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Summary

Studies on the health effects of environmental mixtures face the challenge of limit
of detection (LOD) in multiple correlated exposure measurements. Conventional
approaches to deal with covariates subject to LOD, including complete-case anal-
ysis, substitution methods and parametric modeling of covariate distribution, are
feasible but may result in efficiency loss or bias. With a single covariate subject
to LOD, a flexible semiparametric accelerated failure time (AFT) model to accom-
modate censored measurements has been proposed. We generalize this approach by
considering a multivariate AFT model for the multiple correlated covariates subject
to LOD and a generalized linear model for the outcome. A two-stage procedure based
on semiparametric pseudo-likelihood is proposed for estimating the effects of these
covariates on health outcome. Consistency and asymptotic normality of the estima-
tors are derived for an arbitrary fixed dimension of covariates. Simulations studies
demonstrate good large sample performance of the proposedmethods versus conven-
tional methods in realistic scenarios.We illustrate the practical utility of the proposed
method with the LIFECODES birth cohort data, where we compare our approach
to existing approaches in an analysis of multiple urinary trace metals in association
with oxidative stress in pregnant women.
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1 INTRODUCTION

In environmental studies, it is important to understand the impact of environmental mixtures on human health, via exposures
to food, air, water, consumer products and others. A key challenge in statistical analyses is that exposure concentrations below
limit of detection (LOD) in biological samples are not detectable (i.e., left-censored). Thus, recovering the true effects of envi-
ronmental mixtures, where multiple correlated exposures are subject to LOD, is of interest. For example, in the LIFECODES
cohort of women in the Boston area who planned to deliver at the Brigham and Women’s Hospital between 2006 and 2008,1–3
researchers are interested in the relationship between 17 urinary trace metals and 8-isoprostane, an important oxidative stress
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marker for preterm birth, where trace metals and 8-isoprostane were measured at women’s third trimester of pregnancy. How-
ever, only three metals were fully measured, while the remaining 14 metals had 0.4% to 90.2% values below LOD among women
with full term birth (Supplementary Table S8).
In the presence of LOD in a single covariate, a complete-case analysis, which excludes subjects with covariate value below

LOD, provides an unbiased estimator when the underlying outcome model is correctly specified, but may result in loss of effi-
ciency.4–6 An alternative approach is to use a substitution method, which replaces the values below LODwith an arbitrary value,
such as LOD, LOD/2 or LOD/

√

2. Such an approach is commonly used due to its simplicity but may result in large biases.5,7
Richardson and Ciampi8 recommended replacing the value below LODwith the conditional expectation. This approach requires
an assumption on the left tail of the covariate distribution, which is unverifiable from the observed data. Maximum likelihood
approaches have also been proposed, under parametric assumptions on the censored covariate, for different types of outcome
models, such as generalized linear model, Cox regression model or frailty model, and for AUC comparison.4,5,9–12 Of course,
these estimates can yield large biases when the parametric assumption is misspecified. Recently, there has been work on semi-
parametric approaches to relax the distributional assumption for the censored covariate. For instance, Kong and Nan13 proposed
a semiparametric accelerated failure time (AFT) model for the censored covariate with a generalized linear outcome model.
Atem et al.14 proposed a semiparametric imputation approach based on a Cox model to impute the censored covariate under a
linear outcome model. They further extended the method to accommodate survival outcomes.15 Ding et al.16 proposed a semi-
parametric two-step importance sampling imputation for the censored covariate based on a semiparametric AFT model with a
generalized linear outcome model.
In practice, there may be multiple correlated covariates subject to LOD, as discussed before in the LIFECODES study, which

could benefit from careful accommodation of the correlation structure between exposures. Many studies use imputation methods
for each individual covariate, which ignore the dependency between covariates. Maximum likelihood approaches have also
been proposed, given a parametric form of the joint distribution for the multiple censored covariates. For example, May et
al.17 used a Monte-Carlo EM algorithm to obtain the estimates with a generalized linear outcome model. Wu et al.18 and
Chen et al.19 considered a Bayesian approach for a generalized linear outcome model and a Cox outcome model. In addition,
multiple imputation based on a distributional assumption for the censored covariates has been explored by various authors.9,20–22
However, these methods all require parametric assumptions for the joint distribution of the multiple censored covariates, which
can be difficult to specify in practice. An extension of the semiparametric approach to multiple censored covariates based on
maximum likelihood is unclear.
In this work, we adapt the semiparametric pseudo-likelihood technique in Kong andNan13 to an arbitrary number of covariates

subject to LOD with a generalized linear outcome model. A two-stage procedure is proposed to recover the coefficients in the
outcome model. In the first stage, we fit a semiparametric multivariate AFT model for the censored covariates and estimate
the joint distribution of the error terms nonparametrically. We estimate the parameters of interest in the second stage with the
nuisance parameters estimated from the first stage plugged into the likelihood. We describe the model and methods in Section
2, and establish the asymptotic properties in Section 3. Extensive simulations are presented in Section 4 to evaluate the finite-
sample performance of the proposed methods. We use the LIFECODES birth cohort data to illustrate our method in Section 5,
and conclude with remarks in Section 6.

2 METHODS

2.1 Likelihood Framework with Covariates Subject to LOD
Consider a single response variable Y , q fully observed covariates X = (1, X1, ..., Xq)T , and p covariates subject to LOD,
Z = (Z1, ..., Zp)T , with corresponding known LOD values (LOD1, ..., LODp)T . Here we assume all LODs are lower limits of
detection but our method can be extended to upper limits or both for a single component. IfZj < LODj , a left-censoring of Zj
is observed. By applying a monotone decreasing transformation ℎ−1j (⋅), we can rewrite the left-censored covariateZj as a right-
censored covariate Tj , whereZj = ℎj(Tj),LODj = ℎj(Cj) and Cj is the corresponding censoring value of Tj . Thus, we observe
Vj = min(Tj , Cj) and Δj = I(Tj ≤ Cj), j = 1, ...p. We further denote T = (T1, ..., Tp)T , C = (C1, ..., Cp)T , V = (V1, ..., Vp)T ,
� = (Δ1, ...,Δp)T and Z = {ℎ1(T1), ..., ℎp(Tp)}T = ℎ∗(T).
Assume that Y comes from an exponential family with density

f!,�(Y ) = exp
{

Y ! − b(!)
a(�)

+ c(Y , �)
}

, (1)
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where ! is the natural parameter, � is the dispersion parameter, and a(⋅) and b(⋅) satisfy E(Y ) = � = )b(!)∕)! and
var(Y ) = a(�))2b(!)∕)!)!T . Under a generalized linear model with a canonical link g, where E(Y ) = � = g−1(�TD) and
D = (XT ,ZT )T = {XT , ℎ∗(T)T }T , one can define the density of Y given X and T as f�,�(Y |X,T), substituting ! = �TD into
equation (1). Here � = (�T , T )T is the regression parameter of interest, where �(q+1)×1 and p×1, correspond to X and ℎ∗(T)
respectively. In this work, we focus on the canonical link g but note that any link function satisfying the regularity conditions in
Section 3 can be accommodated by our method.
For the ith subject, we denote Ti as the vector of the transformed censored covariates, T−ji as the vector where the jth element

is removed from Ti, and T−(j,k)i as the vector where the jth and kth elements are removed from Ti, j < k , and so on for higher
dimensions. Thus, the likelihood for the observed data (Yi,Xi,Vi,�i) can be written as

Li(�, �; Yi,Xi,Vi,�i) = f�,�(Yi,Xi,Vi,�i) ∝ f (Yi|Vi,�i,Xi)f (Vi,�i|Xi)

={f�,�(Yi|Ti,Xi)fT(Ti|Xi)}
∏p

j=1 Δji (2)

×
p
∏

j=1

{

∞

∫
Cj

f�,�(Yi|tj ,T−ji,Xi)fT(t|Xi, t−j = T−ji)dtj
}(1−Δji)

∏

l≠j Δli

×
p
∏

j=1

p
∏

k>j

{

∞

∫
Cj

∞

∫
Ck

f�,�(Yi|tk, tj ,T−(j,k)i,Xi)fT(t|Xi, t−(j,k) = T−(j,k)i)dtkdtj
}(1−Δji)(1−Δki)

∏

l∉{j,k} Δli

×⋯ ×
{

∞

∫
C1

⋯

∞

∫
Cp

f�,�(Yi|t,Xi)fT(t|Xi)dt
}

∏p
j=1(1−Δji)

,

where fT(t|X) is an unknown conditional joint distribution of T given X. The likelihood in equation (2) is a product over 2p
possible realizations of �, which will quickly get very large as p increases, and involves parameters �, � and fT in a complicated
nonlinear form, which creates computational challenges. We notice that the parameters of interest � are only involved in the
first part of each term in the product f�,�. Since there is no data to inform about the tail of the distribution fT(t|X), a flexible
multivariate model for T with minimal assumptions on the tails is desirable.

2.2 Semiparametric Accelerated Failure Time Model
We further assume a multivariate semiparametric AFT model for T = (T1,… , Tp)T ,

Tj = ℎ−1j (Zj) = �Tj Xj + �j , j = 1,… , p, (3)

where Xj is a subset of the fully observed covariates X, �j is the corresponding coefficient in the AFT model for Tj , j = 1, ..., p,
and � = (�1,… , �p)T follows an unknown joint distribution �, which is independent of X. For simplicity, we assume a pre-
specified monotone decreasing function ℎj , such as ℎj(u) = −u and ℎj(u) = exp(−u), so that the linear relationship between
Tj and Xj is valid. For brevity of notation, we set Xj = X, j = 1,… , p and � = [�1,… , �p]. We chose to use this model
specification for a couple reasons. First AFT model is widely used for modeling censored variables, without assumptions about
proportional hazards and allows a direct linear relationship with other covariates. Existing semiparametric estimators of AFT
model without assumptions about the error distribution also makes this model robust. Second, we allow fully observed variables
X to contribute to the modeling of T, which is desirable in practice. For example, in the LIFECODES data, we expect some
baseline characteristics, such as maternal age, race and BMI, to be related to some urinary metal concentrations. Third, this
model allows us to introduce correlation between covariates in Z, by sharing X and allowing correlation in the error distribution
�. We believe through jointly estimating these AFT models, we use information more efficiently especially when some of the
covariates are highly correlated. In a scenario where one of the covariates suffers from high proportions of values below LOD,
this model allows better estimate when there is another covariate in either Z or X that is highly correlated with it, comparing to
when modeled individually with conventional approaches.
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Under this model specification, the log-likelihood for (Yi,Xi,Vi,�i) can be further expressed as

logLi(�, �,�, �) =
p
∏

j=1
Δji{ci(�, �) + log f�,�(Yi|Ti,Xi)} (4)

+
p
∑

j=1
(1 − Δji)(

∏

l≠j
Δli) log

{

�j

∫
Cj−�Tj Xi

f�,�(Yi|sj + �Tj Xi,T−ji,Xi)�(dsj , dsl = Tli − �
T
l Xi,∀l ≠ j)

}

+
p
∑

j=1

p
∑

k>j
(1 − Δji)(1 − Δki)(

∏

l∉{j,k}
Δli) log

{

�j

∫
Cj−�Tj Xi

�k

∫
Ck−�Tk Xi

f�,�(Yi|sj + �Tj Xi, sk + �
T
kXi,T−(j,k)i,X)�(dsj , dsk, dsl = Tli − �

T
l Xi,∀l ≠ {j, k}

}

+⋯

+ {
p
∏

j=1
(1 − Δji)} log

{

�1

∫
C1−�T1 Xi

⋯

�p

∫
Cp−�Tp Xi

f�,�(Yi|s1 + �T1 Xi,⋯ , sp + �Tp Xi,Xi)�(ds1,… , dsp)
}

,

where ci(�, �) only involves (�, �) and is constant in �, and �j is a truncation value for the jtℎ residual as defined in Condition
C5 in Section 3, j = 1, ..., p. In practice, all residuals are finite with bounded �Tj X. While in theory �j should be deterministic,
we find that taking �j to be an arbitrary value larger than the empirical residuals for each term performs well in the simulations
in Section 4 and the data analysis in Section 5.

2.3 Two-Stage Pseudo-Likelihood Estimation
The full log-likelihood in equation (4) involves complicated integration over 2p possible realizations of �. We recall that the
parameter of interest � is only involved in f�,�, the first terms of each summation in equation (4). We can thus treat (�,�, �) as
nuisance parameters, and estimate � and (�,�, �) separately. To reduce complexity, we propose a two-stage procedure by first
estimating the nuisance parameters (�,�, �), and then estimating � from the pseudo-likelihood with (�,�, �) replaced by their
estimates from the previous stage. The details of the procedure are as follows.
In Stage 1, the nuisance parameters (�,�, �) are estimated, with various approaches possible. The dispersion parameter �

in the generalized linear model may be estimated using the complete cases only with any valid method of estimation (�̂). The
regression parameter � in the AFT models can be estimated individually either by rank-based methods23–25 or by least-squares
approaches,26,27 with R packages rankreg and aftgee respectively (�̂). The joint distribution of the AFTmodel residuals, �, may
be estimated by applying a nonparametric multivariate Kaplan-Meier (K-M) estimator to the estimated residuals �̂ = T− �̂TX,
as introduced in Prentice and Zhao28 (�̂�̂). This nonparametric estimate is based on decomposing a higher dimensional joint
survivor function into lower dimensional survivor functions and a cross ratio. For example, when p = 2, the bivariate survivor
function S(�1, �2) can be expressed as

S(�1, �2) = S(�1, 0)S(0, �2)
�1
∏

0

�2
∏

0
S(s1, s2)S(s−1 , s

−
2 )∕{S(s

−
1 , s2)S(s1, s

−
2 )}.

We plug in K-M estimators for S(�1, 0) and S(0, �2) and empirical estimates for the cross ratio, and calculate �̂(�1, �2)=1-
Ŝ(�1, 0)-Ŝ(0, �2)+Ŝ(�1, �2). Note that this estimator simplifies to the K-M estimator with p = 1 and the Dabrowska estimator
with p = 2.29,30
In Stage 2, we estimate � from the log-likelihood with (�̂, �̂, �̂�̂) plugged in. This gives the log-pseudo-likelihood of the

observed data {Yi,Xi,Vi,�i}ni=1, defined by

logPL(�) =
n
∑

i=1
logLi(�, �̂, �̂, �̂�̂), (5)

where logLi(⋅) is defined in equation (4). The maximum pseudo-likelihood estimator �̂ is obtained by solving ) logPL(�)∕)� =
0 via the Newton-Raphson algorithm where we set the initial value of � from the complete-case analysis.
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2.4 Consideration with High Dimensional Data
Theoretically, the proposed method works for an arbitrary p-dimensions of covariates subject to LOD. However, in practice,
the computational burden may be prohibitive as p increases. Specifically, there are two major hurdles: the estimation of the p-
dimensional joint distribution of AFT model error terms (�) and the optimization of logPL(�) which contains 2p − 1 integrals.
Computational time can be shown to be of order np. Below we suggest some approaches to simplify the computation.
First, we carefully pre-select the covariates to be included in Z to reduce p. In practice, there may be a large number of

covariates subject to LOD at different levels, as in the LIFECODES data. Although it is desirable to process all these variables
with our proposed algorithm, it is most important to include covariates with 5-70% measurements below LOD in Z when
computational power is limited. For covariates with less than 5% measurements below LOD, a substitution method with an
appropriate replacement value is likely to introduce limited bias. For covariates with more than 70% measurements below LOD,
we recommend modeling them as dichotomized variables. Although this will lead to changes in the interpretation of regression
parameters, it is more reasonable than assuming an overall linear relationship when most of the values are unobserved.
In a lower dimensional setting, calculating the nonparametric multivariate K-M estimation of the joint distribution � is fast but

the computational time increases rapidly as p increases. To reduce computational burden, we propose a naive estimator of � by
making an independence assumption where �̂(�1, ..., �p) =

∏p
j=1 �̂j(�j), and �̂j(�j) is an estimate of �j distribution such as a K-M

estimate. This marginal approximation approach may result in a biased estimate of � but in practice, with moderate correlation
between �j’s, the computational time is much shorter while the bias is reasonably small, as suggested by simulation studies in
Section 4. To illustrate the gains in computing speed, we present an example with p = 3 and show the computational time using
different estimators of � in Figure 1(a). We highlight that calculating the trivariate K-M estimator for � takes 30 minutes with
n = 400 while calculating the marginal approximation takes 1 minute. The difference in computational time can be much more
significant with larger p. Thus, the marginal approximation approach may be preferred in situations where the multivariate K-M
estimator is computationally infeasible.
Another computational challenge is in maximizing logPL(�) over � because of the 2p−1multiple integrals in the expression.

Due to using nonparametric estimates of �, these integrals are calculated empirically rather than analytically, at each iteration of
the Newton-Raphson procedure to estimate �. We noticed that the computational time increase dramatically with sample size n.
In the example above with p = 3, the required time to estimate � is less than 1 minute with n = 100 but increases to 30 minutes
with n = 400, regardless of the estimator of � (Figure 1(b)). The computing time may be acceptable for obtaining point estimates
of the coefficients but may be impractical for bootstrap variance estimation based on a large number of resampled datasets from
the original data. Thus, we suggest using a reduced sample size when performing the bootstrap variance estimation as described
in Section 3. The variance estimator can be adjusted by the ratio of sample sizes in the original data and the bootstrap sample.
Asymptotically, this approach yields an unbiased variance estimator and achieves substantial reductions in computing time.
We further propose to reduce computational time via the Monte Carlo (MC) integration when evaluating the 2p − 1 multiple

integrals. The MC integration is a numerical integration procedure that approximates a definite integral by evaluating the inte-
grand at a set of points that are selected randomly. Since we are assuming that the components of � are independent, the MC
integration may be performed by sampling uniformly over the possible values of �. For the simulation examples presented here,
we randomly selected 100,000 points in � whenever there were over 1,000,000 possible values of � (the integrand was evalu-
ating at all possible values of � when there were less than 1,000,000 possible values). In the previous example with p = 3 and
n = 400, by applying the MC integration to the estimation, the computational time to estimate � reduces significantly from 30
minutes to 20 seconds. Note that the MC integration was a multi-threaded process (2 cores were available). These simulations
were performed using R 3.6.1 on a 2.9 GHz PC with 2 cores and 16 GB of RAM. With our experience, computational time is
reasonable when we apply the marginal approximation approach with the MC integration for the estimation, and using small
sample size for the bootstrap variance estimation.

3 ASYMPTOTIC PROPERTIES

In this section, we establish the consistency and asymptotic normality of the pseudo-likelihood estimator �̂ which is the solution
to ) logPL(�)∕)� = 0. The asymptotic properties for the univariate case were shown in Kong and Nan.13 In our work, the
extension to arbitrary p-dimensional censored covariates involves nontrivial modifications of earlier proofs. This occurs, in part,
because of the complicated nature of PL(�) and in part, because of the nonparametric estimation of the joint distribution of the
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errors in the AFT models. The derivatives of logPL(�) cannot be written analytically with respect to � and care is needed to
properly account for “noise" introduced by the estimation of �.
Let  and  be the sample spaces of the response variable Y and the covariate X, respectively. Denote (Θ, , ) as the

parameter spaces of (�, �, �). We redefine the design matrix D = {X1, ..., Xq , ℎ1(T1), ... , ℎp(Tp)}T in the regression model
as D(X,T), and let ℎ̇j(tj) = dℎj(tj)∕dt and ℎ̈j(tj) = d2ℎj(tj)∕dt2j , j = 1, ..., p. Denote the marginal distribution of �j for the
jtℎ AFT model associated with �j0 as �j,�j0(sj), and its first and second derivatives as �̇j(sj) = d�j,�j0(sj)∕dsj and �̈j(sj) =
d2�j,�j0(sj)∕ds

2
j , j = 1, ..., p. Let the derivative of the log-likelihood with respect to � of n observations {Yi,Xi,Vi,�i}

n
i=1 be

Ψn(�, �,�, �) =
1
n

n
∑

i=1
 (Yi,Xi,Vi,�i; �, �,�, �), (6)

where (⋅) is a randommap for a single observation and is the derivative of (4) with respect to �. Replacing (�,�, �)with (�̂, �̂, �̂)
in (6), we have the pseudo-likelihood estimating equation Ψn(�, �̂, �̂, �̂) = 0 where the solution is our proposed estimator �̂.
Denote Ψ(�, �,�, �) as a deterministic function, defined as

Ψ(�, �,�, �) = E{ (Y ,X,V,�; �, �,�, �)}.

In addition, for a function f of a random variableW which follows a distribution P , we define

Pf = ∫ f (w)dP (w), ℙnf = n−1
n
∑

i=1
f (Wi), Gnf = n−1∕2(ℙn − P )f,

and p∗ as an outer probability. The regularity conditions are listed below:

C1. X and Z are uniformly bounded;

C2. Ψ(�, �0,�0, �0) has a unique solution in �, �0;

C3. For any constantU <∞, suptj∈[Cj ,U ] |ℎj(tj)| ≤ c0 <∞, suptj∈[Cj ,U ] |ℎ̇j(tj)| ≤ c1 <∞, and suptj∈[Cj ,U ] |ℎ̈j(tj)| ≤ c2 <∞,
where c0, c1 and c2 are constants, j = 1,… , p;

C4. (i) �̇j(sj) and �̈j(sj) are bounded, and ∫ (d log �̇j(sj)∕dsj)2�̇j(sj)dsj < ∞, j = 1,… , p; (ii) �0,�0 is continuously
differentiable with bounded partial derivatives up to pth order;

C5. If �̂ is a n1∕2−consistent estimator of �0, ||�̂�̂(s1,⋯ , sp) − �0(s1,⋯ , sp)|| → 0 in outer probability p∗ and

sup
sj∈[Cj−c3j ,�j ],j=1,...,p

|�̂�̂(s1,⋯ , sp) − �0(s1,⋯ , sp)| = Op∗(n−1∕2),

where sup�∈,x∈ |�Tj x| = c3j <∞, j = 1,… , p, and there exists a function m1(�0, �0,
X,V,�) such that

√

n(�̂�̂ − �0) = Gnm1(�0, �0,X,V,�) + op(1);

C6. a(�) is a monotone function with bounded derivatives ȧ(⋅) and ä(⋅), satisfying that |1∕a(�)| ≤ c4 <∞ for a constant c4;

C7. ḃ(⋅) is a bounded monotone function and b̈(⋅) is a bounded Lipschitz function;

C8. Let = {y ∈  , � ∈ Θ, |1∕a(�)| < c4, x ∈  , tj ∈ [Cj , U ], j = 1, ..., p}. There exist constants kj <∞, j = 1, ..., 5, such
that (i) sup |f�,�(y|t, x)[y − ḃ{�TD(x,t)}]| ≤ k1; (ii) sup |)f�,�(y|t, x)∕)�| ≤ k2; (iii) sup |

{

)f�,�(y|t, x)∕)�
}

[y −
ḃ{�TD(x,t)}]| ≤ k3; (iv) sup | )

(

f�,�(y|t, x)[y − ḃ{�TD(x,t)}]
)

∕)t| ≤ k4; (v) sup |)
(

f�,�(y|t, x)[y − ḃ{�TD(x,t)}]
)

∕
)�| ≤ k5;

C9. (i) There exists constant truncation values �j <∞ such that P (Vj −�Tj X > �j , j = 1,… , p|X = x) ≥ c5 > 0 for all x ∈ 
and � = [�1,… , �p] ∈ ; (ii) There exist constants aj > 0 (for j = 1, ..., p), ajk > 0 (for j > k = 1, ..., p), ..., a1⋯p > 0
and c6 > 0 such that �j

∫
Cj−�Tj X

f�,�(Y |sj + �Tj X,T−j ,X)�(dsj , dsl = Tl − �
T
l X,∀l ≠ j) ≥ aj ,
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�j

∫
Cj−�Tj X

�k

∫
Ck−�Tk X

f�,�(Y |sj + �Tj X, sk + �
T
kX,T−(j,k),X)

× �(dsj , dsk, dsl = Tl − �Tl X,∀l ≠ {j, k}) ≥ ajk,

⋮

�1

∫
C1−�T1 X

⋯

�p

∫
Cp−�Tp X

f�,�(Y |sj + �Tj X, j = 1, ..., p,X)�(ds1, ..., dsp) ≥ a1⋯p

with probability 1 for any � ∈ Θ, and |� − �0| + |� − �0| + ||� − �0|| < c6.

Condition C1 asserts the boundedness of covariates, which is often met in practice. Condition C2 is an identifiability condi-
tion, which ensures the consistency of the proposed estimator �̂. We show that Ψ̇(�0, �0,�0, �0) = )Ψ(�, �0,�0, �0)∕)�|�=�0 is
negative definite under Condition C5 in the proof of Theorem 1, which implies that Ψ̇(�, �0,�0, �0) is a continuous matrix of
� and also negative definite in a neighborhood of �0. This guarantees that �0 is the unique solution of Ψ(�, �0,�0, �0) = 0 in a
neighborhood of �0. Since the initial value in the algorithm is obtained from the complete-case analysis, which is known to be
n1∕2-consistent, the solution from the two-stage method should also be in the same neighborhood and consistent. Condition C3
holds for many commonly used transformation functions. Conditions C4 is the usual assumption for multivariate AFT models.
Condition C5 asserts that the estimator �̂�̂ is n1∕2−consistent and has a limiting normal distribution. The proofs are tedious for
arbitrary p > 1 with generic �̂ and �̂�̂ . We state high level conditions which can be checked on a case by case basis. We note
that condition C6 has been proved for p = 1 and should also hold for p > 1 with n1∕2−consistent estimators for �0 and �0. Con-
ditions C6-C8 assert the boundedness of various functions in the outcome model, which automatically hold for commonly used
generalized linear models. Condition C9 is for technical convenience, which can be obtained by truncating the response variable
Y such that |Y | ≤ M < ∞ for a large constantM , and then truncating the residuals in the AFT models with some constants
�′j < �j , j = 1, ..., p. In the simulation section, satisfactory results are achieved without implementing such truncation steps.
Under the above regularity conditions, we establish the following theorem.

Theorem 1. Suppose models (1) and (3) hold. Under the regularity conditions, the two-stage pseudo-likelihood estimator �̂,
satisfying Ψ(�̂, �̂, �̂, �̂�̂) = 0, converges in outer probability p∗ to the true value, �0, and

√

n(�̂ − �0) converges weakly to a
Gaussian distribution with mean zero and covariance matrix Ω, given in the supplementary material.

To prove Theorem 1, we use the well-established Z-estimation theory in Nan and Wellner31 and generalize the proof from
p = 113 to an arbitrary p, with details in the supplementary material. Under the regularity conditions, it can be shown that
Ψ(�, �̂, �̂, �̂�̂) converges uniformly toΨ(�, �0,�0, �0), where (�0,�0, �0) are the true values of (�,�, �), as n→∞. Thus, if �0 is
the unique solution toΨn(�, �0,�0, �0) inΘ, then �̂ is consistent for �0. Via Lemma 2 in the supplementary material, we have the
asymptotic linear representation for n1∕2(�̂ − �0) which provides the asymptotic normality. The variance matrix Ω is extremely
complicated and cannot be derived analytically. We employ bootstrapping for variance estimation and related inferences, which
performs well in Section 4.

4 SIMULATION STUDIES

Extensive simulation studies were conducted to evaluate the finite-sample performance of the proposedmethods.We first present
simulations with p=2 and 10, followed by a simulation study motivated by the LIFECODES study. We focus on continuous
outcomes with linear outcome models here due to the length limitation of this paper. Simulation results with binary outcomes
were similar and can be found in the supplementary material. For simplicity, we restricted to a uniform monotone decreasing
transformation function ℎj(⋅) = ℎ(⋅) for j = 1, ..., p.
We started with p = q = 2. The two fully observed covariates (X1, X2)T were generated from Ber(0.5) and N(1, 1),

respectively. The two covariates subject to LOD, Z = (Z1, Z2)T , were generated from Z1 = ℎ(T1) and Z2 = ℎ(T2), where

Tj = ℎ−1(Zj) = �Tj X + �j , for j = 1, 2,
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and �1 = (−0.25,−0.5,−0.25)T , �2 = (−0.25,−0.25,−0.5)T and (�1, �2)T followed a bivariate distribution �. The outcome Y
was generated by Y = �0 + �1X1 + �2X2 + 1Z1 + 2Z2 + �, where �0 = �1 = �2 = 1 = 2 = 1 and � ∼ N(0, 1). To evaluate
the proposed method under different scenarios, we considered two transformation functions ℎ(⋅) and two joint distributions
�: ℎ(t) = −t (i.e. Tj = −Zj) or ℎ(t) = exp(−t) (i.e. Tj = − log(Zj)), and � = MVN{(0, 0)T ,Σ1} (multivariate normal) or
� = 0.5MVN{(0, 0)T ,Σ1} + 0.5MVN{(0, 0)T ,Σ2} (a mixture of multivariate normals), where

Σ1 = 1∕42
(

1 �
� 1

)

and Σ2 = 1∕82
(

1 �
� 1

)

and � = 0.5. Furthermore, LODj was chosen to have 25% or 50% marginal censoring rate for j = 1, 2 with overall censoring
rate around 40% or 70%, respectively. We generated samples with size 200 or 400, and repeated 1000 times.
For each simulated dataset, we implemented eight methods: analysis using the full data, complete-case analysis, substitution

methods with three replacement values (LOD, LOD/
√

2, LOD/2) and three versions of our proposed two-stage approach. We
used either rank-based method with Gehan weight24,25 or by least-squares approaches or least-square method26 to fit the semi-
parametric AFT models, and then estimated � with bivariate K-M estimator. We also employed the two-stage approach with
marginal approximation by naively estimating � as a product of marginal distributions. The estimates of � using either rank-
based or least square based methods were similar. Thus, we only presented the results for the two-stage approach with marginal
approximation using rank-based method for � in this paper.
For eachmethod, we computed the average bias, empirical standard error, mean of estimated standard deviations, and coverage

rate of 95% confidence intervals (CI) for the regression parameter of interest, � = (�T , T )T . For the proposed methods, we
performed 200 bootstrap replicates with sample size equal to the original sample size to estimate the standard deviation. For the
full data analysis, the complete-case approach and three substitution methods, the estimated standard deviations were obtained
from the regression model. The simulation results for the scenario where Tj = − log(Zj) and � =MVN{(0, 0)T ,Σ1} were given
in Table 1. Results for the other scenarios are similar (Supplementary Tables S1-S3).
Substitutionmethods tended to yield biased estimates for regression parameters of both partially observedZ and fully observed

X, and biases increased as censoring rates increased. Complete-case analysis and two-stage approaches with bivariate K-M
estimator both gave small biases, while the two-stage approach with marginal approximation yielded slightly larger biases as
expected. In addition, the empirical standard errors with the proposed approaches were smaller than those for complete-case
approach and only slightly larger than using the full dataset, which implied efficient use of data. Mean estimated standard
deviations were close to the empirical standard errors with all approaches. The coverage rates could be very different from the
nominal level with substitution methods, while at the nominal level for all three versions of our proposed approach. We explored
the proposedmethod for smaller sample sizes (n=50 and 100) and found similar patterns as with n=200 and 400when comparing
across all the methods. All three versions of our proposed method had some slightly larger biases with smaller sample size but
biases decreased as sample size increased, and coverage probabilities always remained close to 95% (Supplementary Tables S4).
We further evaluated the influence of using the marginal approximation compared to using bivariate K-M estimator for � under

different strengths of correlation. We fixed Tj = − log(Zj), � =MVN{(0, 0)T ,Σ1}, marginal censoring rate at 50%, sample size
400, while varying � as 0.25, 0.5 or 0.75, where the corresponding correlation between Z1 and Z2 was 0.66, 0.73 or 0.80. The
results were given in Table 2. The average bias using the two-stage marginal approach tended to be larger when � increased
but still performed reasonably well even with � = 0.75 and these biases were much lower than using substitution methods. The
coverage rates were close but slightly below the nominal level as � increased. This implied that the independence assumption
may affect the results when � was large and the censoring rates were high, but all three versions of our proposed approach still
performed much better than substitution methods.
When the dimension of Z is greater than 3, the computational burden becomes more severe. As discussed in Section 2.4,

we recommend using the two-stage approach with marginal approximation and MC integration, and a smaller sample size in
bootstrap variance estimation. Here, we presented a simulation with p = 10 to show the performance. Considering two fully
observed covariates X = (1, X1, X2)T where X1 ∼ Ber(0.5) and X2 ∼ N(1, 1), we generated ten left-censored variables
Z = (Z1, ..., Z10)T with Zj = ℎ(Tj) = −Tj for j = 1, ..., 10, by

T = �TX + �,
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where T = (T1, ..., T10)T ,

� = [�1,… , �10] =

⎡

⎢

⎢

⎢

⎣

−0.2 −0.35 −0.3 −0.25 −0.4 −0.25 −0.3 −0.25 −0.35 −0.25
−0.5 −0.25 −0.5 −0.25 −0.5 −0.25 −0.25 −0.25 −0.25 −0.25
−0.25 −0.5 −0.25 −0.25 −0.25 −0.5 −0.25 −0.5 −0.5 −0.25

⎤

⎥

⎥

⎥

⎦

,

and (�1,… , �10)T ∼ � =MVN{(0, ..., 0)T ,Σ} with

Σ = 1∕22
⎛

⎜

⎜

⎜

⎝

R1 0 0
0 R2 0
0 0 R3

⎞

⎟

⎟

⎟

⎠

.

Here R1 and R3 were 3 × 3 correlation matrices with all off-diagonal entries as 0.25 and 0.75 respectively, and R2 was a 4 × 4
correlation matrix with all off-diagonal entries as 0.5. This mimicked a practical situation that there was natural grouping of
exposures, where exposures were correlated within groups but independent between groups. We let Y = �TX+ TZ+ �, where
all elements in � and  were set as 1 and � ∼ N(0, 1). The marginal censoring rate was set as 20% for all Zj with an overall
censoring rate around 64%. We generated data with sample size 400 and repeated the simulation 1000 times.
For each simulated dataset, we implemented six methods: analysis with the full data, complete-case approach, substitution

methods with three replacement values (LOD, LOD/
√

2, LOD/2), and our proposed two-stage approach with marginal approx-
imation. For our proposed two-stage approach with marginal approximation, the MC integration was applied to the estimation,
and the standard deviations were estimated using 200 bootstrap replicates each with sample size 100, and then adjusted by a fac-
tor of 2. The results are shown in Table 3. Compared to substitution approaches, the two-stage approach performed well across
regression coefficients for each covariate but had some remaining bias for the intercept, which was likely due to the indepen-
dence assumption. Further increasing the sample size helped to reduce this bias (results not shown here). The two-stage marginal
method was also more efficient than the complete-cases analysis with smaller standard errors. The adjusted bootstrap standard
deviations were slightly larger than the empirical standard errors. One way to improve the estimate of standard deviation was
to use original sample size 400 in the bootstrapping. The computing time for each bootstrap replicate with sample size 100 and
400 were 15 and 90 seconds, respectively. Considering the massive reduction in computational time with sample size 100, the
variance estimation results were acceptable, with reasonable coverage probabilities for 95% CI. We also considered a scenario
for Zj = ℎ(Tj) = exp(−Tj), j = 1, ..., 10 and found the results to be similar (Supplementary Table S5).
Another solution we suggested for reducing the computational time under high dimensional covariates subject to LOD is to

carefully choose the covariates to be included in Z, while treating the other covariates subject to LOD either as binary or using
substitution values. We conducted a simulation based on the LIFECODES data to investigate the performance of the proposed
method with this pre-selection. In this simulation, we bootstrapped the fully observed demographic variables: baseline maternal
age, race, education, insurance, pre-pregnancy BMI, and gestational age and specific gravity at the third trimester visit, with
sample size n=252, and generated the 17 metal values through AFT models within each bootstrapped sample plus an error
term from a multivariate normal distribution with variance range from 0.05 to 1.00), and correlation range from -0.07 to 0.70,
as estimated from the LIFECODES dataset. The outcome Y was simulated with a linear regression on both the demographic
variables and the metals. The regression coefficients for both the AFT models and the outcomes were from data analysis results
in Section 5. As mentioned before, of the 17 metals, only 3 were fully observed, and 3 had less than 5% of values below LOD,
which were substituted by LOD/

√

2. Four other metals had more than 70% of values below LOD, and they were dichotomized to
indicator variables of whether above LOD or not (0: below LOD; 1: above LOD). The LOD value for each metal was set to have
the similar percentage of values below LOD for the metal in the real data, by generating the corresponding metals with a massive
sample size and calculating the percentiles. We applied five methods, including complete-case approach, substitution methods
with three replacement values (LOD, LOD/

√

2, LOD/2), and our proposed two-stage approach with marginal approximation,
to analyze 1000 simulated data sets, and results were given in Supplementary Table S6. We noticed the results were consistent
with the previous simulations, under this more practical simulation setting. Our proposed method was subject to limited biases
for all the metals, no matter if they were included in Z or not, and the efficiency was improved as compared to the complete-case
analysis. In this setting, the substitution methods performed reasonable for most covariates, but the performance was less stable
than our proposed method, with some large biases and low coverage probabilities.
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5 DATA ANALYSIS

We illustrate our proposed method with data from the LIFECODES birth cohort1,3,32 of women delivered at the Brigham and
Women’sHospital in Boston,MA, during 2006-2008.We focus on a subset of 252womenwho delivered full term and had urinary
trace metal measurements at their third trimester, to explore the linear relationship between 17 urinary trace metals (arsenic
(As), barium (Ba), beryllium (Be), cadmium (Cd), copper (Cu), chromium (Cr), mercury (Hg), manganese (Mn), molybdenum
(Mo), nickel (Ni), lead (Pb), selenium (Se), tin (Sn), thallium (Tl), uranium (U), tungsten (W), and zinc (Zn)) and a urinary
oxidative stress biomarker, 8-isoprostane. Among these metals, only 3 (As, Mo, Zn) were detected in all samples, 3 (Se, Ba, Mn)
had less than 5% measurements below LOD, 7 (Sn, Hg, Cu, Ni, Tl, Pb, Cd) had 5-70% values below LOD, and 4 (W, Cr, U, Be)
had more than 70% values below LOD (Supplementary Table S8). For the four metals with heavy censoring, we dichotomized
them into binary variables: 1 if observed; 0 otherwise. Thus, the overall censoring rate of all metals was 65.3%. We further
log transformed the concentration of the 13 continuous metals and 8-isoprostane for normality. Pairwise correlations between
the 13 log-transformed continuous metal concentrations were between -0.13 and 0.79 based on complete data (Supplementary
Figure S1), and correlation between the four binary-type metals were between 0.10 and 0.41. In a previous analysis, Kim et
al.32 found five metals (Se, Mn, Cu, Tl, Be) to be associated with 8-isoprostane while adjusting for demographic covariates and
replacing values below LOD with LOD/

√

2 in the 13 continuous metals concentrations and 8-isoprostane, with a nested case-
control cohort of 92 women who delivered preterm and 269 women who delivered full term. Here, we present a re-analysis of
this dataset but restricting to women delivered full term with detected value in 8-isoprostane and fully observed demographics
variables, while accounting for the LOD issue in the metal measurements.
Here we considered the 7 metals with 5-70% values below LOD as Z (p = 7). We further replaced the values below LOD

in Se, Ba and Mn by their corresponding LOD/
√

2 and included them as fully observed variables X, together with the 3 fully
observed metals, 4 binary metals, and baseline demographic variables. Specifically, demographic variables included: baseline
maternal age, race, education, insurance, pre-pregnancy BMI, and gestational age and specific gravity at the third trimester visit
(Supplementary Table S9).
Results with complete-case analysis, substitution method with LOD/

√

2 for all continuous metals, and our proposed two-
stage approach with marginal approximation, are summarized in Table 4. We observe that 8-isoprostane increases as Mn and
Cu increase, and as Tl decreases with the substitution method (�̂ : 0.121, 0.536, -0.180, respectively) and our proposed two-
stage approach performed similarly while Tl is marginally significant (�̂ : 0.116, 0.579, -0.110, respectively). This generally
agrees with Kim et al..32 Pairwise correlations between the residual terms in the 7 AFT models were between -0.045 and 0.372
(Supplementary Figure S2) suggesting the two-stage marginal approximation approach is reasonable. Instead, the complete
case analysis identified Zn, Ba, Cu and Tl to be significantly associated with 8-isoprostane. Although complete-case analysis is
unbiased in theory, the results could be unreliable in practice due to small sample size (n=83 in this analysis). The estimated
standard deviations from the two-stage marginal approximation approach are much smaller than those from the complete-case
analysis which suggests efficiency gain. In this analysis, point estimates for metals with our proposed method are relatively
similar to those from the substitution method, which suggests the choice of LOD/

√

2 is not bad. However, in other applications,
it may not be the case and could be challenging to decide “the most appropriate” for the replacement value due to lack of
observations below LOD.
We did another analysis by further including Se, Ba and Mn in Z (p = 10), to understand if we gain additional information.

Results are similar to those in the previous analysis (Table 4): Mn, Cu, Tl are significantly associated with 8-isoprostane (�̂ :
0.118, 0.628, -0.144, respectively). This comparison shows that the substitution of the three metals (Se, Ba, Mn) has a minimal
impact on the results since only 10 women were affected.

6 DISCUSSION

We proposed a two-stage semiparametric approach to carefully address the issue of multiple covariates subject to LOD in a gen-
eralized linear outcome model. Substitution method, although convenient to use in practice, could result in large biases if the
value is not a good representation of the left-tail of the distribution. Our proposed method, instead, provides unbiased results by
estimating the joint distribution of the censored covariates semiparametrically. While our proposed approach is computationally
challenging when the number of covariates subject to LOD is large, we suggested several solutions which ease the computa-
tional burden for practical usage. In addition, we recommended using our proposed method to the covariates with censoring
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rates between 5-70%, while applying the substitution method to the covariates with very low censoring rates and dichotomize
covariates with heavy censoring rates. Although the magnitude and interpretation for the corresponding coefficients may be
biased, the directions of their effects keep the same. Our simulation studies with large p suggested reasonable computational
time and appropriate performance when applying these solutions.
Consistent estimation of the coefficients in the semiparametric AFT model can be obtained using either a rank-based or least-

square approach. The least-squares approach requires longer computing time. For example, when p = 5, q = 2 and n = 400,
the rank-based method requires 3 seconds in the estimation of AFT parameters but the least square approach needs 1 minute
(Supplementary Table S10). Thus, we recommend conducting the rank-based method if p is considerably large and the AFT
model involves many fully observed covariates. Furthermore, for the estimation of the joint distribution of residuals in the AFT
models, the marginal approach which assumes independence is convenient to compute for high dimensional p but may provide
biased results in the intercept term when strong correlations between covariates exist. A possible way to improve the marginal
approach is to consider the pairwise correlation in the joint distribution which allows some dependence and use the composite
pairwise likelihood approach for the joint distribution.
A number of methodologic extensions are of interest. Our approach is readily applicable when there are higher orders of

covariates in the outcome model given the AFT models hold. Such approach can also be applied to explore the interaction
between these covariates. In addition, variable selection for high-dimensional covariates subject to LOD is important in model
building and is under investigation. The use of non-generalized linear models, such as survival regression and quantile regres-
sion, would be practically useful. Adaptation of the proposed two-stage methods to such settings is a topic of future research.
Furthermore, the proposed methods are not directly applicable to case-control and case-cohort designs, where covariates are
sampled conditionally on outcome status. Such designs are commonly employed when covariates are expensive to measure,
which is important for further exploration. Finally, the topic of appropriately handling LOD is of particular interest in environ-
mental mixture analysis, due to the potentially high correlation between components in the mixture. Our approach makes full
use of the dependency between these environmental exposures to improve accuracy and efficiency, while do not make strict
assumptions about their joint distribution. Although motivated by environmental mixture analysis, the proposed methods are
generally applicable to any biomarker studies that may have multiple correlated biomarkers subject to LOD.

SUPPLEMENTARY MATERIAL

Supplementary referenced in Sections 3, 4 and 5, is available online at Statistics in Medicine. R code for the proposed methods
with a sample example can be found at https://github.com/lingwanchen/Semi-mLOD.
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TABLE 4 Results of the estimated coefficients and 95% confidence intervals for the 17 metals in 8-isoprostane analysis. Imple-
mented methods including complete-case approach, substitution method with LOD/

√

2 as the replacement value and two-stage
approach with marginal approximation for p = 7 or 10 (2-stage(marg)-p7, 2-stage(marg)-p10). Estimated standard deviations
were from bootstrap for the proposed method and from regression for complete-case approach and substitution method. ∗Result
for this metal is significant.

Estimate (95% Confidence Interval)
Metal <LOD% complete cases (n=92) LOD/

√

2 2-stage(marg)-p7 2-stage(marg)-p10
As 0 -0.081(-0.228,0.067) -0.039(-0.123,0.045) -0.003(-0.109,0.103) 0.002(-0.101,0.106)
Mo 0 -0.110(-0.406,0.185) 0.046(-0.108,0.199) 0.058(-0.126,0.242) 0.043(-0.117,0.203)
Zn 0 -0.296(-0.576,-0.015)∗ -0.052(-0.193,0.088) 0.005(-0.154,0.164) 0.033(-0.110,0.177)
Se 0.4 0.266(-0.226,0.757) 0.113(-0.169,0.396) 0.305(-0.026,0.635) 0.173(-0.087,0.434)
Ba 1.6 -0.291(-0.521,-0.061)∗ -0.017(-0.122,0.089) 0.039(-0.066,0.143) 0.035(-0.129,0.199)
Mn 2.0 0.036(-0.124,0.196) 0.121(0.021,0.221)∗ 0.116(0.003,0.229)∗ 0.118(0.006,0.231)∗

Sn 5.6 0.074(-0.074,0.222) 0.050(-0.030,0.130) 0.004(-0.090,0.098) 0.007(-0.084,0.099)
Cu 6.7 0.544(0.038,1.049)∗ 0.536(0.279,0.794)∗ 0.579(0.337,0.821)∗ 0.628(0.314,0.941)∗

Hg 8.3 -0.125(-0.306,0.057) 0.073(-0.015,0.160) 0.076(-0.046,0.198) 0.106(-0.021,0.234)
Ni 13.9 0.364(-0.030,0.759) -0.041(-0.197,0.116) 0.026(-0.162,0.214) 0.056(-0.153,0.266)
Tl 15.5 -0.250(-0.541,0.040) -0.180(-0.273,-0.088)∗ -0.110(-0.230,0.011) -0.144(-0.275,-0.012)∗

Pb 25.8 0.274(0.011,0.537)∗ 0.028(-0.081,0.138) 0.052(-0.087,0.191) 0.040(-0.087,0.166)
Cd 58.3 0.131(-0.081,0.343) 0.014(-0.110,0.137) -0.029(-0.160,0.101) -0.034(-0.160,0.092)
W 79.4 -0.032(-0.347,0.282) -0.104(-0.310,0.102) -0.108(-0.376,0.160) -0.088(-0.356,0.179)
Cr 88.1 -0.201(-0.534,0.132) -0.135(-0.397,0.127) -0.041(-0.339,0.257) -0.140(-0.434,0.154)
U 89.3 0.143(-0.276,0.562) 0.171(-0.138,0.480) 0.128(-0.207,0.463) 0.153(-0.228,0.535)
Be 90.1 0.066(-0.359,0.490) -0.207(-0.510,0.096) -0.198(-0.579,0.183) -0.214(-0.540,0.112)
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FIGURE 1 (a) Computational time for estimating � using the trivariate K-M and the marginal approximation at various sample
sizes when p = 3. (b) Computational time for maximizing of logPL(�) using the trivariate K-M and the marginal approximation
at various sample sizes when p = 3.
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