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Abstract 

 

 

The lithium-ion battery is a significant component in systems where electrification has 

been applied to achieve sustainability goals, such as electrical vehicles fulfilling emissions 

requirements. In order to control the lithium-ion battery to attain the safety, reliability, and 

performance demands of the electrified devices while maintaining design specifications, accurate 

predictions of the battery behaviors are essential.  

 

Data-driven methods with the recent technological breakthroughs in machine learning are 

regarded as solutions to characterize and simulate battery behaviors such as lithium-ion battery 

voltage and temperature. Long short-term memory (LSTM), a type of recurrent neural network 

(RNN), shows accurate battery behavior prediction compared with other data-driven methods in 

the literature. To predict the lithium-ion cell voltage at a low temperature and to estimate the 

temperature distribution of the lithium-ion battery pack, the LSTM architectures are designed 

and trained with lithium-ion battery cell and pack test data. This data-driven method shows high 

accuracy, convergency, and robustness against external variables such as ambient temperature 

variation. However, the highly data-oriented nature of the LSTM method struggles with 

increased prediction error when local data deficiency occurs. In the case of pack temperature 

estimation, the effect of data scarcity is evidenced by differentiating the input temperature 

geometry (at the edge of the battery module) from the predicted temperature location (middle of 

the battery module). To solve this drawback of the data-driven method, the physics-informed 
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neural network (PINN) is developed to provide an additional source, physics law, for training the 

data-driven method.       

 

The PINN model to predict the battery cell temperature is developed by applying the 

battery thermal model to the loss function, implementing adaptive coefficients to the loss 

function, and modifying the neural network architecture with the pre-layer and connection layer, 

reflecting the analytical solution of the battery thermal model. The developed PINN model is 

superior in predicting the lithium-ion battery cell temperature with limited data size and an 

unidentified battery thermal model. This PINN model was applied to the aforementioned LSTM 

architecture to enhance the battery pack temperature estimation. The proposed LSTM-PINN 

hybrid model has more accurate predictions than the LSTM model proposed when data scarcity 

occurs. Furthermore, the LSTM-PINN hybrid model shows robustness against the 

incompleteness of the battery thermal model.   

 

In addition to predicting lithium-ion battery behavior, the data-driven method could be 

applied to lithium-ion battery model identifications. Various neural network methods are applied 

in the literature to find the battery model coefficients. However, most studies implement the full 

factorial design of experiment method for the data sampling from the simulation data created by 

the battery model. This data sampling approach induces a large data size and limits the number 

of identified battery model parameters. To improve this drawback of the full factorial data 

sampling method, Plackett-Burman (PB), Latin hypercube (LH), and PB/LH combined methods 

are applied to identify the eight battery model parameters from the pseudo-two-dimensional 
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(P2D) lithium-ion model. The LH sampling method reduces the data size by more than 90% 

while keeping the prediction error increase manageable (3% increase).  
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Chapter 1 Introduction 

 

1.1 Motivation 

Global warming has caught recent public attention since it creates environmental and 

social issues such as ecological imbalance, economic crisis, and political conflicts. Among many 

factors causing global warming, greenhouse gases such as carbon dioxide are considered the 

primary driver [1]. Furthermore, according to studies like the one done by Heede et al., the 

majority of global carbon emissions are due to human activities such as vehicle transportation 

and power generation [2]. Therefore, human activities are critical factors in easing global 

warming. Recent movements in the electrification of transportation by vehicle manufacturers are 

part of the social efforts to separate human activities from greenhouse gas emissions to avoid 

global warming.         

  

The lithium-ion battery is an energy storage device that converts electrical energy to 

chemical energy during charging. Then it converts the chemical energy to electrical energy 

during discharge under a load. Lithium ions migrate between the anode and cathode during the 

lithium-ion battery’s operation while electrons flow to an external load. Fig. 1 shows a simplified 

schematic illustrating the battery operation, and Table 1 shows the material information of each 

lithium-ion battery component.  
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Fig. 1 Lithium-ion battery operation 

 

 

Table 1 Lithium-ion battery components and material information 

Component Material 

Anode Carbon or Silicon 
compounds 

Cathode Transitional metal oxides 

Separator Polymer 

Electrolyte Carbonate solvent + Li salt 

Anode foil Copper 

Cathode foil Aluminum 

Case Aluminum base 
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Since the commercialization of the lithium-ion battery in 2005, portable electronic 

devices have used the lithium-ion battery as the energy storage source [3]. In recent lithium-ion 

battery design, transition metal alloys containing cobalt, nickel, and manganese are synthesized 

to work as the cathode. Carbon compounds such as graphite are used as anodes to boost energy 

density [4]. With this technical breakthrough in chemistry to improve the performance, the 

lithium-ion battery is also regarded as the primary energy storage device for vehicle 

electrification. Major automotive companies have introduced hybrid [5–7] and full electrical 

vehicles with high-energy lithium-ion battery systems [8]. Table 2 shows the commercially 

available hybrid and electric vehicles with their battery specifications. These new types of 

electrified transportation with lithium-ion batteries will either reduce or eliminate greenhouse gas 

emissions.  

 

Table 2 Lithium-ion battery chemistry and energy of electrical vehicles [9] 

Vehicle Chemistry 
Usable Battery Energy 

(kWh) 

Mercedes EQS NMC 107.8 

Tesla X and Tesla S NCA 95 

Ford  
Mustang Mach-E 

NMC 91 

Audi e-tron NMC 86.5 

Volkswagen ID.5 NMC 77 

Hyundai IONIQ 5 NMC 72.5 

   (N = Nickel, M=Manganese, C=Cobalt and A = Aluminium) 
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Despite the advantages of the lithium-ion battery, such as high energy density, minimal 

memory effect, and relatively wide operation temperature ranges [10, 11], it has short life and 

safety risks when it operates out of its operating voltage and temperature ranges [12]. Any 

lithium-ion battery operations under the low operation temperature limit degrade the battery 

performance. Any operations over the high operation temperature limit induce hazardous events 

such as thermal runaway or explosion [13–15]. To avoid this catastrophic failure that the lithium-

ion battery may face, the battery management system (BMS) should be capable of estimating the 

battery state parameters such as state of charge (SOC) and state of health (SOH) and predicting 

the battery behaviors such as battery voltage and temperature. However, the nonlinear 

characteristics of the lithium-ion battery make it difficult for BMS to anticipate the battery 

behavior, potentially leading to poor battery control [16]. Therefore, accurate and reliable 

methods to model and estimate the lithium-ion battery behavior are necessary for enhancing the 

battery usage by improving the battery safety and life. Also, this improvement will lead to 

further electrification of transportation to reduce greenhouse gas emissions. This dissertation 

conducts a series of studies to implement artificial neural network-based methods.  

 

1.2 Artificial Neural Network 

 Since Hinton and co-researchers’ technical breakthrough with an artificial neural network 

(ANN) and deep learning, introduced in their research papers [17–18], ANN has been 

successfully applied to a broad range of areas such as pattern recognition [19–20], natural 

language processing [21–22], portfolio management [23–24], medical diagnosis [25–26], and 

financial forecasting [27–28]. In these applications, ANN performs three major types of tasks. In 

the supervised learning task, ANN models the input and output relationship. Then the trained 

ANN predicts the outputs for any given inputs. In the unsupervised learning task, ANN is trained 
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to perform the clustering, filtering, and estimating of input data distribution [29]. In the 

reinforced force learning task, ANN is trained to minimize the cost function, guiding the agent’s 

behavior for optimum control [30]. An application such as the lithium-ion battery behavior 

estimation that will be discussed in this dissertation paper falls under the supervised learning task 

category. 

 

 ANN consists of multiple artificial neurons (AN) that resemble the functions of the 

biological neurons that are the basic units of the human brain. As shown in Fig. 2, the input 

signal is provided to the AN. Then the AN processes the input signal and transmits the output 

signal. AN conducts the signal processing by mathematical calculation with the weight, bias, and 

activation function. The mathematical formulation for the signal process is given in (1) [31].         

   

 

Fig. 2 Artificial Neuron  

(X: input, W: weight, b: bias, f: activation function and Y: output) [31] 

 

 

𝑌𝑗 = 𝑓 (∑ 𝑊𝑖𝑗 ∙ 𝑋𝑖

𝑖

+ 𝑏) (1) 

∑ f YX2

X1

X3
b

Artificial Neuron
w1

w2

w3
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 In (1), Y is the 𝑗𝑡ℎ output of a neuron, 𝑓 is the activation function, 𝑊𝑖𝑗 is the weight 

between the 𝑖𝑡ℎ input and the 𝑗𝑡ℎ output, 𝑋𝑖 is the 𝑖𝑡ℎ input, and 𝑏 is the bias. Typical activation 

functions implemented in ANN are provided in Table 3. 

 

Table 3 List of the activation functions [32] 

Name Equation Range 

Linear 𝑓(𝑥) = 𝑥 
(-infinity to 

infinity) 

Sigmoid 𝑓(𝑥) =
1

1 + 𝑒−𝑥
 (0 to 1) 

Hyperbolic tangent 
(tanh) 

𝑓(𝑥) = tanh(𝑥) (-1 to 1) 

Rectified linear unit 
(ReLU) 

𝑓(𝑥) = 0  𝑓𝑜𝑟 𝑥 < 0 

𝑓(𝑥) = 𝑥  𝑓𝑜𝑟 𝑥 ≥ 0 
(0 to infinity) 

Exponential linear 
unit (ELU) 

𝑓(𝑥) = 𝛼(𝑒𝑥 − 1)𝑓𝑜𝑟 𝑥 < 0 
𝑓(𝑥) = 𝑥  𝑓𝑜𝑟 𝑥 ≥ 0 

(-1 to 
infinity) 

    

 During the training process, the prediction accuracy of ANN is optimized by using 

backpropagation with a loss function. Table 4 shows the typical loss functions applied to the 

supervised learning tasks. Also, the ANN implements multiple hidden layer structures to take a 

deep learning approach, as in Fig. 3. This deep neural network is known for its strength in 

accurately predicting problems with nonlinearity, such as fluid dynamics [33] and 

electromagnetics [34].   
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Table 4 List of the loss functions [35] 

Name Equation 

Mean Square Error 𝑀𝑆𝐸 =  
∑ (𝑦𝑖−𝑦̂𝑖)2𝑛

𝑖=1

𝑛
   

Mean Absolute Error 𝑀𝐴𝐸 =  
∑ |𝑦𝑖 − 𝑦̂𝑖|

𝑛
𝑖=1

𝑛
 

Mean Bias Error 𝑀𝐵𝐸 =  
∑ (𝑦𝑖 − 𝑦̂𝑖)

𝑛
𝑖=1

𝑛
 

(𝑛= sample number, 𝑦𝑖 = true value and 𝑦̂𝑖 = output from ANN) 

 

 

 

Fig. 3 Deep Neural Network (multiple hidden layers) [31] 
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 With its characteristics, especially its strength in learning nonlinearity, ANN is a suitable 

data-driven method to estimate lithium-ion battery performance parameters and behaviors. The 

following subsections of this paper contain a review of the recently published studies 

implementing ANN to estimate SOC, SOH, battery voltage, and battery temperature.        

 

1.2.1 Artificial Neural Network for SOC Estimation 

 The lithium-ion battery SOC is the ratio of residual capacity to installed capacity as 

formulated in (2). SOC works as a gauge indicating the amount of the charged energy available 

in the lithium-ion battery. SOC is significant to lithium-ion battery control because SOC is 

related not only to the time left to empty the battery energy but also to the battery performance 

such as battery power and the battery safety by avoiding overcharge and overdischarge.   

 

𝑆𝑂𝐶 =
𝑄𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙

𝑄𝐼𝑛𝑠𝑡𝑎𝑙𝑙𝑒𝑑
∙ 100% (2) 

 

 In (2), 𝑄𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 and 𝑄𝐼𝑛𝑠𝑡𝑎𝑙𝑙𝑒𝑑 represent the residual capacity and the installed capacity, 

respectively.  

 

 In the literature, ANN has been applied to predict the SOC of the lithium-ion battery in a 

supervised learning task manner such that the input measurements are fed into the ANN and the 

ANN predicts the SOC of the lithium-ion battery as the output of the ANN. In [35], the authors 

implemented a one input layer, one hidden layer, and one output layer structure for the ANN 

with backpropagation. In [36], the authors applied the ANN method as in the previous literature 

but with multiple hidden layers with the ADAM customized method to update the weights and 



 9 

bias of the ANN. In studies [37] and [38], the ANN methods with multiple hidden layers were 

implemented with the backtracking search algorithm (BSA) and particle swarm optimization 

(PSA) to optimize the neuron number and learning rate of the ANN to avoid either overfitting or 

underfitting while training the ANN. In [39], the authors modified the ANN structure to become 

a recurrent neural network (RNN). RNN is another form of ANN in which the output of the 

previous sequence is fed to the ANN as the input. This paper applies the nonlinear autoregressive 

exogenous (NARX) method to the ANN to make it an RNN. Table 5 summarizes the SOC 

estimation errors of the reviewed ANN methods. The prediction error summary table shows that 

most ANN methods have less than 1% prediction error. Also, it is noticeable that the RNN 

method has the lowest prediction error even at a low temperature. This outcome is expected since 

the battery data are mostly time-series data, and the RNN can learn the previous event 

information. 

  

Table 5 SOC estimation error from the literatures 

Neural Network Architecture RMSE MAE Temperature 

ANN [35] 0.20 % - 25°C 

ANN with ADAM [36] 0.78 % 0.61 % -20 to 25°C 

MLP with BSA [37] 0.57 % 0.38 % 25°C 

MLP with BSA and PSO [38] 1.37 % 1.01 % 25°C 

RNN [39] 0.30 % - 0 °C 

 

1.2.2 Artificial Neural Network for SOH Estimation 

 The lithium-ion battery is degraded over time by cycle and calendar effects. SOH is a 

parameter that shows the progress of lithium-ion battery degradation. The battery SOH is the 

ratio of maximum capacity to installed capacity as formulated in (3). 
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𝑆𝑂𝐻 =
𝑄𝑚𝑎𝑥

𝑄𝐼𝑛𝑠𝑡𝑎𝑙𝑙𝑒𝑑
∙ 100% (3) 

 

 In (3), 𝑄𝑚𝑎𝑥 is the maximum capacity and 𝑄𝐼𝑛𝑠𝑡𝑎𝑙𝑙𝑒𝑑 is the installed capacity.    

 

 Like the SOC estimation, most research studies applied ANN to predict the SOH of the 

lithium-ion battery in a supervised learning fashion such that the input measurements and battery 

state parameters are fed into the ANN and the ANN then predicts the SOH of the lithium-ion 

batteryas the output. In [40], the structure of the ANN used in the study has one input layer, one 

hidden layer, and one output layer. For the inputs to the ANN, SOC and three battery model 

parameters are fed to the ANN. In [41], the study implements an ANN consisting of one input 

layer, two hidden layers, and one output layer, with the numbers of neurons in each layer being 

10, 7, 4, and 1. Also, in this study, the autoencoder neural network, a subcategory of the ANN, is 

applied to the battery data to perform the feature extraction. Then, the autoencoder neural 

network outputs are fed to the ANN structure. In [42], the structure of the ANN contains one 

input layer, one hidden layer, and one output layer. The battery current, voltage, and SOC are fed 

to the input layer in the input layer. This paper has the battery capacity as the output from the 

ANN. Also, this paper created RNN by inserting the battery capacity of the previous time 

sequence into the input layer. In addition to [42], many studies are using RNN. In [39], the RNN 

structure developed with NARX is also applied to predict the SOH. In [43], the RNN structure is 

introduced by adding the capacity and resistance impedance spectroscopy measurements of the 

previous time sequence. This structure predicts the capacity and resistance impedance 

spectroscopy measurements of the future time sequence for the output. Table 6 summarizes the 

SOH estimation errors of the reviewed ANN methods. This literature review found that the RNN 
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structure had a more accurate prediction than the ANN without the previous sequence 

information in the input layer.       

Table 6 SOH estimation error from the literature 

Neural Network 
Architecture 

RMSE MAE 

ANN [40] - 7.2% 

ANN with Autoencoder [41] 6.66% - 

ANN [42] 4.72% - 

RNN [39] 0.1% - 

RNN [42] 0.41% - 

RNN [43] 0.46 - 

 

1.2.3 Artificial Neural Network for Predicting Lithium-Ion Battery Voltage 

 Battery voltage is a response of the lithium-ion battery continuously measured by the 

battery management system (BMS). Battery voltage influences the lithium-ion battery’s cost, 

safety, and performance. For instance, a lithium-ion battery with a nickel, cobalt, and manganese 

composite cathode has a battery operation voltage range between 2.5V and 4.1V. Any battery 

voltage operation away from this range causes battery overcharge and discharge, which will be 

the root cause of hazardous phenomena such as thermal runaway [44]. In addition to the lithium-

ion battery safety aspect, the battery voltage is also essential to estimating lithium-ion battery 

characterization parameters such as SOC and SOH. Also, the system-level rule-based [45] and 

optimization-based [46] battery management strategies require high accuracy for the battery 

voltage prediction. Therefore, battery voltage prediction influences battery control, which is 

related to lithium-ion battery performance and battery cost since with high confidence in the 

battery control the design margin could be eliminated [44].    
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 In the published studies, RNN and its relative structures, such as gated recurrent unit 

(GRU) and long-short term memory (LSTM), are applied mainly to predict the lithium-ion 

battery voltage. This implementation of the RNN is due to the time series characteristics of the 

battery data and the high prediction accuracy of the RNN with the battery data, as reviewed in 

the two previous sections regarding SOC and SOH. In [47], the authors developed particular 

RNN architectures, GRU and LSTM, to predict the lithium-ion battery voltage. In this design, 

the current, amp-hour counting, temperature, and voltage at the previous time sequence were fed 

to the RNN architecture to predict the battery voltage at the current time sequence. In both cases, 

the absolute voltage prediction error was less than 10% for 25°C, 10°C, and -10°C. In [48], the 

study proposed another LSTM architecture to predict the battery voltage. In this method, the 

inputs to the LSTM model are the battery voltage, SOC, brake pedal stroke value, and vehicle 

speed at the previous time sequence. 

 

 Moreover, the output is the battery voltage at the current time sequence. The reported 

battery voltage prediction error (relative error) was less than 1% at a temperature range between 

0 and 10°C. Finally, in [49], the authors proposed an LSTM model combined with the lithium-

ion equivalent circuit model. In this method, the inputs to the LSTM model were the cell voltage, 

pack voltage, and pack SOC in the previous time sequence. Furthermore, the output was the 

battery cell voltage at the current time sequence. The proposed LSTM had a prediction error 

(mean square error) of less than 0.01%.  

 

 In summary, the proposed ANN models in the literature, mainly RNN architectures, 

successfully predicted the lithium-ion voltage with high accuracy. However, there are some 
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limitations in the studies found in the literature. First, since every study used a different 

prediction error definition, comparing the proposed RNN models is challenging. So, it is not 

possible to rank the proposed methodologies. One of the significant challenges in lithium-ion 

battery voltage is its prediction at low temperatures. However, in the literature, the lowest 

temperature the proposed models validated was -10°C, which is a modest low temperature. The 

lithium-ion battery for transportation requires cold cranking at extremely low temperatures, e.g., 

-30°C [50]. In chapter Ⅱ of this dissertation paper, these shortcomings in the literature will be 

revisited by conducting a comparison study among various types of RNN at a low temperature 

of -30°C. 

 

1.2.4 Artificial Neural Network for Predicting Battery Temperature 

 Battery temperature is another continuously measured response of the lithium-ion battery, 

which is essential for battery management since the battery temperature influences the lithium-

ion battery’s safety and performance. The lithium-ion battery has outstanding performance in 

terms of efficiency and safety in the temperature range between 20°C and 40°C [51]. The 

lithium-ion battery suffers from performance degradation at low temperatures because of the 

high internal resistance. Also, high temperatures may lead to safety concerns such as thermal 

runaway [52]. However, the physical and cost constraints in lithium-ion battery design limit the 

number of temperature sensors in the lithium-ion battery pack. Due to this scarcity of 

temperature information, especially in large batteries, lithium-ion battery temperature prediction 

is necessary to control lithium-ion battery usage to avoid undesired battery temperature and to 

develop the battery structure and cooling and heating methods. 
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 In the literature, as with lithium-ion battery SOC, SOH, and voltage predictions, RNN 

architectures are popular ANN structure choices to predict the battery temperature. In [53], the 

authors compared various ANN and LSTM structures to predict the battery surface temperature. 

In this study, various combinations of the inputs were studied with the two neural network 

structures. The input variables considered in this study were the battery current, voltage, SOC, 

ambient temperature, filtered battery current, and voltage. In the results, the lowest ANN 

prediction error (root mean square error) was 1.3 °C, and the lowest LSTM prediction error was 

0.7 °C. The authors also concluded that LSTM had a better prediction accuracy than ANN for all 

cases reviewed in the paper. In [54], the authors implemented the GRU architecture alone to 

predict the core lithium-ion battery temperature. In the GRU model, battery voltage, current, 

ambient temperature, and battery surface temperature were fed to the GRU model. The output 

was the core battery temperature. This GRU model’s prediction error (maximum absolute error) 

was 0.066 °C. In this dissertation paper, an LSTM structure will be developed to predict large 

battery pack temperatures at various locations in the battery pack.       

 

1.2.5 Advantages and Disadvantages of Artificial Neural Networks 

 The literature review shows that the ANN-based methods have advantages in battery 

behavior prediction. First, the ANN-based predictions have high accuracy, primarily when 

structured as an RNN-based architecture. In the study included in [55], the RNN-based method 

had better prediction accuracy than the model-based method, with one order of magnitude lower 

prediction error (mean square error). Second, the ANN method does not require system 

identification. The battery model needs to be identified in order for the model-based method to 

make the battery behavior prediction. However, accurate battery model identification is not 

always available and is challenging for modeling lithium-ion battery behavior.  
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 Despite the advantages, the ANN method has drawbacks, mainly related to training data 

availability and quality. This drawback is because the learning process is based solely on the 

training data. Lithium-ion battery test data derived mainly from the large-sized lithium-ion 

battery packs for electric cars are costly to produce, and therefore the data availability is limited. 

This dissertation proposes a physics-informed neural network (PINN) methodology to improve 

on the high dependency of ANN methods on the training data. Related works will be discussed 

in the later sections of this dissertation paper.   

 

1.2.6 RNN Methods 

1.2.6.1 Simple RNN (Recurrent Neural Network)    

Simple RNN is the simplest recurrent neural network structure, which resembles the 

feed-forward ANN in which the inputs and bias apply to the activation function in the hidden 

layer to produce the outputs. However, the simple RNN connects the input and output [56]. Fig. 

4 presents a unit cell of the simple RNN without the rolled-through time representation. The 

figure indicates the connection between the input and output by the brown loop allowed in the 

hidden layer.  
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Fig. 4 Simple RNN unit cell [57] 

 

 The output of the simple RNN is also formulated as below.  

 

𝑌(𝑡) = 𝜎(𝑊𝑋𝐻𝑋𝑡 + 𝑊𝐻𝐻𝐻𝑡−1 + 𝑏𝑋𝐻)                               (4) 

  

In the equation, 𝑌(𝑡) is the output at time t. 𝜎 is the activation function. 𝑋𝑡 is the input at 

the time t. 𝑊𝑋𝐻 is the weight between the input and the hidden layer. 𝑊𝐻𝐻 is the weight for the 

hidden layer. 𝐻𝑡−1is the output from the hidden layer at time t - 1 (past). 𝑏𝑋𝐻 is the bias [56]. 

 

Furthermore, throughout the sequence data, the recurring weight, 𝑊𝐻𝐻, is updated by 

recurrently multiplying the recurring weight. Since this process involves the same number 

multiplication multiple times, based on the magnitude of the recurring weight, the updated 

weight could either vanish out for a small number or explode for a large number. This change is 

the vanish gradient problem of the RNN. This problem is a phenomenon that needs to be 
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managed during the implementation of the RNN. Following, two RNN methods are developed to 

avoid the vanish gradient problem. 

 

1.2.6.2 LSTM (Long Short-Term Memory)   

 LSTM is a type of neural network that belongs to the recurrent neural network (RNN) 

family. Indeed, LSTM can overcome the vanishing gradient challenge that RNN suffers while 

updating its weights. This improvement is due to the long-term state memory and associated 

layer structures included in the architecture. A unit cell of LSTM consists of four different 

layers. The main layer acts like an RNN but with a long-term state memory. A forget gate layer 

removes the undesired portion of the long-term state memory. An input gate layer directs a 

portion of the output to the long-term state memory. Lastly, an output gate selects a portion of 

the long-term state memory to the output [56]. Fig. 5 shows an LSTM unit cell followed by a list 

of the equations formulated in the LSTM. 

 

 

Fig. 5 LSTM unit cell [57] 
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𝑓(𝑡) = 𝜎(𝑊𝑓𝑋𝑡 + 𝑊𝑓𝐻𝑡−1 + 𝑏𝑓)                                           (5) 

𝑖(𝑡) = 𝜎(𝑊𝑖𝑋𝑡 + 𝑊𝑖𝐻𝑡−1 + 𝑏𝑖)                                        (6) 

𝑔(𝑡) = 𝑡𝑎𝑛ℎ(𝑊𝑔𝑋𝑡 + 𝑊𝑔𝐻𝑡−1 + 𝑏𝑔)                                            (7) 

𝑜(𝑡) = 𝜎(𝑊𝑜𝑋𝑡 + 𝑊𝑜𝐻𝑡−1 + 𝑏𝑜)                   (8) 

𝑐(𝑡) = 𝑓(𝑡) ⊗ 𝑐(𝑡 − 1) + 𝑖(𝑡) ⊗ 𝑔(𝑡)                                 (9) 

ℎ(𝑡) = 𝑜(𝑡) ⊗ 𝑡𝑎𝑛ℎ(𝑐(𝑡))                                             (10) 

 

 In equations 5–10, 𝑓(𝑡) is the forget gate. 𝜎 is the sigmoid function. 𝑊𝑓 is the weight in 

the forget gate controller. 𝑋𝑡 is the input at time step t. 𝐻𝑡−1 is the output at time step t -1. 𝑏𝑓 is 

the bias in the forget gate controller. 𝑖(𝑡) is the input gate controller. 𝑊𝑖 is the weight in the input 

gate controller. 𝑏𝑖is the bias in the input gate controller. 𝑔(𝑡) is the main layer. 𝑊𝑔 is the weight 

in the main layer. 𝑏𝑔 is the bias in the main layer. 𝑜(𝑡) is the output gate controller. 𝑊𝑜 is the 

weight in the output gate controller. 𝑏𝑜 is the bias in the output gate controller. 𝑐(𝑡) is the cell 

state at time t. ℎ(𝑡) is the output.  

 

1.2.6.3 GRU (Gated Recurrent Unit) 

 Although LSTM avoids the vanishing gradient problem of RNN, LSTM has its 

drawbacks due to its complex structure requiring relatively high computation power for training. 

GRU was invented to solve this issue by Junyoung Chung et al. in 2014 [58]. GRU reduces the 

complexity of the LSTM structure. In GRU, a single gate controller combines the functions of 

both the forget gate and the input gate. Moreover, the output gate is removed from the structure. 

Fig. 6 shows a GRU unit cell followed by a list of the equations formulated in the GRU. 
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Fig. 6 GRU unit cell [57] 

 

𝑓(𝑡) = 𝜎(𝑊𝑓𝑋𝑡 + 𝑊𝑓𝐻𝑡−1 + 𝑏𝑓)                                     (11) 

𝑖(𝑡) = 𝜎(𝑊𝑖𝑋𝑡 + 𝑊𝑖𝐻𝑡−1 + 𝑏𝑖)                                   (12) 

𝑔(𝑡) = tanh(𝑊𝑔𝑋𝑡 + 𝑊𝑔(𝑖𝑡 ⊗ 𝐻𝑡−1) + 𝑏𝑔)                                   (13) 

ℎ(𝑡) = 𝑓𝑡 ⊗ 𝑔𝑡 + (1 − 𝑓𝑡) ⊗ 𝐻𝑡−1                                       (14) 

 

 In equations 11–14, 𝑓(𝑡) is the single gate controller. 𝜎 is the sigmoid function. 𝑊𝑓 is the 

weight in the single gate controller. 𝑋𝑡 is the input at time step t. 𝐻𝑡−1 is the output at time step t 

-1. 𝑏𝑓 is the bias in the single gate controller. 𝑖(𝑡) is the new gate controller. 𝑊𝑖 is the weight in 

the new gate controller. 𝑏𝑖is the bias in the new gate controller. 𝑔(𝑡) is the main layer. 𝑊𝑔 is the 

weight in the main layer. 𝑏𝑔 is the bias in the main layer. (𝐻𝑡) is the output. 
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1.3 Contributions  

The contributions in this dissertation and relevant publications are summarized as 

follows. 

Chapter II assesses two different ANN applications in lithium-ion battery behavior 

prediction. A comparison study is conducted among various RNN-based lithium-ion battery 

voltage prediction models in the first application. The comparison work is performed during 

cold, high c-rate, and long duration profiles. In the second application, an LSTM-based model is 

proposed to predict the distribution of the battery surface temperatures of a large-sized lithium-

ion battery pack.   

 

 Gyouho Cho, Di Zhu, and Jeffrey Campbell. A Comparative Study of Recurrent Neural 

Network Architectures for Battery Voltage Prediction. No. 2021-01-1252. SAE Technical 

Paper, 2021. 

 

 Di Zhu, Jeffrey Campbell, and Gyouho Cho. “Battery Voltage Prediction Using Neural 

Networks.” 2021 IEEE Transportation Electrification Conference & Expo (ITEC). IEEE, 

2021. 

  

 Jeffrey Campbell, Di Zhu, and Gyouho Cho. Estimation of Surface Temperature 

Distributions Across an Array of Lithium-Ion Battery Cells Using a Long Short-Term 

Memory Neural Network. No. 2022-01-0713. SAE Technical Paper, 2022. 
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In Chapter Ⅲ, a PINN method to predict a prismatic lithium-ion battery cell is developed. 

The proposed PINN model is investigated with the pulse test data. The characteristics of the 

battery temperature prediction made by the PINN model are reviewed.  

 

Gyouho Cho, Mengqi Wang, Youngki Kim, Jaerock Kwon and Wencong Su, “A 

Physics-Informed Machine Learning Approach for Estimating Lithium-Ion Battery 

Temperature,” in IEEE Access, 2022, doi: 10.1109/ACCESS.2022.3199652. 

 

In Chapter Ⅳ, the LSTM-PINN hybrid model is developed to predict the distribution of 

the battery surface temperatures of a large-sized lithium-ion battery pack. This hybrid model 

improves the temperature prediction by the LSTM model introduced in Chapter II.  

 

Gyouho Cho, Di Zhu, Jeffrey Campbell and Mengqi Wang, "An LSTM-PINN Hybrid 

Method to Estimate Lithium-Ion Battery Pack Temperature," in IEEE Access, 2022, doi: 

10.1109/ACCESS.2022.3208103. 

 

In Chapter V, a comparative study is conducted to assess the effect of various data 

sampling methods with LSTM architectures for identifying the lithium-ion battery model 

parameters.  

 

Gyouho Cho, Youngki Kim, Jaerock Kwon, Wencong Su, and Mengqi Wang. “Impact of 

Data Sampling Methods on the Performance of Data-driven Parameter Identification for 

Lithium-ion Batteries.” IFAC-PapersOnLine 54.20 (2021): 534–539. 
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1.4 Dissertation Organization  

 This dissertation is organized as follows. Chapter II presents the studies proposing RNN 

methods to predict battery voltage and temperature. Chapter III introduces the PINN for 

predicting the lithium-ion battery cell temperature during the pulse test. Chapter IV develops an 

LSTM-PINN hybrid model to predict the distribution of the battery surface temperatures of a 

large-sized lithium-ion battery pack. This method improves the prediction accuracy of the RNN 

model introduced in Chapter II. Chapter V discusses the effect of various data sampling methods 

for battery model parameter identification with the LSTM methods. Finally, Chapter VI 

summarizes the main results of this dissertation, its contributions, and future research directions.
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Chapter 2 RNN For Lithium-Ion Battery Voltage and Temperature Estimation  

 

2.1 Introduction  

 This chapter presents the RNN applications to predict the lithium-ion battery voltage and 

temperature. RNN is a sub-category of ANN. In the literature review with the ANN applications 

for SOC and SOH prediction, the RNN-based methods showed a higher prediction accuracy than 

other ANN methods because of the RNN’s capability to learn the sequential time series data. For 

lithium-ion battery voltage prediction, a comparison study with three RNN methods, simple 

RNN, GRU, and LSTM, is made for battery voltage prediction at a low temperature, -30°C, with 

pulse cycle data. This study uses a 5Ah prismatic lithium-ion battery cell for the pulse test. The 

LSTM method is proposed to predict the temperature distribution in the lithium-ion battery pack 

for lithium-ion battery temperature prediction. This development work utilizes battery pack cycle 

test data with a lithium-ion battery pack consisting of 70 Ah pouch lithium-ion battery cells for 

the training, validation, and testing of the LSTM model.  

 

 This chapter is organized as follows. Section 2.2 contains the comparison study for the 

lithium-ion battery voltage prediction. Section 2.3 contains the LSTM-based method for the 

lithium-ion battery temperature prediction. In section 2.3, conclusions are drawn. 
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2.2 RNN Methods to Predict Battery Voltage 

 This section contains a comparative study with three RNN methods, simple RNN, GRU, 

and LSTM, for predicting lithium-ion battery cell voltage at a low temperature, -30°C. In the 

comparison study, multiple pulses profiles with different pulse sizes and a rest between the two 

pulses are applied to the three neural network structures to assess the prediction accuracy for 

both dynamic and relaxation lithium-ion battery behaviors. After reviewing the prediction 

accuracy, this section of the dissertation will propose the most suitable RNN structure for 

lithium-ion battery voltage prediction. 

 

2.2.1 Sliding Window and Many-to-One Architectures   

 In this comparison study, the sliding window and many-to-one architectures combine 

with each RNN structure to predict the lithium-ion battery cell voltage from the previous 

sequence information. In the sliding window approach, the previous 20 sequences in the time 

series data are fed to each RNN type to predict a current battery cell voltage. Also, this approach 

uses multiple inputs, current, voltage, and SOC, which categorize this method as a many-to-one 

architecture. The schematic input and output data flows are described in Fig. 7. 
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Fig. 7 Sliding window and many-to-one architecture 

 

2.2.2 Data Acquisition and Preparation—Voltage Prediction 

Current-pulse tests are conducted to prepare the training data for the three RNNs. This 

pulse test contains 10-seconds-long constant current pulses with different current sizes, the rest 

time between the two different pulses, and small current pulses to maintain the state of charge 

during the test. With this profile, the three RNNs are under evaluation during both large current 

sizes and relaxation. Furthermore, to conduct the comparative study at low temperature, the 

current pulse test is performed at 25°C and -35°C. However, since a lithium-ion battery has a 

high resistance that causes the early end of the test to reach the battery voltage limit during the 

test, the size of the current pulses in the -35°C pulse test profile is smaller than those of the 25°C 

pulse test profile. For the 25°C pulse test profile, 10-second discharge pulses from 20A to 200A 

with a 20A increment change are applied. For the -35°C pulse test profile, 10-second discharge 

pulses from 2A to 16A with a 2A increment change are applied. In Fig. 15, the current profiles of 

the pulse tests at 25°C and -35°C are provided.   
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Fig. 8 Pulse test profile at 25°C (left) and -35°C (right), (negative: discharge) 

 

 In the current pulse test, a 5Ah prismatic lithium-ion cell is used as a test sample. An 

Arbin battery cycler and AVL battery tester are connected to the test sample in the test setup. 

The test sample is secured inside the environmental chamber to control the test temperature. 

Prior to the beginning of the test, the battery sample is set to the desired SOC and thoroughly 

soaked to the test temperature. The detailed test sample information and a schematic view of the 

test setup are provided in Table 8 and Fig. 9. 

Table 7 Lithium-ion battery test sample information 

 Specification 

Capacity (Ah) 5 

Format Prismatic 

Cathode Chemistry NMC 

Anode Chemistry Graphite 

Dimension (mm) 12.5 (T) x 120(W) x 70(H) 
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Fig. 9 Battery pulse test setup 

 

Table 8 SOC and temperature conditions in the pulse test 

Temperature (°C) SOC (%) 

25 40 

25 50 

25 60 

-30 40 

-30 50 

-30 60 

 

 The temperature and SOC test conditions for the lithium-ion battery cell test are given in 

Table 8. SOC test conditions are selected based on the working SOC window of the battery 

sample in the hybrid vehicle application. The SOC test conditions are chosen as the highest, 

lowest, and middle SOC levels in the working SOC window. In the test, the battery cell voltage 

between the battery terminal, SOC, battery temperature, and current are recorded at the sampling 

rate of 1 second. The Ah throughput is calculated based on the current measurement for the SOC 

measurement. Then it is divided by the discharge capacity pre-determined before the pulse test. 

For the temperature measurement, the thermocouple is located on the surface of the middle part 
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of the battery cell. After the data acquisition, all measurement data are normalized between -1 

and 1 because the hyperbolic tangent function used in the RNNs as the activation function ranges 

between -1 and 1. The normalization formula is given in the equation below. 

 

𝑥𝑛𝑒𝑤 =
𝑥𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙−𝑥𝑚𝑖𝑑

𝑥max − 𝑥𝑚𝑖𝑑

                                              (15) 

 

 In the equation, 𝑥𝑛𝑒𝑤 is the measured data after the conversion, 𝑥𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 is the measured 

data, 𝑥𝑚𝑖𝑑 is the median value of the measured data, and 𝑥𝑚𝑎𝑥 is the maximum value of the 

measured data. The ranges of the measured data and the median values are provided in Table 9.  

 

Table 9 Range and median of the measured data 

 Maximum Median Minimum 

Voltage (V) 4.2 3 1.8 

SOC (%) 100 50 0 

Current (A) 300 0 -300 

 

 In the prediction model with the trained RNNs, the outcome from the RNN is inversely 

normalized to find the battery voltage. 

 

2.2.3 Training Process—Voltage Prediction 

 The same training data sets are applied for the RNN, GRU, and LSTM to ensure that the 

three RNNs are trained with the same data. For the training, 70% of the measured data is 

allocated for the training process, 20% of the measured data is allocated for the validation 

process, and 10% is allocated for testing the trained RNNs to evaluate the prediction accuracy. 

Table 10 shows the hyperparameters applied to the training process. 
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Table 10 Hyperparameters applied during the training process 

Hyperparameter Value 

Batch size 200 

Sliding window size 20 

Epochs 50 

Dropout Rate 1% 

 

2.2.4 Results—Voltage Prediction 

 The 10% of the measured data allocated to evaluate the three RNNs is the high pulse 

discharge event with the four discharge pulses, the three charge pulses for the SOC adjustment to 

maintain the SOC level, and the rest time between the pulses. This event takes place at -30°C and 

SOC 50%. Fig. 10 shows the measured and predicted voltages by the simple RNN method in the 

test process in which the prediction error is evaluated. Also, since there are multiple pulses in the 

evaluation process with the prediction behaviors from the three RNNs, the last charge and 

discharge pulses with the highest pulses are selected to represent the critical features in the 

predictions. Fig. 11 provides the charge pulse with the measured and predicted voltages by the 

three RNNs. Fig. 12 provides the discharge pulse with the measured voltage and the predicted 

voltages by the three RNNs. 
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Fig. 10 Battery pulse test setup at -30°C 

 

  

Fig. 11 Measured voltage vs predicted voltage in the charge pulse for all RNNs at -30°C 
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Fig. 12 Measured voltage vs predicted voltage in the discharge pulse for all RNNs at -30°C 

 

 Lastly, the root mean square error (RMSE) and mean absolute error (Max AE) of the 

three RNN cases during the test process are computed for the comparative study. Table 11 has 

the RMSE and Max AE of all three RNNs at -30°C and 25°C. 

Table 11 RMSE of RNN, GRU and LSTM using test data set at -30°C and 25°C 

Temperature (°C) RNN models RMSE (V) Max AE (V) 

-30 

Simple RNN 6.95E-03 0.53 

GRU 6.14E-03 0.55 

LSTM 7.81E-03 0.53 

25 

Simple RNN 1.20E-02 0.37 

GRU 1.22E-02 0.22 

LSTM 8.92E-03 0.41 

 

2.2.5 Discussion—Voltage Prediction 

As indicated in Fig. 11, the prediction made by the simple RNN method has a late voltage 

prediction convergence speed with a significant prediction error during the charge pulse 

at -30°C. LSTM and GRU methods have a fast convergence speed, but the LSTM method has a 

more significant prediction error during the relaxation time than the GRU method. For the 

voltage prediction during the discharge pulse, as shown in Figure 12, the LSTM method has the 
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fastest prediction convergence speed compared with the other two RNNs. In the case of the 

prediction made by the simple RNN, the voltage prediction begins to lag the measured voltage at 

the end of the pulse. Overall, the voltage prediction made by LSTM is close to the measured 

voltage, with smooth curvature.  

 

Furthermore, the voltage prediction by the LSTM method is robust against temperature 

and pulse size. In Table 12, the RMSEs of the voltage predictions by the simple RNN and GRU 

methods increase in 25°C, in which the pulse size is also more prominent compared with that at 

the low temperature. At -30°C, the pulse size is limited due to the high battery resistance to avoid 

hitting the operation voltage limit during the battery test. For both temperature conditions, only 

the voltage prediction made by the LSTM method maintains the same order of magnitude in the 

prediction error. This prediction accuracy at both temperatures demonstrates that the LSTM unit 

structure that is designed to avoid the gradient vanish or explode problem also effectively 

manages sudden current and voltage changes in the input signals. 

 

For voltage prediction in the low temperature at -30°C, the LSTM method has the same 

magnitude of prediction error as in the moderate temperature at 25°C. This prediction behavior 

indicates that the temperature has a limited influence on the voltage prediction error for the 

LSTM method. Indeed, this robust prediction error behavior against temperature is expected 

because, during the training process, the LSTM method learned the lithium-ion battery cell 

voltage behavior at the low temperature from the battery test data. This learning from the data is 

a strength of the data-driven battery model since it does not require any characterization process 

to predict the battery voltage at a low temperature. For other battery voltage estimation methods, 
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such as the lithium-ion battery model-based method, the electrochemical and thermal properties 

of the lithium-ion battery are necessary to predict the battery voltage.   

 

In summary, the LSTM method has a higher prediction accuracy, faster convergence, and 

robustness against the external temperature than the simple RNN and GRU methods to make the 

lithium-ion battery voltage prediction. In the literature review, the RNN methodology shows the 

best prediction accuracy among other ANN methods for lithium-ion battery parameters 

estimations, such as SOC and SOH estimations, due to its capability to learn the sequential data. 

Therefore, it is also safe to claim that the LSTM method, which is a kind of RNN method, offers 

the most accurate prediction for lithium-ion battery behavior such as the battery voltage among 

the ANN methods.   

 

2.3 LSTM Method to Predict Battery Temperature 

 Lithium-ion battery temperature is another significant form of the battery response 

influencing the battery performance, safety, and life. This section of the dissertation paper 

proposes an LSTM method to predict the lithium-ion battery temperature at various locations in a 

high-energy lithium-ion battery pack. Like the RNN architecture reviewed in the previous 

section, the LSTM method discussed in this section is also based solely on the battery test data to 

learn the lithium-ion battery thermal behavior.   

 

2.3.1 Method 

 For the LSTM method, the inputs are the two-reference battery temperatures in the 

battery pack, battery voltage, battery current, SOC, and ambient temperature. The output of the 

LSTM method is the battery temperatures at three different locations in the battery pack. The 
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locations of the input and output temperatures inside the lithium-ion battery pack are given in the 

layout provided in Fig. 13. Also, the battery temperature prediction process of the LSTM method 

is shown in Fig. 14.  

 

 

Fig. 13 Input and output temperature locations in the lithium-ion battery pack (Array represents a 

group of the lithium-ion battery cells in the battery pack) [59] 
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Fig. 14 LSTM method process [59] 

 

2.3.2 Data Acquisition and Preparation—Temperature Prediction 

 This study conducts battery cycle tests to generate the test data for the LSTM method 

training, validation, and testing. Table 12 lists the test equipment used in the battery test, and Fig. 

15 shows an overview of the test setup implemented during the battery test. 

 

Table 12 List of the test equipment [59] 

  

# Equipment # Equipment 

1 Thermotron thermal chamber 4 Omega T-type thermocouples 

2 AV-900 EX cycler 5 Gantner DAQ 

3 Polyscience coolant chiller 6 PC with AVL software 



 36 

 

Fig. 15 Overview of the battery pack test setup 

 

 This battery pack test uses a battery pack consisting of 464 lithium-ion battery cells. 40 

cells are electrically connected in the battery arrays except for battery arrays #1 and #12 in Fig. 

13. For battery arrays #1 and #12, each of them has 32 lithium-ion battery cells. The 

specifications of the lithium-ion battery cell are provided in Table 13. 

 

Table 13 Lithium-ion battery cell specifications [59] 

 

 

 

 

 For the thermocouple placement, the input temperature readings are done at the end of 

array #1 and array #6 described in Fig. 13. These two spots are selected because of the minimum 

temperature by the heat sink near array #1 and the proximity to array #7 in which the output 

 Specification 

Capacity (Ah) 70 

Type Pouch 

Cathode Chemistry NMC (nickel manganese cobalt) 

Anode Chemistry Graphite 

Dimension 14(T) × 300(W) × 100(H) 
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temperature measurements are carried out. A total of three output measurements are recorded in 

array #7: two end cells and one middle cell.  

 

 For the battery pack cycle test, various drive profiles are applied to the battery pack with 

a data sampling rate of 1Hz. Table 14 includes all the drive profiles. In Table 14, the initial 

temperature indicates the minimum battery cell temperature after soaking the battery pack to the 

chamber setpoint. Coolant temperature is the control temperature of the chiller during the pack 

test. All drive profiles used in this study are provided in the Appendix of this dissertation paper.  

 

Table 14 Drive profiles and test conditions used in the battery test [59] 

Drive Profile 
Initial Temperature 

(°C) 

Coolant Temperature 

(°C) 
Usage 

MCT 30 15 Training 

Vmax 38 15 Training 

US06 20 20 Training 

FTP20 -7 15 Training 

DCFC 30 15 Training 

DCFC -7 15 Validation 

DCFC 40 15 Test 

GL100 38 15 Test 

 

2.3.3 Training Process—Temperature Prediction 

 Before training the LSTM with the input data, normalization of the input data takes place 

to scale the input data between 0 and 1. This process is formulated in equation (16). 

 

𝑥𝑛𝑒𝑤 =
𝑥𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙−𝑥𝑚𝑖𝑛

𝑥max − 𝑥𝑚𝑖𝑛

                                              (16) 
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 In (15), 𝑥′ represents the scaled input variable, 𝑥 is the input variable, 𝑥𝑚𝑖𝑛 is the 

minimum value expected for the input variable, and 𝑥𝑚𝑎𝑥 is the maximum expected value for the 

input variable. 𝑥𝑚𝑖𝑛 and 𝑥𝑚𝑎𝑥 are selected from the operating conditions of the lithium-ion 

battery cell. The maximums and minimums of the input variables are listed in Table 15.  

 

Table 15 Maximum and minimum of the input variables [59] 

 Voltage 

(V) 

SOC 

(%) 

Current 

(A) 

Temperature 

(°C) 

Maximum 425 100 400 60 

Minimum 250 0 -400 -30 

 

 After the normalization of the input data, the training, validation, and testing of the 

LSTM method are performed. Drive profiles used in this study are allocated to the training, 

validation, and test processes as in Table 14. It is noted that the test data are not provided to the 

LSTM method before the final performance evaluation to avoid a biased evaluation of the LSTM 

method [60]. 

 

 For the hyperparameter optimization, sets of hyperparameters designed by the design of 

experiments method are applied to the multiple runs of the training, validation, and test 

processes. The optimum hyperparameter is selected from the hyperparameters producing the 

highest prediction accuracy. These optimum hyperparameters are applied to the battery 

temperature prediction study. The hyperparameters used in this study are provided in Table 16.    
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Table 16 Hyperparameters used in the battery temperature prediction 

 

 

 

 

2.3.4 Results—Temperature Prediction 

 The DCFC profile at 40 °C and the GL100 profile at 38 °C are assigned to test the LSTM 

method to predict the battery temperatures at the three locations in array #7 of the battery pack. 

Fig. 16 and Fig. 18 include the true and prediction temperatures for the DCFC and GL100 

profiles.   

 

 

Fig. 16 Measured vs. predicted temperatures during the DCFC profile at 40°C ambient. 

Hyperparameter Value 

Batch Size 60 

Lookback 1 

Epoch 100 

Dropout Rate 3% 
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Fig. 17 Measured vs. predicted temperatures during the GL100 profile. 

 

 Lastly, the RMS of the three output temperatures during the DCFC and GL100 profiles 

are computed. Table 17 has the RMS of all cases. 

 

Table 17 RMS of the three output temperatures during the DCFC and GL100 profiles 

(°C) DCFC GL100 

Output temp (end 1) 0.64 0.22 

Output temp (middle) 1.01 0.48 

Output temp (end 2) 0.40 0.32 

 

2.3.5 Discussion—Temperature Prediction 

 The results of the tests show that the LSTM method can predict the battery pack 

temperature with a prediction accuracy of 1°C or better. Also, the RMS analysis shows that most 

of the prediction errors are less than or near 0.5°C, which is the measurement tolerance of the 

thermocouple. This level of prediction error indicates that the LSTM method is suitable for 

modeling the thermal behavior of the large-scale lithium-ion battery pack without identifying the 

thermal properties of the battery, such as thermal capacity and thermal transfer coefficients.  
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 However, there is a shortcoming with the LSTM method. From Table 17, it is observable 

that the RMS error of the middle temperature is larger than that of the other two temperatures 

located at the edges of battery array #7. For the test results of the DCFC profile, the RMS error 

of the middle temperature is around 1°C, which is greater than the other test results. For the 

GL100 profile, although the RMS error is less than that for the DCFC profile, the RMS error of 

the middle temperature is also greater than the two temperature prediction results at the ends of 

battery array #7. This RMS error pattern is because the inputs to the LSTM method contain the 

temperatures at only the ends of battery arrays #1 and #6. The temperature predictions at the 

middle of battery #7 rely on the interpolation capability of the LSTM method, which has learned 

the thermal behavior of the battery pack based on the test data containing the temperature 

information only at the edges of the battery array. Therefore, insufficient training data regarding 

the temperature at the geometry not presented in the training data causes the inaccuracy of the 

temperature prediction by the LSTM method.     

  

2.4 Conclusion 

 In this chapter, RNN methods are developed to predict the lithium-ion battery voltage and 

temperature. A comparative study with the three different RNN methods is conducted for the 

battery voltage prediction. From the outcome of this study, the LSTM method is selected as the 

most suitable RNN method to predict lithium-ion battery voltage due to its high prediction 

accuracy, fast convergence, and robustness against external temperature such as -30°C. With the 

characteristic of the data-driven method, the LSTM method also does not require any battery 

characterization information to make the prediction. In the second half of the chapter, the LSTM 

method has been applied to predict the battery temperature at various locations in the large-scale 

battery pack. This study also demonstrates that the LSTM method could predict the temperature 
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with a low prediction error of less than 1°C while cycling the drive profiles. This temperature 

prediction by the LSTM method is also made without information on the thermal characteristics 

of the lithium-ion battery. 

 

 However, the temperature prediction case study shows the LSTM method’s shortcoming, 

which is learning the battery thermal behavior based solely on the battery test data. In the study, 

the temperature prediction at the location not presented in the training data has less accurate 

prediction accuracy. This observation shows the significance of the data for the LSTM method, 

and it is also the disadvantage of the LSTM method when it learns only from the collected data. 

To improve this shortcoming, the next chapter of this dissertation paper will introduce the 

physics-informed neural network (PINN) method to diversify the sources for the learning 

process. 
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Chapter 3 PINN for Lithium-ion Battery Cell Temperature Estimation  

 

3.1 Introduction  

 As presented in Chapter 2, an ANN method, such as the LSTM method, has the benefits 

of predicting lithium-ion battery behavior without any battery characterization information. Also, 

it has high prediction accuracy in lithium-ion battery applications, which conventionally require 

high computation or intensive system identification, such as the low-temperature voltage 

behavior and large-scale battery pack temperature estimations. However, the LSTM method 

based solely on the data cannot predict what is not sufficiently contained in the training data. 

This dissertation proposes the physics-informed neural network (PINN) to improve this 

limitation of the data-driven method, in which both data and physics laws are applied together to 

train the neural network. In this chapter, the lithium-ion battery cell temperature during the pulse 

battery test is estimated by PINN. This study uses a 5Ah prismatic lithium-ion battery cell. 

 

 This chapter is organized as follows. Section 3.2 presents background information on the 

PINN. Section 3.3 elaborates on the methodology to create the lithium-ion battery cell data and 

to train the PINN method. Section 3.4 contains a comparative study to evaluate the benefits of 

the PINN method over the ANN method. Section 3.5 contains another comparative study to 

obtain the optimum pre-layer architecture of the PINN method. Lastly, section 3.6 presents the 

conclusion of the PINN study in this chapter.    
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3.2 Physics-Informed Neural Network (PINN)  

 As the battery temperature study in the previous chapter indicated, the ANN methods 

depend solely on the data and have the drawback of low prediction accuracy when local data 

scarcity occurs. The lack of training data forces the ANN methods to predict without adequate 

learning. PINN is a method that can strengthen the ANN method to overcome this shortcoming. 

PINN utilizes both physics laws and data to train neural networks. These characteristics of the 

PINN enable it to capture the benefits of a conventional data-driven method such as the ANN 

and the model-based method, which relies on physics laws to estimate. Table 18 compares the 

three prediction methods: model-based, data-driven (e.g., ANN), and PINN. 

 

Table 18 Model-based method vs. Data-driven method vs. PINN method [61]–[63] 

 
Prediction Method 

Model-Based Data-Driven PINN 

Characteristic 

Physics Laws 

Implementation 

Highly depends on 

physics 

No physics 

laws 
Some physics laws 

Data Requirement Small data Big data Some data 

Model 

Identification 
Required - 

Not identified models acceptable 

(model identification made during 

the training process) 

Imperfect Data 

Impact on the 

model 

identification 

Not well-

trained 

method 

Robust to the imperfect data 

 

 With its characteristics combining data and physics models, many pieces of literature 

proposed the PINN to solve engineering challenges. The PINN method has applications in fluid 

dynamics [64]–[68], solid mechanics [69]–[71], optics [72]–[74], metallurgy [75], heat transfer 

[76]–[79], and earth system science [80]. In all PINN examples, the literature implements the 

physics equations and data from either tests or simulations to make successful predictions. 

Furthermore, PINN could be applied to the ANN using published software such as DeepXDE 
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[81], NVIDIA SimNet™ [82], SciANN [83], Elvet [84], TensorDiffEq [85], PyDEns [86], 

NeuroDiffEq [87], and NeuralPDE [88]. In this research project, the PINN is implemented by the 

customized script developed by TensorFlow.   

 

 For the implementation of the PINN method, three main approaches could be applied to 

the ANN methods. First, the loss function of the ANN is altered to include the physics laws, 

initial condition, and boundary condition [63]. Second, the adaptive coefficients are utilized for 

the loss function. Third, the neural network topology is constructed to reflect the solution of the 

physics model. The following three subsections will discuss the details of the three approaches.    

 

3.2.1 Loss Function with Physics Information  

 Loss function modification is the most popular way to construct the PINN method in the 

literature [61]–[63]. In this methodology, multiple loss functions are defined. The first loss 

function minimizes the residuals between the predictions and true values. Usually, mean square 

error calculation is implemented in the first loss function as other regression ANN methods use 

only the data. The formulation of this loss function is provided in (17).     

 

𝐿𝑜𝑠𝑠𝑟 =
1

𝑁
∑ |𝑌𝑝𝑟𝑒

𝑖 − 𝑌𝑖|
2𝑁

𝑖=1                                            (17) 

  

 In (16), N is the number of training data, 𝑌𝑝𝑟𝑒
𝑖  is the prediction value, and 𝑌𝑖 is the true 

value. The estimation error occurred from the physics law or model for the second loss function. 

The formulation of this loss function is provided in (18).    
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𝐿𝑜𝑠𝑠𝑓 =
1

𝑁
∑ |𝑓|2𝑁

𝑖=1                                                     (18) 

  

 In (18), N is the number of training data, and 𝑓 is the value calculated from the physics 

law or model. If the given physics law is ideally identified without any error, 𝐿𝑜𝑠𝑠𝑓 should equal 

zero. The third loss function is related to the physics law’s initial and boundary conditions. In (19) 

and (20), the loss functions are formulated for the initial and boundary conditions.   

 

𝐿𝑜𝑠𝑠𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = |𝑓(𝑡 = 0) − 𝑌𝑖𝑛𝑖|
2                                     (19) 

𝐿𝑜𝑠𝑠𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 = |𝑓(𝑥𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦) − 𝑌𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦|
2
                          (20) 

  

 In (18), 𝑓(𝑡 = 0) is the value of the physics law at the initial condition, and 𝑌𝑖𝑛𝑖 is the 

actual initial value. In (19), 𝑓(𝑥𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦) is the value of the physics law at the boundary condition. 

𝑌𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 is the actual boundary value. In sum, the overall loss function in the PINN is formulated 

as (21).   

 

𝐿𝑜𝑠𝑠𝑡𝑜𝑡𝑎𝑙 = 𝐿𝑜𝑠𝑠𝑟 + 𝛼𝐿𝑜𝑠𝑠𝑓 + 𝛽𝐿𝑜𝑠𝑠𝑖𝑛𝑖𝑡𝑖𝑎𝑙 + 𝛾𝐿𝑜𝑠𝑠𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦                 (21) 

 

 In (20), 𝛼, 𝛽, and 𝛾 are the adaptive and normalized coefficients, which will be discussed 

in the next section. 

3.2.2 Adaptive Normalization Factor in Loss Function  

 As presented in the previous section, the loss function of the PINN method has multi-loss 

terms. In the literature, several methods exist to identify each term’s coefficient in the loss 

function. In [89], the non-adaptive coefficient in the loss term has been applied to the PINN 
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method with a much larger coefficient for the initial condition-related loss term. In [76] and [90], 

the proposed methods adjust the coefficients in the loss function based on the learning rate without 

backpropagation. In [91], the neural tangent kernel matrix is used to find the adaptive coefficients 

in the loss function. In [92], gradient ascent is applied to estimate the coefficients. Finally, in [93], 

a soft attention mechanism is proposed to set the coefficients in the loss function. In the research 

work presented in this dissertation paper, the learning rate annealing algorithm is implemented as 

proposed in [90]. This learning rate annealing method has a successful history in the literature in 

making a temperature prediction with a heat transfer model, which is like the battery thermal 

model. 

 

 The learning rate annealing algorithm has two steps to identify the coefficients in the loss 

function. In the first step, the learning rate annealing method computes the ratios between the 

maximum backpropagation gradient of the residual loss term and the mean backpropagation 

gradient of the other loss terms. Then the instant scaling factors are defined for the physics 

model, initial condition, and boundary condition. Instant scaling factors 𝛼̂, 𝛽̂, and 𝛾 are 

formulated as (22)–(24).  

 

𝛼̂ =
𝑚𝑎𝑥 {|𝛻𝐿𝑜𝑠𝑠𝑟|}

|𝛻𝐿𝑜𝑠𝑠𝑓̅̅ ̅̅ ̅̅ ̅̅ ̅̅ |
                                                       (22) 

𝛽̂ =
𝑚𝑎𝑥 {|𝛻𝐿𝑜𝑠𝑠𝑟|}

|𝛻𝐿𝑜𝑠𝑠𝑖𝑛𝑖𝑡𝑖𝑎𝑙̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅|
                                                       (23) 

𝛾 =
𝑚𝑎𝑥 {|𝛻𝐿𝑜𝑠𝑠𝑟|}

|𝛻𝐿𝑜𝑠𝑠𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ |
                                                        (24) 
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 In the second step, the coefficients of the loss function are computed from the moving 

average between the coefficients and the instant scaling factors from the previous epoch. The 

mathematical formula for this step is provided in (25)–(27). 

 

𝛼 = (1 − 𝛿)𝛼𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 + 𝛿𝛼̂𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠                                          (25) 

𝛽 = (1 − 𝛿)𝛽𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 + 𝛿𝛽̂𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠                                          (26) 

𝛾 = (1 − 𝛿)𝛾𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 + 𝛿𝛾𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠                                          (27) 

  

 In (25)–(27), 𝛼, 𝛽, and 𝛾 are the adaptive and normalized coefficients in the loss function. 

𝛼𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠, 𝛽𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠, and 𝛾𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 are the adaptive and normalized coefficients in the loss function 

in the previous epoch. 𝛼̂𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠, 𝛽̂𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠, and 𝛾𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 are the instant scaling factors in the 

previous epoch. 𝛿 is a tunable hyperparameter. 

 

3.2.3 PINN Architecture  

 A neural network architecture in the PINN method is another area that could be designed 

to promote biased learning to implement the physics laws in the PINN method. In [76], the 

author proposed the pre-layer and connection layer, either a concatenate or a multiply layer, for 

the neural network architecture to enhance the prediction accuracy of the PINN method. This 

architecture was derived from the analytical solution of the thermal model equation, which was 

the physical law implemented in the PINN method. 
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Fig. 18 Three PINN architectures in the comparative work: (a) ANN structure, (b) ANN structure 

with the pre-layer and concatenate layer and (c) ANN structure with the pre-layer and multiply 

layer 

 

 In the research work presented in this chapter, a comparative study will be conducted to 

develop the most suitable neural network architecture for predicting the lithium-ion battery cell 

temperature. The ANN structure proposed in [76] will be reinvented to predict the lithium-ion 

battery cell temperature. In the comparative work, the ANN structure, the ANN structure with 

the pre-layer and concatenate layer, and the ANN structure with the pre-layer and multiply layer 

will be evaluated. Fig. 18 shows the three architectures in the comparative work.      
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3.2.4 PINN vs. ANN 

 The three approaches applied to the PINN integrate the battery thermal model and battery 

test data. During the training, the loss function containing both residual loss and other loss terms 

associated with the battery thermal model and boundary conditions induces the bias learning so 

that the prediction made by the PINN minimizes the difference between the true and predicted 

values while the thermal model and boundary conditions are applied to the prediction. The ANN 

method excludes the thermal model and boundary conditions from the ANN's learning process. 

The loss function of the ANN only contains the residual loss term; therefore, the ANN only 

learns from the battery test data to minimize the difference between the true and predicted 

values. Table. 19 presents the difference between PINN and ANN based on this study's three 

approaches to building the PINN. 

 

Table 19 PINN vs. ANN 

 PINN ANN 

Characteristic 

Loss function 

𝐿𝑜𝑠𝑠𝑡𝑜𝑡𝑎𝑙 = 𝐿𝑜𝑠𝑠𝑟 + 𝛼𝐿𝑜𝑠𝑠𝑓

+ 𝛽𝐿𝑜𝑠𝑠𝑖𝑛𝑖𝑡𝑖𝑎𝑙

+ 𝛾𝐿𝑜𝑠𝑠𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 

Loss = 𝐿𝑜𝑠𝑠𝑟 

Adaptive 

Normalization in the 

loss function 

Benefits to enhance the 

prediction accuracy 

Not required 

Architecture 

Considering the analytical 

solution of the physics law 

No effect from 

the physics 

law 
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3.3 Method  

3.3.1 Battery Thermal Model  

 For the lithium-ion battery temperature prediction, the PINN method proposed in this 

chapter implements the lumped capacitance thermal model as the physics law with the 

assumption that the temperature distribution in the lithium-ion battery is uniform. The lumped 

capacitance thermal model is formulated as (28). 

 

𝑚𝐶𝑝
𝑑𝑇

𝑑𝑡
=  𝑄̇ + ℎ𝐴(𝑇𝑎𝑚𝑏 − 𝑇)                                        (28) 

 

 In (27), 𝑚 is the mass of the lithium-ion battery, 𝐶𝑝 is the heat capacity of the lithium-ion 

battery, 𝑇 is the lithium-ion battery temperature, 𝑡 is time, 𝑄̇ is the heat generation during the 

battery operation, ℎ is the convectional heat coefficient, and 𝑇𝑎𝑚𝑏 is the ambient temperature 

inside the climate chamber. For the heat generation in (28), this study considers only the 

irreversible heating of the lithium-ion battery since it is the largest source of heat generation. 

Any other heat generation effects not considered in the study are not expected to influence the 

temperature prediction outcome because the PINN method is robust against the incompleteness 

in the physics model. The irreversible heat generation is formulated as (29). 

 

𝑄̇ = (𝑉 −  𝑉𝑜𝑐𝑣)𝐼                                                     (29) 

  

 In (28), 𝑉 is the battery voltage, 𝑉𝑜𝑐𝑣 is the open-circuit battery voltage, and 𝐼 is the 

current applied to the battery during the battery test. To apply the lumped capacitance thermal 

model to the PINN method, (28) and (29) are combined and rearranged as (30). 
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𝑓 =
𝑑𝑇

𝑑𝑡
+ 𝜆1(𝑉 −  𝑉𝑜𝑐𝑣)𝐼 + 𝜆2(𝑇𝑎𝑚𝑏 − 𝑇) = 0                               (30) 

 

 In (29), 𝑓 is the physics model applied to the PINN, and 𝜆1 and 𝜆2 are the coefficients of 

the thermal equation. Two coefficients will be identified during the training process using the L-

BFGS-B method. 

 

 With this lithium-ion battery thermal model, the loss function of the PINN method is 

updated as follows. The regression loss function term is formulated as (31). 

 

𝐿𝑜𝑠𝑠𝑟 =
1

𝑁
∑ |𝑇𝑝𝑟𝑒

𝑖 − 𝑇𝑖|
2𝑁

𝑖=1                                                 (31) 

 

 In (31), 𝑁 is the number of training data, 𝑇𝑝𝑟𝑒
𝑖  is the temperature predicted by the neural 

network, and 𝑇𝑖 is the true temperature. For the loss term related to the physics law, the loss term 

is formulated as (32). 

 

𝐿𝑜𝑠𝑠𝑓 =
1

𝑁
∑ |𝑓|2𝑁

𝑖=1                                                     (32) 

 

 In (32), 𝑓 is given in 29. Also, the loss term related to the initial condition is formulated in 

(33). There is no loss term related to the boundary condition. 

𝐿𝑜𝑠𝑠𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = |𝑓(𝑡 = 0) − 𝑇𝑎𝑚𝑏|2                                         (33) 

 



 53 

3.3.2 Lithium-Ion Battery Cell Test  

 This research project conducted battery cell tests to obtain the data for training and 

testing the PINN method. The battery cell test data included battery voltage, battery current, 

battery temperature, and chamber temperature. Additionally, the input data included the open-

circuit voltage (OCV), estimated by the OCV and SOC table created by the lithium-ion battery 

manufacturer. The SOC of the lithium-ion battery was calculated by the Ah-integration method. 

 

 In the battery test, a prismatic lithium-ion battery cell was cycled with 5A charge and 

discharge pulses and 20 minutes rest between the charge and discharge pulses. The specifications 

of the lithium-ion battery cell are provided in Table 19. Moreover, Fig. 19 shows the current 

profile applied to the battery test. 

 

Table 20 Lithium-ion battery cell specifications 

 Specification 

Capacity (Ah) 5 

Format Prismatic 

Cathode chemistry NMC 

Anode chemistry Graphite 

Dimensions (mm) 120(W)× 12.5(T)×70(H) 
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Fig. 19 Charge and discharge battery cycle profile  

 

 The battery cell test sample was placed in a climate chamber during the lithium-ion 

battery cell test. Also, the battery cell test sample was connected to the battery cycler and data 

acquisition system via thermocouples, voltage sensors, and power lines, as illustrated in Fig. 20. 

 

 

Fig. 20 Battery test setup overview (left); thermocouple setup on the battery cell (right)  

 

3.3.3 Training Process 

 For the training of the PINN method, this study uses the first 35% of the lithium-ion 

battery cell data. The training data size is purposely limited to cause training data scarcity. After 

collecting the lithium-ion battery cell data, preprocessing of the test data is conducted to 

normalize the test data. (34) contains the normalization formula implemented in this study. 
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𝑥́ =
𝑥−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
                                                   (34) 

 

 In (33), 𝑥́ is the normalized test data, 𝑥 is the test data, 𝑥𝑚𝑖𝑛 is the minimum of the test 

data, and 𝑥𝑚𝑎𝑥 is the maximum of the test data. After the test data normalization, the training of 

the PINN method is conducted. In training, a set of hyperparameters is applied to the PINN 

method. The hyperparameters are tuned based on other hyperparameter tunings with a similar 

thermal application in the PINN literature or from the tests planned with the design of 

experiments theory. In a later section of this chapter, the tuning of the activation functions in the 

pre-layers is performed with the full factorial design of experiments theory. 

 

Table 21 List of the hyperparameters applied to the PINN method 

Hyperparameters Value 

Training iteration 15000 

Start learning rate 0.00001 

Learning rate decay rate 10% 

Hidden layer [145,145,145,145, 1] 

Pre-layer [1,135] 

Activation function ELU  

Optimizer for the adaptive normalization Adam 

Optimizer for model identification L-BFGS-B 

𝛿 in (24)– (26) 0.9 

 

  

 After training the PINN method, the last 65% of the lithium-ion battery cell test is applied 

to test the PINN method. These are battery test data not exposed to the PINN method before the 

test process. For the test of the PINN method, maximum absolute error (MAE) and mean 
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absolute error (Max AE) are performed. (35) and (36) provide the mathematical formula for 

MAE and Max AE. 

 

𝑀𝐴𝐸 =
∑ |𝑦𝑖−𝑥𝑖|𝑛

𝑖=1

𝑛
                                                    (35) 

𝑀𝑎𝑥 𝐴𝐸 = 𝑀𝑎𝑥(|𝑦𝑖 − 𝑥𝑖|)                                                (36) 

 

 In (34) and (35), 𝑛 is the total number of data points, 𝑦𝑖 is prediction, 𝑥𝑖 is the true value, 

and 𝑀𝑎𝑥( )is the maximum of the data.     

3.4 ANN vs. PINN 

 A comparative study is conducted to review the effectiveness of the PINN method when 

data scarcity occurs. This comparative study compares five cases to evaluate the effect of the 

three PINN approaches: loss function modification, the adaptive coefficient in the loss function, 

and the PINN architecture. A list of the five cases is provided in Table 21. Two data 

insufficiencies are designed in the training and test data for the data scarcity. First, the training 

data size is limited to 35% of the battery cycle test. This proportion of the training data is less 

than in other ANN applications, in which the training data size is often greater than 50%. 

Second, because of the nature of the pulse cycle test data, there are many peaks in both train and 

test data. The train data contain one prominent and two small peaks in the battery temperature 

profile. The test data include three prominent and four small peaks in the battery temperature 

profile. At each peak, the slope changes quickly, creating the temperature profile’s discontinuity 

or kink-like geometry. For accurate prediction at the peak or kink-like profile, the ANN methods 

often require dense training data size at that location [76], [81].   
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Table 22 Prediction accuracy of ANN, ANN variants, and PINNs 

 MAE (ºC) MAX AE (ºC) 

ANN 4.00 59.53 

ANN with loss function with unit coefficients 6.52 79.0 

ANN with loss function with adaptive coefficients 6.83 95.0 

PINN with the concatenated connection layer  0.06 0.50 

PINN with the multiply connection layer     0.11 0.47 

 

 

Fig. 21 Temperature predictions of various neural network approaches: (a) ANN, (b) ANN with 

loss function with unit coefficients, (c) ANN with loss function with adaptive coefficients, (d) 

PINN with concatenated layer, (e) PINN with multiply layer 

 

 In Fig. 21(a), temperature prediction by the ANN method is provided. The ANN cannot 

accurately predict the battery cell temperature in the test results. The ANN method correctly 

identifies no temperature peak in the test data. In Fig. 21(b), temperature prediction by the ANN 

method with loss function modification by adding physics law is presented. In the loss function, 

the coefficient is set to one in this case. In this case, the temperature prediction outcome slightly 

improved from the previous case. In the test, no peak in the battery temperature profile is 
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accurately identified. Fig. 21(c) provides the temperature prediction by the ANN method with 

the loss function modification. In this case, the adaptive coefficients are implemented in the loss 

function. This method demonstrates some prediction improvement. The locations of all four 

small peaks are identified in the test temperature profile. However, the temperature predictions at 

the prominent peaks deviate largely from the true values, so the MAE of this case is the highest 

of all five cases. Fig. 21(d) presents the battery cell temperature predictions by the PINN method 

containing all three PINN approaches. In the PINN architecture, Fig. 21(d) has the concatenated 

layer as the connection layer. In the test results, the PINN method with the concatenated layer 

identified all peaks in the battery cell temperature profile with the lowest MAE. Lastly, in Fig. 

21(e), the PINN architecture has the multiply layer as the connection layer. In this case, the 

PINN method identifies two large and small peaks with the lowest Max AE. However, the 

battery cell temperature predictions at the large peaks show a much larger prediction error than 

the PINN method with the concatenated layer. Table 21 contains the MAE and Max AE of all 

five cases considered in this study.   

 

 In conclusion, the PINN shows better prediction accuracy than the ANN and ANN 

variants, especially with data scarcity. This comparative study also demonstrates that without the 

presence of all three PINN approaches, the improvement in the prediction accuracy over ANN is 

not observable for the lithium-ion battery cell temperature prediction. It is also noted that 

incorporating the physics laws in the loss function, which is the most popular PINN approach, is 

not enough to improve the prediction outcome of the PINN method. This observation is also 

found in another study of the thermal application of the PINN method [76]. 
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3.5 Effect of Pre-layer Activation Function and Connection Layer 

 In this section, the PINN method’s pre-layer activation function and connection layer are 

optimized using the test plan designed by the full factorial design of experiments theory. For the 

pre-layer activation function, three different input variables are considered with two different 

activation functions: sine function and exponential function. These two activation functions are 

selected because they are in the specific analytical solutions for the differential equations. Also, 

it is assumed that the OCV and voltage will have the same pre-layer activation function based on 

the proximity of the two variables in the thermal equation. For the connection layer in the 

topology of the PINN architecture, the multiply and concatenate layers are considered in this 

study. Based on the full factorial design of experiments theory, a total of 16 test cases are 

generated. Table 23 shows the details of the 16 test cases. 

Table 23 Test conditions for pre-layer activation function and connection layer optimization 

Case # 
Pre-layer activation function Connection 

Layer Time Current Voltage 

1 sin sin sin multiply 

2 sin sin exp multiply 

3 sin exp sin multiply 

4 exp sin sin multiply 

5 exp exp sin multiply 

6 exp sin exp multiply 

7 sin exp exp multiply 

8 exp exp exp multiply 

9 sin sin sin concatenate 

10 sin sin exp concatenate 

11 sin exp sin concatenate 

12 exp sin sin concatenate 

13 exp exp sin concatenate 

14 exp sin exp concatenate 

15 sin exp exp concatenate 

16 exp exp exp concatenate 
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 Fig. 22 shows the temperature predictions made by the PINN architectures with the 

multiply layer. Significant prediction errors and considerable divergence between the 

temperature predictions and true values are observed from Case #1 to Case #5. For Case #6, 

reasonable prediction errors, MAE and Max AE, are produced. However, not all temperature 

peaks in the test data are correctly identified. In Case #7, significant prediction errors occurred, 

with the predictions diverging from the true values at the temperature peaks in the test data. 

Finally, in Case #8, the PINN method cannot find the two remote temperature peak locations in 

the test data.  

 

 

  

Fig. 22 Temperature predictions with the PINN methods with the multiply layer 
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 Table 24 shows the MAE and MAX AE from Case #1 to Case #8, in which the multiply 

layer is implemented in the PINN architecture. Case #6 has the lowest MAE, and Case #8 has the 

lowest MAX AE. 

Table 24 Prediction accuracy of PINN methods containing with the multiply layer 

Case # MAE (ºC) MAX AE (ºC) 

1 3.87 118.96 

2 1.71 145.55 

3 4.15 244.71 

4 1.10 66.57 

5 0.83 31.47 

6 0.26 1.1 

7 113.26 771.15 

8 0.47 0.11 

 

 Fig. 23 shows the temperature predictions made by the PINN architectures with the 

concatenate layer. Case #9 has a significant prediction error without correctly identifying 

temperature peaks in the test data. Case #11 also could not predict the proper location of the 

three large temperature peaks, which created enormous prediction error. Case #10, #12, #13, and 

#15 find all temperature peak locations; however, the prediction error increases after a large peak 

where the rest time takes place. This rest location is another place where the current input data 

has a sudden slope change, requiring more data to learn the battery current and temperature 

behavior. Case #14 and Case #16 identify all temperature peaks in the test data and show no 

significant prediction error.   
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Fig. 23 Temperature predictions with the PINN methods with the concatenate layer 

 

 Table 25 shows the MAE and MAX AE from Case #9 to Case #16, in which the 

concatenate layer is implemented in the PINN architecture. Case #14 has the lowest MAE and 

MAX AE in all PINN architectures reviewed in this study. Therefore, the exponential activation 

function for the time, OCV, and voltage pre-layers and sine activation function for the current 

pre-layer with the concatenate layer connecting the pre-layer and hidden layer has the most 

accurate lithium-ion cell temperature prediction. Fig. 24 shows the PINN architecture that this 

study proposes.        



 63 

Table 25 Prediction accuracy of PINN methods containing the concatenate layer 

Case # MAE (ºC) MAX AE (ºC) 

9 6.30 103.50 

10 0.14 0.99 

11 3.43 64.88 

12 0.21 2.23 

13 0.12 1.31 

14 0.05 0.31 

15 0.13 1.10 

16 0.06 0.50 

 

 

 

Fig. 24 Proposed PINN architecture 

 

3.6 Conclusion 

 In this chapter, a PINN model is developed and proposed to predict the lithium-ion 

battery cell temperature during the constant charge and discharge cycle. The main novelties of 

this chapter are summarized as follows:  

 

(1) A PINN model was developed by applying the battery thermal model to the loss 

function, implementing adaptive coefficients to the loss function, and modifying the 
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ANN architecture with the pre-layer and connection layer reflecting the analytical 

solution of the battery thermal model.  

 

(2) A comparative study was conducted among PINN, ANN, and ANN variants to show 

that PINN is superior in predicting the battery cell temperature with limited data size 

and an unidentified battery thermal model. 

 

(3) Further investigation was performed to optimize the PINN architecture and activation 

function in the pre-layer and connection layer to improve the accuracy of the 

prediction of the battery cell temperature. The investigation outcomes indicate that 

the PINN architecture with pre-layers containing the exponential activation functions 

for the time, battery voltage, and open-circuit voltage and containing the sine 

activation function for the current (Case #14) with a concatenated layer makes the 

highest prediction accuracy for the battery cell temperature. This study proposes this 

PINN architecture for predicting lithium-ion battery cell temperature.     

  

 In the next chapter, the PINN model developed in this chapter will be applied to the 

LSTM model introduced in Chapter 2 to predict the temperature distribution of the lithium-ion 

battery pack. This hybrid model is expected to ease the shortcomings of the LSTM model, which 

is based solely on the test data to train the LSTM.  
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Chapter 4 LSTM-PINN Hybrid Method for Lithium-ion Battery Pack Temperature 

Estimation  

 

4.1 Introduction 

 Battery temperature distribution in a large-scale lithium-ion battery pack is critical for the 

safe and efficient use of the battery. According to the literature, nonuniform battery temperature 

distribution in the lithium-ion battery pack leads to power-capability, SOC, and capacity 

variation among the battery cells inside the battery pack [94]. This variation eventually causes 

localized battery degradation [95]–[96]. Also, the effect of the battery temperature distribution in 

the lithium-ion battery pack is intensified with the size of the battery current. Therefore, the 

battery temperature distribution must be controlled for the fast charging of the lithium-ion 

battery pack [97]. 

   

 Despite the significance of the battery temperature distribution, the lithium-ion battery 

pack has space and cost constraints for placing temperature sensors inside the battery pack to 

obtain the temperature information for battery temperature control. Therefore, estimating the 

battery temperature distribution inside the battery pack is critical in order to overcome the 

limitations of the battery temperature measurement and improve the overall performance, safety, 

and life of the lithium-ion battery pack system.

Physics-based models and data-driven methods are two popular approaches in the 

literature to make temperature predictions in lithium-ion battery packs. For instance, in [98], the 
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equivalent circuit battery model and battery thermal equations are incorporated to find the 

battery pack’s temperature distribution. This method has several shortcomings. First, the model-

based method is often not tolerant of inaccurate parameter identification and unaccounted model 

dynamics. Second, noise in the experimental data related to the model parameter identification is 

critical since a poorly fitted model could have a significant prediction error. Lastly, the 

convergence of the prediction by the model-based model without the initial condition is slow due 

to the large thermal mass of a large-scale lithium-ion battery pack. 

 

 On the other hand, the data-driven method is another approach to estimating the 

temperature distribution in the battery pack without the risks of the model-based approach. As 

discussed in Chapter 2, when the data-driven model has enough data to learn the thermal 

behavior of the lithium-ion battery pack, it can make accurate temperature predictions without 

the model identification, initial condition, and model fitting. In Chapter 2, the proposed data-

driven method, LSTM, accurately predicts the battery temperature without system identification. 

However, training-data scarcity can cause less accurate prediction in the data-driven method. In 

Chapter 2, the LSTM model less accurately estimates the battery temperature in the middle of the 

battery module, with the training data containing the battery temperatures only at the ends.     

 

 In this chapter, improvement in the data-driven method to predict the battery pack 

temperature is proposed based on the LSTM application presented in Chapter 2. The proposed 

model combines the LSTM and PINN methods to enhance the robustness against data scarcity. 

As shown in chapter 3, the PINN method implements the physical law in the training process 

with the neural network architecture originating from the solution of the physics law. The 
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physics model is expected to provide additional training to overcome the local data shortage. 

This chapter is organized as follows. Section 4.2 illustrates the thermal model applied to the 

PINN method. Section 4.3 elaborates the methodology with a general description of the proposed 

model and training process. Section 4.4 contains the results and discussion from various 

comparative studies to improve the PINN architecture and compares the temperature predictions 

made by the LSTM and the LSTM-PINN hybrid methods. Lastly, section 4.5 contains the 

conclusion.       

 

4.2 Battery Thermal Model  

 As shown in Chapter 2, the LSTM model for battery pack temperature prediction has low 

battery-temperature accuracy at the location where the geometry of the battery module differs 

from the geometry of the battery pack temperature in the training data. A PINN method will be 

developed and later combined with the LSTM model to improve this limited temperature 

prediction capability. For this purpose, the geometric area where the PINN method is applied is 

limited to the battery module location. This location contains geometric data scarcity. The place 

where the PINN method is implemented is provided in Fig. 25. The exact figure describes the 

locations of the temperature measurements presented in the battery thermal model. Also, Fig. 26 

shows a thermal resistance diagram of the PINN-applied area where the battery thermal model is 

formulated.  
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Fig. 25 Lithium-ion battery pack (left) and PINN-applied area (right)  

 

 

 

Fig. 26 Thermal resistance diagram at the PINN method-applied area (battery module #7)  

 

 In Fig. 26, 𝑇𝑐ℎ𝑎𝑚 is the chamber temperature around the battery module (array) #7. 𝑇1 and 

𝑇2 are the battery temperatures at the ends of the battery module. 𝑇 is the battery temperature in the 

middle of the battery module. 𝑅1, 𝑅2, and 𝑅𝑐𝑜𝑣 represent the thermal resistors between the two 

temperature locations. This thermal resistance diagram formulates the energy balance model in 

battery module #7. The model equation is provided in (37). 
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 In (37), 𝑚 is the mass of battery module #7, 𝐶𝑝 is the heat capacity of battery module #7, 

𝑡 is time, 𝑄̇ is the heat generation of battery module #7, ℎ is the convective heat transfer 

coefficient, and 𝐴 is the cross-sectional surface area. Reversible and irreversible heat generations 

are considered for battery heat generation in this study. One of the comparative studies in this 

chapter evaluates the effect of the physics law completeness, which is designed by adding 

reversible and irreversible heat generation terms to the battery thermal model. (38) and (39) 

show the mathematical equations for the reversible and irreversible heat generations [99].    

 

𝑄̇𝑟 = 𝐼𝑇
𝑑𝑉𝑜𝑐𝑣

𝑑𝑇
                                                                  (38) 

𝑄̇𝑖𝑟 = (𝑉 −  𝑉𝑜𝑐𝑣)𝐼                                                         (39) 

 

 In (38) and (39), 𝑄̇𝑟 is reversible heat generation, 𝑄̇𝑖𝑟 is irreversible heat generation, 𝐼 is 

the battery current, 𝑇 is the battery temperature, and 𝑉𝑜𝑐𝑣 is the battery OCV. In this study, 𝑉𝑜𝑐𝑣 is 

obtained from the SOC and OCV tables for various temperatures provided by the battery 

manufacturer. Therefore, heat generation contains reversible and irreversible heat generations 

(40). 

 

𝑄̇ = 𝐼𝑇
𝑑𝑉𝑜𝑐𝑣

𝑑𝑇
+ (𝑉 −  𝑉𝑜𝑐𝑣)𝐼                                                  (40) 

 

 With this battery thermal model, two thermal equations are formulated for the PINN 

method in the comparative study. (41) is the thermal equation with only irreversible heat 

generation, and (42) is the thermal equation with both reversible and irreversible heat 

generations. 
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𝑓𝑖𝑟 =
𝑑𝑇

𝑑𝑡
− 𝜆1(𝑉 −  𝑉𝑜𝑐𝑣)𝐼 − 𝜆2(𝑇 − 𝑇2) − 𝜆3(𝑇 − 𝑇1) + 𝜆4(𝑇𝑎𝑚𝑏 − 𝑇2) 

+𝜆5(𝑇𝑎𝑚𝑏 − 𝑇1) = 0                                                     (41) 

𝑓𝑟𝑒𝑖𝑟
=

𝑑𝑇

𝑑𝑡
− 𝜆1 ((𝑉 − 𝑉𝑜𝑐𝑣)𝐼 + 𝐼𝑇

𝑑𝑉𝑜𝑐𝑣

𝑑𝑇
 ) − 𝜆2(𝑇 − 𝑇2) − 𝜆3(𝑇 − 𝑇1) + 𝜆4(𝑇𝑎𝑚𝑏 − 𝑇2) 

+𝜆5(𝑇𝑎𝑚𝑏 − 𝑇1) = 0                                                 (42) 

 

 In (40) and (41), 𝜆1, 𝜆2, 𝜆3, 𝜆4, and 𝜆5 are the coefficients in the thermal equations that 

will be optimized during the training process using the backpropagation method. 

 

4.3 Method  

4.3.1 LSTM-PINN Hybrid Model  

 The LSTM-PINN hybrid model uses the LSTM model discussed in chapter 2 to predict 

the battery temperatures at the end sides of the battery module, 𝑇1 and 𝑇2, where the LSTM 

model shows high accuracy. However, for the temperature at the center of the battery module, 𝑇, 

the LSTM-PINN hybrid model implements the PINN method to predict the temperature. The 

overall schematic of the hybrid model is provided in Fig. 27. Also as shown in Fig. 27, the 

prediction outputs of the LSTM model feed into the PINN model after the normalization.   
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Fig. 27 Overview of LSTM-PINN hybrid model  

 

4.3.2 Training  

 The details of the battery test and data acquisition can be found in section 2.4.2 of this 

paper. Before the training process, the obtained data are normalized between 0 and 1 as (15) in 

2.4.3. During the training, the LSTM model is trained first with the hyperparameter provided in 

Table 16. Then the PINN model is trained with the battery test data and the outputs from the 

LSTM model. The hyperparameters implemented in the training process of the PINN model are 

listed in Table 26. After the training process, the LSTM-PINN hybrid predicts the lithium-ion 

battery pack temperatures in the test datasets, which are not applied to the training process. The 

root mean square error (RMSE) is calculated for the prediction error evaluation. The 

mathematical equation of RMSE is given in (43).  

 

𝑅𝑀𝑆𝐸 =  √∑ (𝑥𝑖−𝑥̂𝑖)2𝑁
𝑖=1

𝑁
                                                        (43) 
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 In (42), 𝑁 is the total number of the data in the test datasets, 𝑖 is the variable, 𝑥𝑖is the true 

temperature values, and 𝑥̂𝑖 is the predicted temperature values. 

 

Table 26 List of hyperparameters applied to the PINN portion of the LSTM-PINN model  

Hyperparameters Value 

Training iteration 15000 

Start learning rate 0.00001 

Learning rate decay rate 10% 

Pre-layer [1,135] 

Activation function ELU  

Optimizer for the adaptive normalization Adam 

𝛿 in (24)– (26) 0.9 

 

4.4 Results and Discussion 

 With the aforementioned LSTM-PINN hybrid model, this study conducts various 

comparative studies to enhance the temperature predictions in the middle of battery module #7 

and to compare the prediction accuracy between the LSTM-PINN model and the LSTM model 

described in Chapter 2. The first comparative study and second full factorial design of the 

experiment study are presented to optimize the PINN architecture and hyperparameters for the 

LSTM-PINN hybrid model. Then the third comparative study evaluates the completeness effect 

in the battery thermal equation. Two battery thermal models prepared earlier in this chapter with 

two different battery heat generation methods, reversible and irreversible, are applied to the 

LSTM-PINN hybrid model to assess how completeness in the battery thermal equation would 

improve the LSTM-PINN model predictions. Lastly, the fourth comparative study compares the 

LSTM-PINN hybrid and the LSTM models introduced in Chapter 2. 
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4.4.1 Chamber Temperature Input to PINN 

 In the first comparative study presented in this chapter, the PINN architecture in the 

LSTM-PINN hybrid model is modified to cope with the different chamber temperatures in the 

lithium-ion battery pack test data. The input layer does not include the chamber temperature in 

the PINN architectures developed in Chapter 3 and [76] since all test data have the same 

chamber temperature. However, in the case of the PINN architecture for the battery pack 

temperature predictions in this chapter, the chamber temperature is an essential input due to the 

variation in the chamber temperature in the battery test data. Fig. 28 shows the proposed PINN 

architecture with the chamber temperature input.    

 

 

Fig. 28 PINN architecture with the chamber temperature input  

  

 Therefore, in the comparative study, three different cases are compared with each other. 

In the first case, the PINN architecture from Chapter 3 is directly applied to the LSTM-PINN 

hybrid model to make the battery temperature predictions at the center of battery module #7. In 

this PINN architecture, there is no chamber temperature in the input layer. In the second case, the 

PINN architecture presented in Fig. 28 is applied to the LSTM-PINN hybrid model with the sine 
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activation function in the pre-layer connected to the chamber temperature input layer. In the third 

case, the PINN architecture presented in Fig. 28 is applied with the exponential activation 

function for the pre-layer. 

      

 

Fig. 29 LSTM-PINN hybrid model temperature predictions with the three different PINN 

architectures (No 𝑇𝑐ℎ𝑎𝑚: first case, sine 𝑇𝑐ℎ𝑎𝑚: second case, and exp 𝑇𝑐ℎ𝑎𝑚: third case) for the 

DCFC profile (left) and the GL100 (right) 

 

 In Fig. 29, the temperature predictions from the three cases and the true temperature 

values are plotted for the DCFC and GL100 profiles designated for the LSTM-PINN hybrid 

model test. The figure shows that the temperature predictions made by the LSTM-PINN hybrid 

model with the PINN architecture excluding the chamber temperature input layer show more 

prediction errors than in the other two cases. This result supports the PINN architecture with the 

chamber temperature input layer for the LSTM-PINN hybrid model. Table 26 lists the prediction 

errors (RMSE) of all three cases. Table 27 indicates that between the two LSTM-PINN hybrid 

models including the chamber temperature in the input layer, the one with the exponential 

activation function demonstrates more accurate temperature prediction in the DCFC profile and 

similar prediction error in the GL 100 profile. In conclusion, this study proposes the LSTM-
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PINN hybrid models including the chamber temperature in the input layer with the exponential 

activation function in the pre-layer for battery temperature prediction. 

 

Table 27 List of hyperparameters applied to the PINN portion of the LSTM-PINN model  

Case 

RMSE error (°C) for the battery temperature predictions at the 
center of the battery module #7   

GL 100 profile DCFC profile 

No 𝑇𝑐ℎ𝑎𝑚 pre-layer 3.43 1.03 

𝑇𝑐ℎ𝑎𝑚 pre-layer with sine 

activation function 
0.47 0.96 

𝑇𝑎𝑚𝑏 pre-layer with exp 

activation function 
0.52 0.57 

 

4.4.2 Neuron Number and Hidden Layer Number Tuning  

 In the LSTM-PINN hybrid model, the neuron number and hidden layer number are two 

hyperparameters that must be tuned to make accurate battery temperature predictions. In this 

section, the tunning of two hyperparameters is conducted with the test conditions defined by the 

complete factorial design of experiments theory (DOE). Before this test run, pre-screen 

experiments were performed to find the range and level of each hyperparameter. For the neuron 

number, five levels in the test conditions range between 45 and 65. For the hidden layer number, 

the level is 4 and the range is between 3 and 6. Tables 28 and 29 contain the prediction error 

(RMSE) for the test conditions using the DCFC and GL100 test drive profiles. Both tables 

consider the temperature predictions only at the center of battery module #7. 
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Table 28 RMSE of the test conditions defined by the DOE for the DCFC drive profile 

RMSE (°C) 
Neuron # per layer 

45 50 55 60 65 

Hidden 
layer # 

3 1.25 0.92 2.45 2.14 1.25 
4 1.25 2.50 0.84 1 1.86 
5 2.2 1.37 0.91 0.57 2.51 
6 1.63 1.27 1.26 3.05 1.78 

 

Table 29 RMSE of the test conditions defined by the DOE for the GL100 drive profile 

RMSE (°C) 
Neuron # per layer 

45 50 55 60 65 

Hidden 
layer # 

3 0.53 0.52 0.48 0.5 0.46 
4 0.45 0.55 0.45 0.49 0.6 
5 0.54 0.52 0.53 0.52 0.56 
6 0.54 0.66 0.52 0.79 0.5 

 

 In the test results of the DCFC drive profile, a neuron number of 55 per hidden layer and  

4 hidden layers shows the lowest prediction error. The test results of the GL100 drive profile 

show no significant prediction error change. Thus, this study proposes the LSTM-PINN hybrid 

model with the neuron number of 55 per hidden layer and 4 hidden layers in the PINN 

architecture for the lithium-ion battery pack temperature predictions. Fig. 30 presents the 

proposed PINN architecture. For the following two sections in this chapter, the LSTM-PINN 

hybrid model with the proposed PINN architecture is applied to the comparative studies to show 

the influence of the completeness of the battery thermal model on the battery prediction accuracy 

and to compare the prediction accuracy between the LSTM-PINN hybrid model and LSTM 

model. 
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Fig. 30 Proposed PINN architecture for the LSTM-PINN hybrid model  

 

4.4.3 Effect of Physics Model Completeness  

 The comparative study presented in this section evaluates the effects of the physics model 

completeness on the LSTM-PINN hybrid model. The physics model completeness is enhanced 

by adding reversible heat generation to the battery thermal model. Therefore, there are two cases 

for this comparative study. In the first case, the battery thermal model has no reversible heat 

generation term. (40) in 4.2 will be applied to the LSTM-PINN hybrid model. The battery 

thermal model has a reversible heat generation term in the second case. (41) in 4.2 contains the 

thermal model equation implemented in the LSTM-PINN hybrid model for the second case. Fig. 

31 shows the true battery temperature values and temperature predictions at the center of battery 

module #7 by the methods described in both cases.       
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Fig. 31 Battery temperature predictions and true values for the DCFC profile (left) and the 

GL100 (right)  

 

Table 30 RMSE from the comparative study for the physics model completeness 

 RMSE (°C) 

Case 
DCFC  

test profile 
GL100  

test profile 
Hybrid model with only irreversible 

heat generation 
0.57 0.52 

Hybrid model with both reversible 
and irreversible heat generations 

0.84 0.44 

 

 In Fig. 31, the battery temperature prediction error for the LSTM-PINN hybrid model 

containing only irreversible heat generation is less than that of the LSTM-PINN hybrid model 

containing both irreversible and reversible heat generations for the DCFC test profile. An 

opposite observation is made for the GL100 profile. However, the prediction error (RMSE) 

difference between the two cases for the DCFC test profile is 0.27°C, and the prediction error 

(RMSE) difference for the GL100 test profile is 0.08°C. The benefit of adding more 

completeness to the thermal model shown in the GL100 test profile is less than the increase of 

the prediction error in the DCFC test profile. Also, the GL 100 test profile has no divergence in 

the battery temperature prediction. However, in the DCFC test profile, the LSTM-PINN hybrid 

model containing both irreversible and reversible heat generations shows divergence at the end 
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of the test profile. Therefore, in this study, the physics law with more completeness does not 

enhance the prediction accuracy. Moreover, this result shows the hybrid model’s acceptance of 

the incomplete physical law. 

 

4.4.4 LSTM-PINN Hybrid Method vs. LSTM  

 The comparative study presented in this section compares the battery temperature 

prediction errors of the LSTM-PINN hybrid model and the LSTM model. As discussed in 

Chapter 2, the LSTM model relies solely on the training data to learn the problem. Fig. 32 shows 

the battery temperature predictions by both models at the center of battery module #7 with the 

true temperature values for the DCFC and GL100 test profiles. The LSTM-PINN hybrid model 

predicts the battery temperature with a lower prediction error than the LSTM model does for the 

DCFC test profile, especially at the end of the profile. The performance of both models for the 

GL 100 test profile is similar. The prediction errors (RMSE) of both models for the two test 

profiles are tabulated in Table 31. 

 

Table 31 RMSE from the LSTM model and LSTM-PINN hybrid model 

 RMSE (°C) 

Case 
DCFC  

test profile 
GL100  

test profile 
Only LSTM 1.01 0.48 

LSTM-PINN hybrid model  0.57 0.52 
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Fig. 32 Battery temperature predictions and true values for the DCFC profile (left) and the 

GL100 (right) 

 

 Observation demonstrates that the proposed LSTM-PINN hybrid model outperforms the 

LSTM model for battery pack temperature prediction. Also, this strength of the LSTM-PINN 

hybrid model is enhanced for the case with the long duration profile containing a considerable 

temperature variation, which is the DCFC profile in this study. The DCFC profile’s battery pack 

temperature predictions for both models are listed in Table 32.     

 

Table 32 RMSE of the battery pack temperature predictions by the LSTM model and LSTM-

PINN hybrid model for the DCFC profile 
(°C) LSTM LSTM-PINN hybrid 

Output temp (end 1) 0.64 0.64 

Output temp (middle) 1.01 0.57 

Output temp (end 2) 0.40 0.4 

 

4.5 Conclusion  

 In this chapter, an LSTM-PINN hybrid model is developed and proposed to predict 

lithium-ion battery pack temperatures. Unlike other prediction approaches such as a physics-

based or a data-driven model, this LSTM-PINN hybrid model takes advantage of both physics-

based and data-driven models by implementing the PINN method to incorporate the physics laws 
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during the training of the data-driven method. The main novelties of this chapter are summarized 

as follows: 

 

• The proposed LSTM-PINN hybrid model has a unique PINN architecture, with input 

layers designed for the chamber (ambient) temperature variation in the battery data. 

 

• The proposed LSTM-PINN hybrid model shows robustness against the incompleteness of 

the battery thermal model, which includes missing terms and a less descriptive physics 

model.  

 

• When data scarcity occurs, the proposed LSTM-PINN hybrid model gives more accurate 

predictions than the LSTM model. For instance, the geometric location of the temperature 

predictions is different from the temperature information in the training data. In the case 

presented in this chapter, the strength of the proposed LSTM-PINN hybrid model is 

significant when the predicted temperature variation increases and the profile duration is 

extended. 
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Chapter 5 Data Driven Battery Model Parameter Identification 

 

5.1 Introduction  

As proposed in the literature, the model-based approach is an effective method for 

estimating the behavior of the lithium-ion battery. Moreover, it is often implemented in the 

lithium-ion battery control methodology. The model-based approach contains lithium-ion battery 

models consisting of mathematical equations describing the internal processes in the battery. For 

instance, in the equivalent circuit model (ECM), electrical circuit equations analogous to the 

lithium-ion battery internal mechanism and producing similar responses such as the battery 

voltage are formulated to simulate the battery behaviors. The pseudo-two-dimensional lithium-

ion battery model contains mathematical governing equations describing mass conservation, 

charge conservation, and electrochemical reactions at both electrodes and electrolytes. Lithium-

ion battery models, both physics-based and empirical, implement mathematical equations at 

various complexity levels, including ordinary and partial differential equations, to predict the 

battery behaviors and characteristics. Therefore, accurately identifying the battery model 

equations is critical to enhancing the prediction quality.      

 

A data-driven method such as ANN can be implemented to identify the lithium-ion 

battery model equations. Compared to other system-identification methods, the black-box 

approach avoids fitting the complex mathematical equations and performing destructive battery 

tests. However, the data-driven method has a shortcoming related to the data size to maintain 
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highly accurate system identification. This chapter will examine various sampling methods such 

as Plackett-Burman and Latin hypercube for their effectiveness in reducing the data size while 

maintaining the prediction accuracy without a dramatic increase in prediction error. 

 

This chapter is organized as follows. Section 5.2 includes a literature review on the 

methods to identify the lithium-ion battery models. Section 5.3 contains the methods section. 

Section 5.4 reviews the results of the comparative study to evaluate various sampling methods 

for the ANN to identify the battery models. Lastly, section 5.5 includes the conclusion.      

 

5.2 Literature Review  

 Although battery model parameter identification is critical to enhancing the performance 

of the lithium-ion battery model, it is difficult to identify the battery model parameters. The 

battery manufacturers are reluctant to release related information, and most battery parameters 

are hard to measure, especially with non-destructive methods. Also, the lithium-ion battery’s 

highly nonlinear behavior increases the difficulty of identifying the battery model parameters 

with the fitting methods [100]. Researchers have attempted to develop methods to identify the 

lithium-ion battery model parameters, as documented in the literature. In [101], the author 

implemented a least-squares framework-based fitting method to identify the parameters of the 

single particle battery model. In [102], the author developed a genetic algorithm-based method to 

identify 88 battery model parameters of the pseudo-two-dimensional lithium-ion battery model. 

The study presented in [103] proposed a model-fitting method to identify the kinetics-related 

parameters of the pseudo-two-dimensional lithium-ion battery model. 
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 Furthermore, a group of researchers conducted studies to implement deep learning-based 

methods to identify the battery parameters. In [104], an ANN approach was developed to predict 

Li-ion diffusion coefficients at anode and cathode, reaction rate coefficients at anode and 

cathode, and solution phase resistance. These material battery parameters partially identify the 

single-particle battery model. This study generated 3125 datasets based on full factorial 

experiment design theory (i.e., five factors and five levels) to train the ANN. All datasets were 

synthesized by the single particle battery model with the 1C discharge current profile. In the 

study presented in [105], an ANN structure was developed to predict cathode initial 

concentration at the beginning of discharge, cathode conductivity, volume-specific capacity of 

the anode, volume-specific capacity of the cathode, and diffusion coefficients of electrolyte, 

anode, and cathode. These variables are a subset of the coefficients in the mathematical 

equations in the pseudo-2-dimensional Li-ion battery model. This study generated 2657205 

datasets based on full factorial experiment design theory (i.e., 12 factors and three levels with 

five different discharge rates) from the simulation with the pseudo-2-dimensional Li-ion battery 

model. Unlike the previous paper, this paper generated datasets with various discharge rates. 

Lastly, Chun et al. published several papers regarding battery model parameter estimation. In 

[106], a convolution neural network (CNN) combined with ANN was developed to estimate the 

battery degradation related to the battery model parameters: two solid-particle surface areas 

(cathode, anode), two solid-particle conductivities (cathode, anode), SEI layer resistance, and 

electrolyte diffusivity. This study generated 73728 datasets with the pseudo-2-dimensional Li-

ion battery model for training, validating, and testing the ANN. In [107], the authors developed 

an LSTM combined with ANN to estimate the battery degradation related to the battery model 

parameters: two solid-particle surface areas (cathode, anode), two solid-particle conductivities 
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(cathode, anode), SEI layer thickness, and normalized available capacity. This study generated 

179180 datasets with the pseudo-2-dimensional Li-ion battery model for training, validating, and 

testing the neural network architecture. In this study, the authors used a 100-second current 

profile in the data generation.  

 

 In summary, the data-driven methods for battery model parameter identification in the 

literature followed the process described in Fig 33. It begins with defining the battery model 

parameters needing to be identified with the range of the battery parameters. Then, the battery 

model parameters combinations are designed based on the sampling methods, such as the full 

factorial design of experiments methods. After this, the determined combinations of battery 

model parameters and inputs such as current and temperature are applied to the lithium-ion 

battery model to produce training and validation data for the neural network. After the training 

and validation of the neural networks, the test process is conducted with a new data set. 

 

 

Fig. 33 Work process for the data-driven battery model parameter identification 

 

It is notable from the literature that although all studies utilizing the data-driven methods 

successfully identified the battery model parameters, they were able to identify only a partial 

portion from the entire set of battery model parameters. Primarily, less than ten battery model 

parameters were investigated. This limitation was mainly due to the implementation of the full 

factorial design of experiments theory for the training data design. This design method often 
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requires a large data size, which limits the total quantity of identifiable battery models. In the 

case of identifying a large group of lithium-ion battery model parameters, such as more than ten 

battery parameters, it is not practically feasible to apply the full factorial sample design method 

due to the time and computation power constraints. For this case, this chapter examines 

implementing other sampling design methods such as Plackett-Burman and Latin hypercube 

methods to keep the training data size manageable to create while incurring only a slight 

prediction error increase.     

 

5.2.1 Sample Design Methods  

Sampling design methods are a critical step in data-driven battery model parameter 

identification since they map the information that will train the neural networks. As discussed in 

the previous section, the literature’s most popular sample design method is the full factorial 

design of experiments theory. In this theory, all sample combinations cover all vertices of the 

cube plot in which the side of the cube represents the range of each battery model parameter 

[108]. For n model parameters and k levels, this design of experiments theory maps sample 

combinations in a manner such that the total number of the sample combinations is provided as 

(44).  

# of test combination =  nk                                                    (44) 

 

 With this characteristic of the full factorial design of experiments theory, it is not an 

acceptable sample design method for identifying the entire set of the battery model parameters 

because it designs an enormous number of sample combinations that are not practically possible 

to synthesize from the battery model. Table 33 shows the total number of sample combinations 

designed by the full factorial design of experiments theory.  
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Table 33 Total number of the sample combinations designed by the full factorial design of 

experiments theory 

Parameter number 3-level 5-level 

2 9 25 

3 27 125 

4 81 625 

5 243 3125 

6 729 15625 

7 2187 78125 

8 6561 390625 

9 19683 1953125 

10 59049 9765625 

 

According to Table 33, if a study identifies ten battery model parameters, the 5-level full 

factorial design of experiments theory maps 9765625 sample combinations needing to be 

generated by a battery model. Assuming that the battery model takes one minute to generate one 

sample, the total time required to generate all required samples is 6782 days. The same 

calculation for the 3-level full factorial design of experiments theory is 41 days.    

 

 Plackett-Burman (PB) and Latin hypercube (LH) sampling methods are two alternate 

sampling methods that could replace the full factorial design of experiments theory. The PB 

sample method is one of the fractional factorial design of experiments methods. This method 

executes only a 2-level (min and max) sample design. Also, it maps the total sample size equal to 

a multiple of four. LH sampling is another type of sample design method in which the user 

defines the total sample size. In this method, square grids are constructed based on the sample 
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size so that the row and column numbers are equal to the sample size. Then sample combinations 

are randomly located, so each row and column in the square grids contains only one sample 

combination. In each sample combination location, the exact sample combination is determined 

by the inverse of the cumulative distribution function. In equation (45), 𝑥𝑖,𝑘 is the kth sample of 

the factor, i. F is the cumulative distribution function. Moreover, N is the sample size [109]. 

 

𝑥𝑖,𝑘 =  𝐹𝑖
−1 (

𝑘−0.5

𝑁
)                                                          (45) 

 

Fig. 34 presents the 3-level full factorial, PB, and LH (sample size of 3) design of 

experiments methods for two battery model parameters. As the figure indicates, the full factorial 

method contains the sample combination at both boundaries and inside the boundary of the range 

of the battery model parameter. In PB, the sample combinations are available only at the 

boundary, and in LH, the sample combinations are located only inside the boundary. This 

chapter proposes combining PB-LH sample methods with the PB and LH sample methods. In the 

combined PB-LH sample design method, the sample combinations are placed both in the 

boundary and inside of the boundary defined by the range of the battery model parameter.   

 

 

Fig. 34 Full factorial (left), Plackett-Burman (middle), and Latin hypercube sampling (right) for 

2 factors (parameters) 
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5.2.2 Pseudo Two-Dimensional (P2D) Lithium-Ion Battery Model  

The P2D lithium-ion battery model is a volume average and microscale physics model 

using a gradient in the two dimensions of between the two electrodes and the radial direction of 

the electrode particles. This model consists of governing equations describing the physical 

phenomena at the electrodes and electrolytes. In this study, the battery simulation data are 

created by the P2D lithium-ion battery model to train the LSTM method. Table 33 contains the 

governing equations with the boundary conditions of the P2D lithium-ion battery model. Fig. 35 

shows the schematic of the P2D battery model. In addition to the governing equations, additional 

equations define the battery model’s internal variables such as open circuit potential. The 

additional equations used in the P2D battery model are listed in Table 34.  
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Table 34 Governing equations used in the P2D lithium-ion battery model 

Name Mathematical Equation Boundary Condition 

Mass conservation at 

the electrodes 

𝜕𝑐𝑠

𝜕𝑡
=  

1

𝑟2

𝜕

𝜕𝑟
(𝐷𝑠𝑟2

𝜕𝑐𝑠

𝜕𝑟
)  

−𝐷𝑠

𝜕𝑐𝑠

𝜕𝑟
|

𝑟=0
= 0 

 

−𝐷𝑠

𝜕𝑐𝑠

𝜕𝑟
|

𝑟=𝑅𝑠

=  𝑗𝑛 

Electrochemical 

kinetics  

(Butler-Volmer 

equation) 

𝑗𝑛 = 𝑗𝑜 [𝑒𝑥𝑝 (
𝛼𝑎𝐹

𝑅𝑇
𝜂)

− 𝑒𝑥𝑝 (
−𝛼𝑐𝐹

𝑅𝑇
𝜂)] 

- 

Mass conservation 

in the electrolyte 

𝜕(𝜀𝑐)

𝜕𝑡
=  

𝜕

𝜕𝑥
(𝐷𝑒𝑓𝑓

𝜕𝑐

𝜕𝑥
) + (1 − 𝑡+)𝑎𝑗𝑛 

 

where 𝑎 =  
3

𝑅𝑠
(1 − 𝜀 − 𝜀𝑓)  

−𝐷𝑒𝑓𝑓

𝜕𝑐

𝜕𝑥
|

𝑥=0 𝑎𝑛𝑑 𝑥=𝐿𝑝+𝐿𝑠+𝐿𝑛

= 0 

Charge conservation 

at the electrodes 
 

𝜕

𝜕𝑥
(𝜎𝑒𝑓𝑓

𝜕𝜙𝑠

𝜕𝑥
) = 𝑎𝐹𝑗𝑛 

−𝜎𝑒𝑓𝑓
𝜕𝜙𝑠

𝜕𝑥
|

𝑥=0 𝑎𝑛𝑑 𝑥=𝐿𝑝+𝐿𝑠+𝐿𝑛

=
𝐼

𝐴
 

 

−𝜎𝑒𝑓𝑓
𝜕𝜙𝑠

𝜕𝑥
|

𝑥=𝐿𝑛,   𝐿𝑛+𝐿𝑠

= 0 

 

Charge conservation 

in the electrolyte 

𝜕

𝜕𝑥
(𝑘𝑒𝑓𝑓

𝜕𝜙𝑒

𝜕𝑥
)

+  
2𝑅𝑇(1 − 𝑡+)

𝐹

𝜕

𝜕𝑥
(𝑘𝑒𝑓𝑓

𝜕𝑐

𝜕𝑥
) = 𝑎𝐹𝑗𝑛 

−𝑘𝑒𝑓𝑓
𝜕𝜙𝑒

𝜕𝑥
|

𝑥=0,   𝐿𝑛+𝐿𝑠+𝐿𝑝

= 0 

 

 

Fig. 35 Schematic overview of P2D lithium-ion battery model 
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Table 35 Additional equations 

Name Mathematical Equation 

Exchange current densities at the electrode [110] 𝑗𝑜 = 𝑘0(𝑐𝑠
𝑚𝑎𝑥 − 𝑐𝑠

𝑠𝑢𝑟𝑓
)

0.5
𝑐𝑠

𝑠𝑢𝑟𝑓0.5
𝑐𝑠

0.5 

Overpotential at the electrode  𝜂 = 𝜙𝑠 − 𝜙𝑒 − 𝑈 

Open circuit potential at cathode  𝑉𝑜𝑐𝑝 = −𝑐1𝑠𝑡𝑜4 + 𝑐2𝑠𝑡𝑜3 − 𝑐3𝑠𝑡𝑜2 + 𝑐4𝑠𝑡𝑜 + 𝑐5 

Electrolyte conductivity 

[111] 

Σ𝑒 = 0.1297
𝑐

1000

3

− 2.51
𝑐

1000

1.5

+ 3.329
𝑐

1000
 

 

𝑎𝑟𝑟ℎ𝑒𝑛𝑖𝑢𝑠 =  𝑒

𝐸𝑘𝑒

𝑅(
1

298.15−
1
𝑇

)
 

 

𝐸𝑙𝑒𝑐𝑡𝑟𝑜𝑙𝑦𝑡𝑒 𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦 =  Σ𝑒 × 𝑎𝑟𝑟ℎ𝑒𝑛𝑖𝑢𝑠 

Cathode active material volume fraction 𝑣𝑐𝑎𝑡ℎ𝑜𝑑𝑒,𝑎𝑐𝑡𝑖𝑣𝑒 = 1 − 𝜑𝑐𝑎𝑡ℎ𝑜𝑑𝑒 − 𝑣𝑖𝑚  

Anode active material volume fraction 

𝑛𝑢𝑚 =  𝑡𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 × 𝑐𝑐𝑎𝑡ℎ𝑜𝑑𝑒,𝑚𝑎𝑥 × (1 − 𝑠𝑡𝑜𝑐𝑎𝑡ℎ𝑜𝑑𝑒,𝑚𝑖𝑛) 

 

𝑑𝑒𝑛 =  𝑡𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 × 𝑐𝑎𝑛𝑜𝑑𝑒,𝑚𝑎𝑥 × (1 − 𝑠𝑡𝑜𝑎𝑛𝑜𝑑𝑒,𝑚𝑖𝑛) 

 

𝑣𝑎𝑛𝑜𝑑𝑒,𝑎𝑐𝑡𝑖𝑣𝑒 =  𝑣𝑐𝑎𝑡ℎ𝑜𝑑𝑒,𝑎𝑐𝑡𝑖𝑣𝑒 × 𝑛𝑝𝑟𝑎𝑡𝑖𝑜 ×
𝑛𝑢𝑚

𝑑𝑒𝑛
 

 

Initial concentration in cathode 𝑐𝑐𝑎𝑡ℎ𝑜𝑑𝑒,𝑖𝑛𝑖 = 𝑠𝑡𝑜𝑐𝑎𝑡ℎ𝑜𝑑𝑒,𝑚𝑖𝑛 × 𝑐𝑐𝑎𝑡ℎ𝑜𝑑𝑒,𝑚𝑎𝑥 

Initial concentration in anode 𝑐𝑎𝑛𝑜𝑑𝑒,𝑖𝑛𝑖 = 𝑠𝑡𝑜𝑎𝑛𝑜𝑑𝑒,𝑚𝑎𝑥 × 𝑐𝑎𝑛𝑜𝑑𝑒,𝑚𝑎𝑥 

Lithium-ion diffusivity in cathode 
[110] 

𝑎𝑟𝑟ℎ𝑒𝑛𝑖𝑢𝑠 =  𝑒

𝐸𝐷𝑠,𝑐𝑎𝑡ℎ𝑜𝑑𝑒

𝑅(
1

298.15−
1
𝑇

)
 

 

𝐷𝐿𝑖,𝑐𝑎𝑡ℎ𝑜𝑑𝑒 = 𝐷𝑟𝑒𝑓,𝑐𝑎𝑡ℎ𝑜𝑑𝑒 × 𝑎𝑟𝑟ℎ𝑒𝑛𝑖𝑢𝑠 

 

Lithium-ion diffusivity in anode 
[112] 

𝑎𝑟𝑟ℎ𝑒𝑛𝑖𝑢𝑠 =  𝑒

𝐸𝐷𝑠,𝑎𝑛𝑜𝑑𝑒

𝑅(
1

298.15−
1
𝑇

)
 

 

𝐷𝐿𝑖,𝑎𝑛𝑜𝑑𝑒 = 𝐷𝑟𝑒𝑓,𝑎𝑛𝑜𝑑𝑒 (1.5 − 𝑠𝑡𝑜𝑎𝑛𝑜𝑑𝑒)1.5 × 𝑎𝑟𝑟ℎ𝑒𝑛𝑖𝑢𝑠 

 

Cathode exchange current density 

[12] 

𝑎𝑟𝑟ℎ𝑒𝑛𝑖𝑢𝑠 =  𝑒

𝐸𝑟,𝑐𝑎𝑡ℎ𝑜𝑑𝑒

𝑅(
1

298.15−
1
𝑇

)
 

 

𝑖𝑜,𝑐𝑎𝑡ℎ𝑜𝑑𝑒 = 2 × 𝑚𝑐𝑎𝑡ℎ𝑜𝑑𝑒,𝑟𝑒𝑓 × 𝑎𝑟𝑟𝑒𝑛ℎ𝑒𝑛𝑖𝑢𝑠 ×
𝑐𝑒

𝑐𝑒,𝑚𝑎𝑥

0.5

× ((1 −
𝑐𝑠𝑢𝑟𝑓,𝑐𝑎𝑡ℎ𝑜𝑑𝑒

𝑐𝑐𝑎𝑡ℎ𝑜𝑑𝑒,𝑚𝑎𝑥

)

0.5
𝑐𝑠𝑢𝑟𝑓,𝑐𝑎𝑡ℎ𝑜𝑑𝑒

𝑐𝑐𝑎𝑡ℎ𝑜𝑑𝑒,𝑚𝑎𝑥

0.5

) 

Anode exchange current density 
[12] 

𝑎𝑟𝑟ℎ𝑒𝑛𝑖𝑢𝑠 =  𝑒

𝐸𝑟,𝑎𝑛𝑜𝑑𝑒

𝑅(
1

298.15−
1
𝑇

)
 

 

𝑖𝑜,𝑎𝑛𝑜𝑑𝑒 = 2 × 𝑚𝑎𝑛𝑜𝑑𝑒,𝑟𝑒𝑓 × 𝑎𝑟𝑟𝑒𝑛ℎ𝑒𝑛𝑖𝑢𝑠 ×
𝑐𝑒

𝑐𝑒,𝑚𝑎𝑥

0.5

× ((1 −
𝑐𝑠𝑢𝑟𝑓,𝑎𝑛𝑜𝑑𝑒

𝑐𝑎𝑛𝑜𝑑𝑒,𝑚𝑎𝑥

)

0.5
𝑐𝑠𝑢𝑟𝑓,𝑎𝑛𝑜𝑑𝑒

𝑐𝑎𝑛𝑜𝑑𝑒,𝑚𝑎𝑥

0.5

) 
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5.3 Method  

5.3.1 Impact of Data Sampling Methods  

In order to evaluate the impact of data sampling methods on the data-driven battery model 

parameter identification, a study with four different data sampling methods is conducted with the 

LSTM method. Three-level full-factorial, PB, LH, and combined PB/LH design of experiments 

methods are implemented as the data sampling methods with sample sizes of 6561, 8, 10, and 18. 

Based on this sample design, training data are synthesized by the P2D lithium-ion battery model 

with a 5A constant discharge current to identify the eight battery model parameters: anode and 

cathode initial stoichiometries at the beginning of discharge, anode and cathode reference 

exchange current densities, anode and cathode solid diffusion coefficients, and anode and 

cathode active material volume fractions of a 5Ah Li-ion battery. 

5.3.2 Battery Model Parameters  

For the training data generation by the P2D battery model, 5Ah battery specifications are 

applied to the P2D battery model in addition to the unknown battery model parameters. Table 36 

provides the 5 Ah battery specifications.  

Table 36 5Ah battery specifications applied to all synthesized data 

 

 Table 37 and Table 38 show the range of the unknown battery model parameters used in 

the sample design. In the case of the 3-level full factorial sample design, Table 37 contains the 

Battery model parameter Value Battery model parameter Value 

Electrode height (m) 0.089 Anode particle radius (m) 5E-6 

Electrode width (m) 2.34 Cathode particle radius (m) 5.22E-6 

Anode porosity 0.39 Initial concentration in electrolyte (𝑚 ∙ 𝑚−3) 1200 

Cathode porosity 0.416 Anode conductivity (𝑆 ∙ 𝑚−1) 100 

Separator porosity 0.46 Cathode conductivity (𝑆 ∙ 𝑚−1) 100 

Anode thickness (m) 4.46E-5 Cathode thickness (m) 4.55E-5 

Anode chemistry Graphite Cathode Chemistry NMC 
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battery model parameter values at each level. For PB and LH, the maximum and minimum 

values of the unknown battery model parameters are provided in Table 38. 

Table 37 The range of the unknown parameters applied to 3-level full factorial method 

Level Anode initial stoichiometries  

at the beginning of discharge 

Cathode initial stoichiometries  

at the beginning of discharge 

1 7.2E-1 3.6E-1 

2 8E-1 4E-1 

3 8.8E-1 4.4E-1 

Level Anode reference exchange current 

densities 

Cathode reference exchange current 

densities 

1 1.08E+1 1.8 

2 1.2E+1 2 

3 1.32E+1 2.2 

Level Anode solid diffusion coefficients Cathode solid diffusion coefficients 

1 1.35E-14 2.7E-14 

2 1.5E-14 3E-14 

3 1.65E-14 3.3E-14 

Level Anode active material volume fraction Cathode active material volume fraction 

1 0.54 0.405 

2 0.6 0.45 

3 0.66 0.495 

 

Table 38 The range of the unknown parameters applied to Plackett-Burman and Latin hypercube 

methods 

Level Anode initial stoichiometries at the 

beginning of discharge 

Cathode initial stoichiometries at the 

beginning of discharge 

Min 7.2E-1 3.6E-1 

Max 8.8E-1 4.4E-1 

Level 
Anode reference exchange current 

densities 

Cathode reference exchange current 

densities 

Min 1.08E+1 1.8 

Max 1.32E+1 2.2 

Level Anode solid diffusion coefficients Cathode solid diffusion coefficients 

Min 1.35E-14 2.7E-14 

Max 1.65E-14 3.3E-14 

Level Anode active material volume 

fraction 

Cathode active material volume 

fraction 

Min 5.4E-1 4.05E-1 

Max 6.6E-1 4.95E-1 
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5.3.3 Experiment Plan  

To test the performance of the LSTM networks, five new test datasets were generated by 

the P2D battery model. These datasets were not included in the training and validation datasets 

generated earlier. Figure 36 shows the overall test process conducted in this section of the paper. 

In the test process, the pre-selected battery model parameters of the five new test datasets were 

compared to the identified battery model parameters by the LSTM networks.  

 

 

Fig. 36 LSTM test process 

 

For the training and validation of the LSTM networks, 80 and 20%, respectively, of the 

data designed by the four sample design methods were applied. All data used in the training and 

validation were normalized, padded, and transformed to apply the five hundred seconds sliding 

window in the input data with a sampling rate of 100 seconds. For the hyperparameters of the 

LSTM network, 3 units in a single LSTM layer were used with a batch size of 5, a learning rate 

of 0.001 with Adam optimization, and an epoch size of 100. 
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5.3 Results and Discussion  

The relative errors between the two values are computed to compare the true and 

identified parameters. In (46), the relative error applied in this study is formulated.  

 

 𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑒𝑟𝑟𝑜𝑟 (%) =  
|𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛−𝑇𝑟𝑢𝑒|

𝑇𝑟𝑢𝑒
 × 100                            (46) 

 

 Fig. 37 and Fig. 38 contain the relative errors for all eight battery model parameters with 

the four sample design methods. In the results, the LSTM networks trained with the data design 

by the 3-level full factorial design of experiments method have the lowest relative error 

compared with other LSTM networks trained with the data designed with the other three sample 

design methods. The worst-performing LSTM network is trained with the data designed by the 

LH method. On average, of all eight battery model parameters, the LSTM networks trained with 

the data designed by the 3-level full factorial sample design method have 1.91% less relative 

error than that of the LH method. The relative errors of the PB and PB/LH combined methods 

are located between the relative errors of the 3-level full factorial sample design method and the 

LH method. The anode diffusion coefficient is the parameter with the most considerable relative 

error difference between the 3-level full factorial sample design method and the LH method at 

3.07%. The cathode initial stoichiometries at the beginning of discharge is the parameter 

identified with the most minor relative error difference.  

 

 Although prediction error increases with the LSTM network trained with data designed 

by the LH, PB, and LH-PB combined methods, the three sampling methods reduce the data 

sampling size by over 90%. To identify all battery model parameters of the P2D battery model, 

the three sample design methods could be applied to reduce the data sample size. However, it is 
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also indicated from this study that the sample size reduction should be controlled to improve the 

accuracy of the parameter identification by the LSTM. In the case of the LH and LH-PB 

methods, the total sample number could be adjusted by increasing the sample number designed 

by the LH method.  

 

 

Fig. 37 Relative prediction errors from the LSTM trained with data design with different design 

of experiment methods (3level: 3-level full factorial, PB: Plackett-Burman, LH: Latin hypercube, 

PBLH: combined Plackett-Burman and Latin hypercube) 
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Fig. 38 Relative prediction errors from the LSTM trained with data generated from different 

design of experiment methods (3level: 3-level full factorial, PB: Plackett-Burman, LH: Latin 

hypercube, PBLH: combined Plackett-Burman and Latin hypercube) 

 

 

5.4 Conclusion  

 

This chapter conducted a comparative study to evaluate the effect of various data 

sampling methods for the LSTM method to identify the P2D battery model equations. This work 

estimates eight battery parameters from the P2D battery models. The eight parameters are 

selected for their relationship to the battery cell design, resistance, and diffusion. The main 

novelty of this chapter is summarized as follows: 

 

• The results of the comparative study indicate that the LSTM trained with a 

significantly reduced number of sample data by the proposed PB, LH, and 

combined PB/LH can achieve good prediction accuracy (estimation error is 
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increased by only 3% with over 90% reduction in data size compared to the 3-

level full-factorial design approach).  

 

The proposed sampling method is expected to identify more battery parameters from a 

complex battery model, such as the P2D battery model for model identification.  
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Chapter 6 Conclusions 

 

 

6.1 Summary of Conclusions  

The contributions in this dissertation are summarized as follows.  

 

In Chapter 2, LSTM methods are proposed to predict the lithium-ion battery voltage and 

battery pack temperature. With the literature review and the comparative study to predict the 

lithium-ion battery voltage presented in this chapter, the LSTM method was elected as the most 

suitable ANN method due to its high prediction accuracy, fast convergence, and robustness 

against external temperature such as -30°C. With the proposed LSTM methods, lithium-ion 

battery voltage prediction at low temperature could be accurately performed, and the temperature 

distribution of the temperatures of the entire battery pack could be estimated with only a selected 

number of temperature measurements. All these predictions were made without the battery and 

thermal characterization information, which is sometimes not available and complex to compute. 

Furthermore, the study presented in this chapter also showed the significance of the data for the 

data-driven method. In the battery pack temperature prediction study, the temperature prediction 

at the location not presented in the training data was less accurate. This shortcoming of the 

LSTM method leads to the PINN method to train the LSTM method with the collected data and 

the physics laws. 
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Chapter 3 proposes a PINN model to predict the lithium-ion battery cell temperature 

during the constant charge and discharge cycle. The PINN model was developed by applying the 

battery thermal model to the loss function, by implementing adaptive coefficients to the loss 

function, and by modifying the ANN architecture with the pre-layer and connection layer 

reflecting the analytical solution of the battery thermal model. The comparative study presented 

in this chapter indicated the superiority in predicting the lithium-ion battery cell temperature with 

limited data size and an unidentified battery thermal model.  

 

In Chapter 4, an LSTM-PINN hybrid model was proposed to predict the lithium-ion 

battery pack temperatures. The proposed LSTM-PINN hybrid model has a unique PINN 

architecture to process the battery test data with chamber (ambient) temperature variation. When 

data scarcity occurs, the proposed LSTM-PINN hybrid model has more accurate predictions than 

the LSTM model proposed in Chapter 2. In this study, the geometric locations of the input 

battery temperature measurement and the predicted battery temperature are different, creating 

data scarcity. Furthermore, in the comparative study presented in this chapter, the proposed 

LSTM-PINN hybrid model showed robustness against the incompleteness of the battery thermal 

model, which includes missing terms and a less descriptive physics model.   

 

Chapter 5 studied the effects of various data sampling methods for battery model 

parameter identification with LSTM. In the comparative study, PB, LH, and combined PB/LH 

sampling methods were reviewed and proposed to reduce the number of sample data for the 

training of the LSTM method while maintaining reasonable prediction accuracy. With the 

proposed sampling methods, the number of the battery parameters identified by the LSTM 
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method will increase since the data produced by the battery model simulation are cost-effectively 

designed to include more battery model parameters while keeping a practically computable 

simulation data size.   

 

6.2 Possible Future Extensions  

This dissertation proposes data-driven approaches to estimate battery behaviors such as 

voltage and temperature. PINN effectively overcame the shortcomings of other data-driven 

approaches among the proposed data-driven approaches due to their dependency on the data to 

train the data-driven method. In the PINN method, physics laws and data are applied together to 

train the data-driven method. This dissertation implemented the PINN method to predict the 

battery temperature. Nevertheless, the following can be considered opportunities for future 

research to advance the presented work. 

 

6.2.1 PINN for Lithium-Ion Battery Voltage Prediction  

Lithium-ion battery voltage is another battery behavior that could be predicted by the 

PINN method. For PINN method implementation, less complex battery models such as ECM or 

single-particle model (SPM) could be implemented to support a data-driven model such as 

LSTM. There are a couple of improvements expected from the PINN implementation. First, a 

data-driven method like LSTM has a limited voltage prediction when the input variable has a 

profile with discontinuity, such as the sudden current pulse peak. This limitation is due to the 

local data scarcity at the discontinuity. The implementation of a PINN will improve this 

limitation as it does for the battery temperature prediction. Second, the output battery voltage 

prediction rate could be more flexible. In the case of the PINN method, the output prediction rate 

could be different from the training data sampling rate because the battery model trains the PINN 
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to make the battery voltage predictions at a different rate from the training data sampling rate. 

Furthermore, for this future study, the PINN model will be trained with the actual vehicle driving 

profiles to analyze the proposed PINN model’s prediction accuracy with the dynamic profiles.     

 

6.2.2 PINN for Lithium-Ion Battery Mechanical Stress  

Lithium-ion volume and mechanical stress changes are other lithium-ion battery 

behaviors that could be predicted by the PINN method. The volume changes due to electrode 

particle cracking, gas generation, and growth of the solid electrolyte interphase layer influence 

the battery capacity, power capability, and SOH [113]–[115]. With physical models describing 

the aging processes, the PINN method can predict the lithium-ion battery volume and mechanical 

stress changes and the contribution of the various aging processes.    
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