH) 75.985 1.039 0.014 72.764 1.979 0.027 

Longitudinal acceleration (m.𝑠−2) -0.001 0.102 -69.281 0.080 0.256 3.206 

Lateral acceleration (m.𝑠−2) -0.047 0.237 -5.035 0.036 0.125 3.440 

Yaw rate (deg.𝑠−1) -0.346 0.528 -1.525 -0.210 0.496 -2.359 

Cabin air temperature (℉) 71.000 0.000 0.000 70.000 0.000 0.000 

External air temperature (℉) 76.993 0.564 0.007 90.921 0.768 0.008 

Pitch (rad) -0.001 0.001 -0.975 0.006 0.002 0.380 

Roll (rad) 0.003 0.000 0.000 0.008 0.000 0.000 

Tire Pressure Left Front (kPa) 248.000 0.000 0.000 248.000 0.000 0.000 

Tire Pressure Left Rear (kPa) 248.000 0.000 0.000 248.000 0.000 0.000 

Tire Pressure Right Front (kPa) 248.000 0.000 0.000 248.000 0.000 0.000 

Tire Pressure Right Rear (kPa) 248.000 0.000 0.000 248.000 0.000 0.000 

Outputs Mean Deviation Variance Mean Deviation Variance 

IET (Nm) 268.991 41.284 0.153 237.077 63.279 0.267 

IES (rad.𝑠−1) 173.451 4.363 0.025 165.538 4.279 0.026 

IFCR (1E-8 𝑚3𝑠−1) 454.373 68.957 0.152 398.614 93.198 0.234 

EST (°F) 200.444 2.289 0.011 204.594 4.690 0.023 

ACRFP (PSI) 119.427 2.489 0.021 196.758 3.172 0.016 

Table 20: 2021 Cadillac Escalade ESV — (Date: August 11, 2020) 
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Parameters ACC Speed [25 40] MPH ACC Speed [40 55] MPH 

Inputs Mean Deviation Variance Mean Deviation Variance 

Absolute time (s) 3807.133 1922.575 0.505 4182.933 1968.170 0.471 

Odometer (km) 15230.66 44.699 0.003 15239.96 45.639 0.003 

Speed (MPH) 34.433 4.231 0.123 47.734 4.659 0.098 

Longitudinal acceleration (m.𝑠−2) 0.411 0.582 1.415 0.260 0.441 1.698 

Lateral acceleration (m.𝑠−2) 0.352 0.303 0.861 0.348 0.353 1.016 

Yaw rate (rad.𝑠−1) 0.009 0.024 2.646 0.008 0.021 2.495 

Cabin air temperature (℉) 66.000 0.000 0.000 66.000 0.000 0.000 

External air temperature (℉) 85.501 3.770 0.044 86.337 3.434 0.040 

Tire Pressure Left Front (kPa) 270.424 2.822 0.010 269.869 3.170 0.012 

Tire Pressure Left Rear (kPa) 270.886 2.307 0.009 270.885 2.570 0.009 

Tire Pressure Right Front (kPa) 267.259 2.961 0.011 266.713 3.259 0.012 

Tire Pressure Right Rear (kPa) 270.081 3.164 0.012 270.792 3.007 0.011 

Outputs Mean Deviation Variance Mean Deviation Variance 

IET (Nm) 119.135 69.890 0.587 142.408 78.788 0.553 

IES (rad.𝑠−1) 199.642 66.334 0.332 210.297 53.398 0.254 

IFCR (1E-8 𝑚3𝑠−1) 277.618 199.441 0.718 324.459 190.869 0.588 

EST (°F) 199.262 2.478 0.012 199.546 2.112 0.011 

ACRFP (PSI) 156.398 18.163 0.116 164.076 15.808 0.096 

Table 21: 2020 Cadillac CT5 — Dataset 1 (Date: June 16, 2020)  
 

Parameters ACC Speed [55 65] MPH ACC Speed [65 75] MPH 

Inputs Mean Deviation Variance Mean Deviation Variance 

Absolute time (s) 4773.918 2424.428 0.508 4620.057 2330.081 0.504 

Odometer (km) 16042.450 33.226 0.002 16042.910 29.183 0.002 

Speed (MPH) 60.451 2.774 0.046 68.834 2.536 0.037 

Longitudinal acceleration (m.𝑠−2) 0.114 0.330 2.902 0.021 0.269 13.035 

Lateral acceleration (m.𝑠−2) 0.388 0.414 1.065 0.387 0.442 1.143 

Yaw rate (rad.𝑠−1) 0.015 0.021 1.353 0.014 0.019 1.355 

Cabin air temperature (℉) 84.250 3.709 0.044 85.353 2.194 0.026 

External air temperature (℉) 72.850 0.989 0.014 72.992 1.000 0.014 

Tire Pressure Left Front (kPa) 264.708 6.304 0.024 264.692 5.024 0.019 

Tire Pressure Left Rear (kPa) 264.608 3.973 0.015 264.662 3.418 0.013 

Tire Pressure Right Front (kPa) 262.423 7.459 0.028 263.400 6.077 0.023 

Tire Pressure Right Rear (kPa) 262.869 7.223 0.027 264.923 4.024 0.015 

Outputs Mean Deviation Variance Mean Deviation Variance 

IET (Nm) 172.568 75.253 0.436 172.744 76.107 0.441 

IES (rad.𝑠−1) 198.841 45.060 0.227 209.786 38.033 0.181 

IFCR (1E-8 𝑚3𝑠−1) 347.000 176.180 0.508 360.484 160.091 0.444 

EST (°F) 200.148 3.164 0.016 200.331 2.599 0.013 

ACRFP (PSI) 175.395 14.489 0.083 173.653 19.962 0.115  

Table 22: 2020 Cadillac CT5 — Dataset 2 (Date: June 16, 2020)  
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Parameters ACC Speed [25 40] MPH ACC Speed [40 55] MPH 

Inputs Mean Deviation Variance Mean Deviation Variance 

Absolute time (s) 1580.287 783.077 0.496 1588.548 206.355 0.130 

Odometer (km) 24875.92 12.858 0.001 24875.52 2.893 0.000 

Speed (MPH) 34.747 4.831 0.139 46.602 3.800 0.082 

Longitudinal acceleration (m.𝑠−2) 0.111 0.487 4.388 -0.129 0.160 -1.239 

Lateral acceleration (m.𝑠−2) 0.269 0.201 0.748 0.198 0.210 1.062 

Yaw rate (rad.𝑠−1) 0.234 0.244 1.042 0.274 0.287 1.049  

Cabin air temperature (℉) 74.746 4.628 0.062 74.375 7.544 0.101 

External air temperature (℉) 39.664 1.039 0.026 39.954 1.225 0.031 

Tire Pressure Left Front (kPa) 226.523 1.930 0.009 227.253 1.984 0.009 

Tire Pressure Left Rear (kPa) 229.404 2.787 0.012 228.670 1.680 0.007 

Tire Pressure Right Front (kPa) 248.317 3.511 0.014 250.345 2.399 0.010 

Tire Pressure Right Rear (kPa) 227.405 2.628 0.012 227.787 1.980 0.009 

Outputs Mean Deviation Variance Mean Deviation Variance 

IET (Nm) 79.217 51.955 0.656 85.042 35.108 0.413 

IES (rad.𝑠−1) 185.691 60.608 0.326 144.195 7.987 0.055 

IFCR (1E-8 𝑚3𝑠−1) 174.504 150.452 0.862 125.877 49.408 0.393 

EST (°F) 202.714 4.250 0.021 203.877 2.251 0.011 

ACRFP (PSI) 49.462 4.939 0.100 47.960 1.814 0.038 

Table 23: 2020 Cadillac CT5 — Dataset 3 (Date: February 25, 2021)  

 

Parameters ACC Speed [55 65] MPH ACC Speed [65 75] MPH 

Inputs Mean Deviation Variance Mean Deviation Variance 

Absolute time (s) 3018.585 1042.301 0.345 2648.426 202.247 0.076 

Odometer (km) 24822.230 26.519 0.001 24813.59 6.433 0.000 

Speed (MPH) 60.789 3.287 0.054 69.476 2.617 0.038 

Longitudinal acceleration (m.𝑠−2) -0.135 0.209 -1.544 -0.170 0.150 -0.886 

Lateral acceleration (m.𝑠−2) 0.413 0.333 0.807 0.307 0.156 0.510 

Yaw rate (rad.𝑠−1) 1.049 1.112 1.060 0.779 0.312 0.400 

Cabin air temperature (℉) 79.397 6.916 0.087 75.831 5.311 0.070 

External air temperature (℉) 37.816 1.672 0.044 37.931 0.487 0.013 

Tire Pressure Left Front (kPa) 248.338 3.060 0.012 247.232 1.939 0.008 

Tire Pressure Left Rear (kPa) 226.759 3.717 0.016 226.654 3.352 0.015 

Tire Pressure Right Front (kPa) 225.709 2.882 0.013 224.917 1.834 0.008 

Tire Pressure Right Rear (kPa) 227.795 3.674 0.016 227.426 2.707 0.012 

Outputs Mean Deviation Variance Mean Deviation Variance 

IET (Nm) 121.307 49.420 0.407 128.956 43.276 0.336 

IES (rad.𝑠−1) 158.194 27.338 0.173 172.430 6.571 0.038 

IFCR (1E-8 𝑚3𝑠−1) 189.586 90.905 0.479 216.109 72.691 0.336 

EST (°F) 200.331 3.881 0.019 198.797 4.055 0.020 

ACRFP (PSI) 41.700 1.535 0.037 40.571 0.241 0.006  

Table 24: 2020 Cadillac CT5 — Dataset 4 (Date: February 25, 2021) 
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Appendix B 

Tables: Data Retrieval and VEP—Optimization Criteria 

Road types Speed Limits - MPH Properties 

Parking lot, critical points [0 15] No significant effect on EOP  

Arterial local segments [15 25]   No significant effect on EOP 

Low curvatures [15 25]  RRC = [ 8.34 42.57] m 

Arterial connecting segments [25 45] Ideal zone: Higher IET 

State ways [45 65] Green zone: Lower IFCR 

Freeways [65 85]  High-speed zone: Higher IES 

 

Table 25: Categorization of road segments.  

Body module Driver behavior Environmental factors EOP CATOP 

Odometer Speed and set CAT EAT, ATP IET EST 

Tire pressure and Load LOT and LAT HUM, WIND IES ACRFP 

Vehicle type, Euler Angles Yaw rate Gradient, RRC IFCR CAT 

 

Table 26: CAN data retrieved—Cadillac vehicle segment.  

EAT (℉) Higher limit (PSI) EAT (℉) Higher limit (PSI) 

65 135 90 250 

70 140 95 275 

75 150 100 300 

80 175 105 325 

85 220 110 335 

                           

      Table 27: ACS R134a refrigerant—ACRFP referral range. 
 

 Generic Engine specific Smoothness Measure - Spline fit 

Parameter Condition Parameter Condition Parameter Condition 

IET Higher  ED Lower 𝑅2/Adj 𝑅2 Higher 

IES Higher  ESC Higher  SSE Lower 

IFCR Lower  ETC Higher  RMSE Lower 

Table 28: Vehicle engine performance — Criteria. 
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Appendix C 

Tables: Deep Learning [EOP, CATOP] — Performance of [NARX, LSTM] 

NARX LSTM 

Model Parameter Value Model Parameter Value 

Training Function 
Levenberg-Marquardt 

backpropagation 
Training Function 

Stochastic Gradient Descent  

with Momentum Optimizer 

Input Delays 1:2 Output Layer Connected and Regression 

Feedback Delays 1:2 Network Layer LSTM 

Hidden Layer Size 10 Input Layer Sequence Input 

Network Open Gradient Threshold 1 

Dataset analysis [70 % training, 30 % testing] Dataset analysis [70 % training, 30 % testing] 

Performance RMSE Hidden Units 200 

Table 29: Cadillac datasets — NARX and LSTM modelling parameters (MATLAB)  

 

 

 NARX—DL Model Validation  

EOP IET IES IFCR 

Data RMSE FOD SNR RMSE FOD SNR RMSE FOD SNR 

XT6 - Set 1 1.504 0.515 20.644 0.337 0.158 1.893 4.354 3.045 11.628 

XT6 - Set 2 1.84  0.802   9.807 0.248 0.177 41.559 6.503  4.561  78.539 

CT4 - Set 1 2.465 1.744  49.421  1.607  1.129  31.356 21.577 21.098 27.328 

CT4 - Set 2 0.967 0.666 160.83  0.122 0.072  27.012 8.175  6.539 27.012 

ESV - Set 1 2.415  1.723 53.748 0.26  0.179 39.937 15.072 13.034  26.963 

ESV - Set 2 1.791  1.235  30.921 0.063  0.036  10.636 14.259 10.049  16.201 

 LSTM—DL Model Validation 

EOP IET IES IFCR 

Data RMSE FOD SNR RMSE FOD SNR RMSE FOD SNR 

XT6 - Set 1 24.059      10.096 47.943 1.301       0.225  36.399 31.402      13.458 40.790 

XT6 - Set 2 18.515 6.0731 24.716  1.913     0.694   19.515 33.491    10.103 186.338 

CT4 - Set 1  53.504      4.399 128.137 7.738       1.420 32.036  122.147     12.143 209.046 

CT4 - Set 2 21.945   9.555  112.411 1.392      0.092 72.916 31.232    13.254  78.809 

ESV - Set 1 49.151     9.599 415.063  6.240      0.825 69.872  69.086     20.667  72.669 

ESV - Set 2 46.721      21.417 59.115  2.803       0.359 51.746 62.047      31.235  66.147 

Table 30:  Prediction of EOP—NARX and LSTM performance.  
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NARX—DL Model Validation  

CATOP EST ACRFP 

Data ACCSSP CAT (℉) EAT (℉) RMSE FOD SNR RMSE FOD SNR 

XT6 - Set 1 71 67 39.2 0.001 0.001 126.79 0.262 0.184 45.765 

XT6 - Set 2 74 68 40.96 0.000 0.000 0.239  0.09 0.063 71.956 

CT4 - Set 1 76 69 83.3 0.117 0.082 27.151 0.361 0.255  59.722 

CT4 - Set 2 70 70 86 0.098 0.069  70.436 0.1  0.063  2.139 

ESV - Set 1 75 71 77  0.058  0.041  13.827  0.22   0.155  37.714 

ESV - Set 2 73 70 90.5  0.057 0.04  19.125 0.156  0.109  15.93 

LSTM—DL Model Validation 

CATOP EST ACRFP 

Data ACCSSP CAT (℉) EAT (℉) RMSE FOD SNR RMSE FOD SNR 

XT6 - Set 1 71 67 39.2  0.000         0.000 0.000 1.266    0.235  639.558 

XT6 - Set 2 74 68 40.96  0.000         0.000 0.000 0.313     0.080  50.129 

CT4 - Set 1 76 69 83.3  0.690     0.096   162.252 3.030     0.329 831.615 

CT4 - Set 2 70 70 86 0.587     0.075  102.061  0.216     0.070 217.073 

ESV - Set 1 75 71 77  0.837     0.084  445.166  1.297    0.212 228.327 

ESV - Set 2 73 70 90.5   0.557      0.106 162.946 0.422     0.113 78.275 

Table 31:  Prediction of CATOP—NARX and LSTM performance. 
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Appendix D 

Tables: Deep Learning [EOP, CATOP]—Performance of [NARX] 

NARX—DL Model 

EOP  ACCSSP   

(MPH) 

CATOP- Set 1 CATOP- Set 2 

ACCSSP (MPH) Training  Training  Training  

30  1–11082 35 1–1578 1–4842 

40  1–24439 45 1–1913 1–4842 

50  1–39191 55 1–5097 1–4842 

60  1–54200 65 1–5563 1–4382 

70 1–145925 75  1–2242 1–4382 

Table 32: 2020 Cadillac CT5: Prediction of [EOP, CATOP] — Training sets  
 

Data NARX—DL Model Validation  

EOP IET IES IFCR 

ACCSSP 

(MPH) 
RMSE FOD SNR RMSE FOD SNR 

RMS

E 
FOD SNR 

30  1.654 1.080 39.247 0.485 0.269 2.984 11.881 9.122 164.660 

40  1.100 0.734 33.074 0.116 0.053 119.413 8.645 6.361 44.122 

50  0.993 0.708 5.980 0.044 0.017 2.714 10.426 7.472 193.144 

60  1.337 0.883 8.191 0.136 0.038 0.957 9.130 6.444 985.731 

70  0.948 0.660 90.595 0.033 0.016 15.063 5.341 4.122 6.365 

Table 33:  2020 Cadillac CT5: Prediction of EOP—NARX performance.  
 

EAT ≥ 65 ℉ 
Data Set 1:  NARX—DL Model Validation  

EST ACRFP 

ACCSSP 

(MPH) 
CAT (℉) EAT (℉) RMSE FOD SNR RMSE FOD SNR 

35  67 83.30 2.206 1.587 5.107 14.002 10.561 16.135 

45  65 80.375 1.817 1.429 7.118 10.815 7.439 12.112 

55  66 70.205 1.131 0.835 11.140 4.668 2.931 4.442 

65  68 80.942 1.082 0.7507  6.152  3.900 2.764 8.754 

75  69 84.623 1.278 0.788 37.280 8.419 5.000 2.286  

Table 34: 2020 Cadillac CT5: Prediction of CATOP—NARX performance  

(EAT > 65 ℉).  

 

 

 



 

88 

 

EAT < 45 ℉ 
Data Set 2:  NARX—DL Model Validation  

EST ACRFP 

ACCSSP 

(MPH) 
CAT (℉) EAT (℉) RMSE FOD SNR RMSE FOD SNR 

35  76 36.37 0.872 0.622 19.872 0.423 0.281 3.210 

45  71 39.05 0.570 0.408 26.249 0.039 0.015 2.032 

55  85 34.7 0.194 0.131 22.742 0.034 0.017 1.277 

65  80  38.89 0.444 0.312 32.048 0.006 0.004 2.501 

75  75 37.4 0.314 0.265 3.284 0.000 0.000 1.717  

Table 35: 2020 Cadillac CT5: Prediction of CATOP—NARX performance 

 (EAT < 45 ℉).
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Appendix E 

Figures: Prediction of [EOP, CATOP] — [NARX, LSTM] 

 

 

Figure 31: NARX Prediction of [EOP, CATOP] — 2019 Cadillac XT6, Dataset 1  

 

Figure 32: NARX Prediction of [EOP, CATOP] — 2019 Cadillac XT6, Dataset 2 
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Figure 33: NARX Prediction of [EOP, CATOP] — 2021 Cadillac CT4, Dataset 1 

Figure 34: NARX Prediction of [EOP, CATOP] — 2021 Cadillac CT4, Dataset 2 
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Figure 35: NARX Prediction of [EOP, CATOP] — 2021 Cadillac Escalade ESV, Dataset 1    

Figure 36: NARX Prediction of [EOP, CATOP] — 2021 Cadillac Escalade AWD, Dataset 2    
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Figure 37: LSTM Prediction of [EOP, CATOP] — 2019 Cadillac XT6, Dataset 1  

Figure 38: LSTM Prediction of [EOP, CATOP] — 2019 Cadillac XT6, Dataset 2 
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Figure 39: LSTM Prediction of [EOP, CATOP] — 2021 Cadillac CT4, Dataset 1 

Figure 40: LSTM Prediction of [EOP, CATOP] — 2021 Cadillac CT4, Dataset 2    
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Figure 41: LSTM Prediction of [EOP, CATOP] — 2021 Cadillac Escalade ESV, Dataset 1    

Figure 42: LSTM Prediction of [EOP, CATOP] — 2021 Cadillac Escalade AWD, Dataset 2  
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Appendix F 

Figures: Prediction of [EOP]—2020 Cadillac CT5 

 

Figure 43: EOP — ACCSSP = 30 MPH 

 

Figure 44: EOP — ACCSSP = 40 MPH 
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Figure 45: EOP — ACCSSP = 50 MPH 

 

Figure 46: EOP — ACCSSP = 60 MPH 
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Figure 47: EOP — ACCSSP = 70 MPH
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Appendix G 

Figures: Prediction of [CATOP]—2020 Cadillac CT5 (EAT > 65 ℉) 

 

Figure 48: ACCSSP = 35 MPH, CAT = 67 ℉, EAT = 83.3℉ 

 

Figure 49: ACCSSP = 45 MPH, CAT = 65 ℉, EAT = 80.3℉ 
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Figure 50: ACCSSP = 55 MPH, CAT = 66 ℉, EAT = 70.2℉ 

 

Figure 51: ACCSSP = 65 MPH, CAT = 68 ℉, EAT = 80.9℉ 
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Figure 52: ACCSSP = 75 MPH, CAT = 69 ℉, EAT = 84.62 ℉
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Appendix H 

Figures: Prediction of [CATOP]—2020 Cadillac CT5 (EAT < 45 ℉) 

 

Figure 53: ACCSSP = 35 MPH, CAT = 76 ℉, EAT = 36.4 ℉ 

 

Figure 54: ACCSSP = 45 MPH, CAT = 71 ℉, EAT = 39.1 ℉ 
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Figure 55: ACCSSP = 55 MPH, CAT = 85 ℉, EAT = 34.7 ℉ 

 

Figure 56: ACCSSP = 65 MPH, CAT = 80 ℉, EAT = 38.9 ℉ 

 



 

103 

 

     

Figure 57: ACCSSP = 75 MPH, CAT = 75 ℉, EAT = 37.4 ℉
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Appendix I 

Figures: Prediction of [ACCSSP]—2020 Cadillac CT5   

 
Figure 58: ACCSSP—IAS = 30 MPH.    

 

 
Figure 59: ACCSSP—IAS = 40 MPH.    
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Figure 60: ACCSSP—IAS = 50 MPH.   

 

 
Figure 61: ACCSSP—IAS = 60 MPH.   
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Figure 62: ACCSSP—IAS = 70 MPH.  
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Appendix J 

Figures: Prediction of [CATSP]—2020 Cadillac CT5   

 
Figure 63: CATSP: (A) ICAT = 69 ℉; EAT = 82.07 ℉; (B) ICAT = 70 ℉; EAT = 38 ℉—

ACCSSP = 30 MPH.   

 
Figure 64: CATSP: (A) ICAT = 68 ℉; EAT = 85.3 ℉; (B) ICAT = 71 ℉; EAT = 37.63 ℉—

ACCSSP = 40 MPH.   

 
Figure 65: CATSP: (A) ICAT = 66 ℉; EAT = 80.73 ℉; (B) ICAT = 72 ℉; EAT = 40.1 ℉—

ACCSSP = 50 MPH.   
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Figure 66: CATSP: (A) ICAT = 66 ℉; EAT = 79.5 ℉; (B) ICAT = 73 ℉; EAT = 38.86 ℉—

ACCSSP = 60 MPH.  
  

 
Figure 67: CATSP: (A) ICAT = 65 ℉; EAT = 76.1℉; (B) ICAT = 70 ℉; EAT = 36.52 ℉—

ACCSSP = 70 MPH.  
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Appendix K 

Figures: Quantification of IVDM Using [IEE, IEM]—2020 Cadillac CT5 

 

Figure 68: Validation: (A) IEE; (B) IEM—ACCSSP = 70 MPH.   

 
Figure 69: Validation: (A) IEE; (B) IEM—ACCSSP = 60 MPH.   
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Figure 70: Validation: (A) IEE; (B) IEM—ACCSSP = 50 MPH.   

 
Figure 71: Validation: (A) IEE; (B) IEM—ACCSSP = 40 MPH.   
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Figure 72: Validation: (A) IEE; (B) IEM—ACCSSP = 30 MPH.  



 

112 

 

Appendix L 

Algorithms: MATLAB Scripts 

Basic algorithms were deployed using m-scripts which assist the predictive models and concept of 

Intelligent Vehicle Drive Mode (IVDM). The developed logic was posted as GitHub repositories 

discussed in Appendix M. 

1. Algorithm: Resolving simultaneous equations—3 Variables; 2 Equations 

Result: Unique solution for known boundary conditions 

defineProblem = optimproblem('ObjectiveSense','min') 

X = optimvar('x',3,1) 

defineProblem.Objective = (𝑋(3) ∗ 𝑋(1)  −  𝑋(2))2 

Constraint 1: minSpeed ≤ X(1) ≤ maxSpeed 

Constraint 2: minLateralAcceleration ≤ X(2) ≤ maxLateralAcceleration 

Constraint 3: minYawRate ≤ X(3) ≤ maxYawRate 

Constraint 4: (2𝑅  −  
𝑋(1)2

𝑋(2)
−  

𝑋(1)

𝑋(3)
)2== 0 

Initial coordinate: 𝑋0   −    Mean value of the boundary values 

Solution = solve(defineProblem,𝑋0) 
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2. Algorithm: Identifying the “NAN” — Computational analysis 

Result: Identifying the replacing “NAN” - MATLAB 

while d < numIterations do  

      [r,c] = find(isnan(cell2mat(tTest))) 

      if [r,c] != [] 

          tTest(r,c) = tTest(r,c-1) 

      end 

      d+ = 1 

end 

3. Algorithm: Estimating the smooth ACCSSP — Fail safe action 

           (Note: Similar algorithm was adopted to estimate the CATSP) 

Result: Estimating speed profile with three eligible values for each second.  

𝑒𝑙𝑖𝑔𝑖𝑏𝑙𝑒𝑆𝑝𝑒𝑒𝑑𝑉𝑎𝑙𝑢𝑒𝑠𝑘 = [𝑆𝑎, 𝑆𝑏, 𝑆𝑐]     ;   𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑆𝑝𝑒𝑒𝑑𝑉𝑎𝑙𝑢𝑒0 = [𝑆0] 

diffSpeedMatrix = abs(𝑒𝑙𝑖𝑔𝑖𝑏𝑙𝑒𝑆𝑝𝑒𝑒𝑑𝑉𝑎𝑙𝑢𝑒𝑠𝑘- 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑆𝑝𝑒𝑒𝑑𝑉𝑎𝑙𝑢𝑒0) 

indexMinValue = find(diffSpeedMatrix ==min(diffSpeedMatrix )) 

     if min(diffSpeedMatrix ) == 1 

     𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑𝑆𝑝𝑒𝑒𝑑𝑉𝑎𝑙𝑢𝑒𝑘 = 

max(𝑒𝑙𝑖𝑔𝑖𝑏𝑙𝑒𝑆𝑝𝑒𝑒𝑑𝑉𝑎𝑙𝑢𝑒𝑠𝑘(𝑖𝑛𝑑𝑒𝑥𝑀𝑖𝑛𝑉𝑎𝑙𝑢𝑒)) 

     else 

       𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑𝑆𝑝𝑒𝑒𝑑𝑉𝑎𝑙𝑢𝑒𝑘 = 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑆𝑝𝑒𝑒𝑑𝑉𝑎𝑙𝑢𝑒0 

     end 
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4. Algorithm: Estimating the range of allowable CAT (℉) — Correlation with EAT (℉) 

Result: The range of CAT based on external air temperature (EAT). 

if 𝐸𝐴𝑇𝑘 ≥ 65 ℉  

    lowerLimitCAT = 65 ℉ ; higherLimitCAT = 70 ℉ ;  

else 

    lowerLimitCAT = 70 ℉ ; higherLimitCAT = 75 ℉ ;  

end 
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Appendix M 

Source Code: MATLAB Scripts — GitHub repositories 

All the computational models were developed using built-in functions of MATLAB, and the 

scripts were posted as the GitHub repositories (private mode) for reference of this research. The 

m-scripts developed are available on request. 

1. Estimation of vehicle speed for low curvatures. Chapter 5 discusses the concept of 

resolving simultaneous equations to obtain a unique speed for a definite curvature, which 

represents the ideal steering behavior. [Reference 27: Kolachalama, S., et.al (2022), 

IDETC/CIE - 88919; ASME].  

https://github.com/skolachalama/NonLinear-Simultaneous-Equations.git  

2. Prediction of EOP using NARX method. Chapter 6 discusses the NARX deep learning 

method to predict the EOP using the time-sensitive data retrieved from real-time testing. 

[Reference 37: Kolachalama, S., et.al (2021), (No. 2021-01-0186). SAE Technical Paper].  

https://github.com/skolachalama/NARX-EOP.git                                                                                            

3. Prediction of EOP using LSTM method. Chapter 6 discusses the LSTM deep learning 

method to predict the EOP using the time-sensitive data retrieved from real-time testing. 

[Reference 37: Kolachalama, S., et.al (2021), (No. 2021-01-0186). SAE Technical Paper]. 

https://github.com/skolachalama/LSTM-EOP.git  

https://github.com/skolachalama/NonLinear-Simultaneous-Equations.git
https://github.com/skolachalama/NARX-EOP.git
https://github.com/skolachalama/LSTM-EOP.git
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4. Prediction of ACCSSP by optimizing EOP. Chapter 6 discusses a predictive model of 

the engine operating point, and Chapter 7 details the process to estimate the optimal 

ACCSSP for future time steps that enhances engine operating conditions. [Reference 24: 

Kolachalama, S., & Malik, H. (2021). Vehicles, 3(4), 749-763]. 

https://github.com/skolachalama/Prediction-ACCSSP.git  

5. Prediction of CATOP using NARX method. Chapter 6 details the process to predict 

CATOP [EST, ACRFP] for the future time steps that affects engine performance. 

[Reference 29: Kolachalama, S., & Malik, H. (2021). Vehicles. 2021; 3(4):872-889].  

            https://github.com/skolachalama/NARX-CATOP.git  

6. Prediction of CATSP by optimizing CATOP. The details of the NARX predictive model 

and the optimization criteria of HVAC elements were presented in Chapter 7. Based on the 

developed concept, the optimal CAT set profile was generated challenging the constant set 

value. [Reference 29: Kolachalama, S., & Malik, H. (2021). Vehicles. 2021; 3(4):872-889].  

https://github.com/skolachalama/Prediction-CATSP.git 

https://github.com/skolachalama/Prediction-ACCSSP.git
https://github.com/skolachalama/NARX-CATOP.git
https://github.com/skolachalama/Prediction-CATSP.git
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