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Novelty statement:  

What is known: Offspring exposed to GDM in-utero have greater insulin resistance than 

unexposed offspring, but mechanisms are not known. 

What this study found: In a cohort of racially and ethnically diverse children, children exposed 

to GDM in-utero have faster epigenetic aging, and faster epigenetic aging is associated with 

greater insulin resistance and secretion. 

Implications : Epigenetic modification, particularly pathways associated with epigenetic aging, 

may influence or be affected by offspring insulin metabolism. 
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STRUCTURED ABSTRACT  

AIMS  No reports examine the relationships between in-utero exposure to GDM, offspring 

epigenetic age acceleration (EAA), and offspring insulin sensitivity. 

METHODS  Using data from a cohort study, we examined associations between gestational 

diabetes mellitus (GDM) exposure in-utero and offspring EAA at approximately 10 years of age, 

using separateregression models adjusting for offspring chronologic age and sex. We also 

examined associations between EAA with updated homeostasis model assessment of insulin 

sensitivity and secretion (HOMA2-S and HOMA2-β) measured at approximately 10 and 16 years 

of age, using mixed linear regression models accounting for repeated measures after adjustment 

for offspring chronologic age and sex. 

RESULTS Compared to unexposed offspring (n=91), offspring exposed to GDM (n=88) had 

greater EAA or older extrinsic age compared to chronologic age (beta-coefficient 2.00, 95% 

confidence interval [0.71, 3.28], p=0.0025), but not greater intrinsic EAA (beta-coefficient -0.07, 

95% CI [-0.71, 0.57], p=0.93). Extrinsic EAA was associated with lower insulin sensitivity 

(beta-coefficient -0.018, 95% CI [-0.035, -0.002], p=0.03) and greater insulin secretion (beta-

coefficient 0.018, 95% CI [0.006, 0.03], p=0.003), and these associations persisted after further 

adjustment for measures of maternal and child adiposity. No associations were observed between 

intrinsic EAA and insulin sensitivity and secretion, before or after adjustment for measures of 

maternal and child adiposity. 
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CONCLUSIONS In this study, children exposed to GDM experience greater extrinsic EAA, 

which is associated with lower insulin sensitivity and greater insulin secretion. Further studies 

are needed to determine directionality of these associations. 

 

Key words: gestational diabetes; epigenetics; insulin resistance 

 

Previous studies have linked in-utero exposure to gestational diabetes mellitus (GDM) 

with altered offspring DNA methylation patterns in epigenome-wide association studies (EWAS) 

[1-4]. Different studies have identified different epigenomic regions and specific cytosine-

phosphate-guanine sites (CpGs), complicating interpretations of clinical significance. One 

potential framework for interpreting such differences is that of epigenetic aging. Epigenetic age 

acceleration (EAA) is the residual from a regression of DNA methylated age on chronologic age. 

A positive value of EAA indicates faster than expected epigenetic aging, whereas a negative 

value indicates slower than expected epigenetic aging. EAA may be estimated using any of 

several epigenetic clocks [5-7]. Although such clocks rely on different CpG sites, overlapping 

transcriptional pathways are targeted, potentially affecting shared cellular functions [8]. In one 

2021 report examining Chinese offspring aged approximately six years, exposure to GDM in-

utero was associated with faster EAA calculated from the Horvath (“intrinsic”) and Hannum 

(“extrinsic”) epigenetic clocks [9].   

The majority of epigenetic clocks were originally derived from EWAS primarily in adults 

and are believed to reflect aging across a range of tissues [6]. In adults, more rapid “ticking” on 

epigenetic clocks is associated with greater risk for metabolic syndrome [10] and diabetes [11], 

along with mortality and other chronic diseases typically observed in later life [11]. Thus, EAA 
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in adults is viewed as an adverse outcome that is either cause or consequence of poorer metabolic 

indices. In contrast, the implications of more rapid epigenetic aging in youth are not understood. 

In general, childhood is characterized by rapid turnover in aging markers and development as 

opposed to senescence. In one report of Australian youth (average age of 17 years) [12], greater 

EAA was associated with lower insulin sensitivity. Whether more rapid epigenetic aging is 

associated with indicators of insulin sensitivity or insulin secretion at even younger ages (late 

childhood as opposed to adolescence) is not known. 

The Exploring Perinatal Outcomes in Children (EPOCH) study is a longitudinal cohort 

study of youth in Colorado, enriched in offspring exposed to maternal GDM in-utero [13]. We 

have previously reported that such exposure to maternal GDM predicted greater offspring 

adiposity [14] as well as reduced insulin sensitivity [15]. In the present study, we examined 

whether GDM predicted EAA in late childhood (average age 10 years) and whether EAA, in 

turn, predicted glucose-insulin metabolism in late childhood as well as in later adolescence 

(average age 17 years). We hypothesized that exposure to GDM would be associated with more 

rapid EAA in offspring, before and after adjustment for chronologic age and sex. Based upon 

studies in adults, we hypothesized that greater EAA would be linked with lower insulin 

sensitivity in adolescent offspring, before and after adjustment for age and sex. We hypothesized 

that these associations would persist but be attenuated after adjustment for maternal and child 

adiposity measures. 

 

Methods  

Participants 
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The design, methods, and baseline characteristics of EPOCH participants have been previously 

described [16]. EPOCH is an observational historical prospective study that recruited healthy 6- 

to 13-yr old children who were offspring of singleton pregnancies, born at a single hospital in 

Denver between 1992 and 2002, whose biological mothers were members of Kaiser Permanente 

of Colorado (KPCO). The study population was sampled to reflect similar racial and ethnic 

distributions of Colorado. We enrolled children exposed to maternal diabetes in utero and a 

random sample of children not exposed to maternal diabetes. The first research visit (visit 1) 

occurred at a mean (sd) age among the offspring of 10.4 (1.5) years and the second visit occurred 

during the period 2010 to 2015 (mean follow-up 6.3 years), at which time the offspring had a 

mean (sd) age of 16.7 (1.2) years.  The present analysis focuses upon the 179 children who 

underwent EWAS at visit 1 as part of a prior discovery study of the examination of the impact of 

fetal nutrition upon offspring epigenetic signatures, for a total of 88 children exposed to GDM 

and 91 not exposed to GDM who were of similar age and sex. All participants provided informed 

consent. The study was approved by the Colorado Multiple Institutional Review Board. 

 

Epigenetic age 

The procedures assessing genome-wide DNA methylation in EPOCH have been 

previously described and were conducted using standard methods using the Illumina’s Infinium 

Human Methylation 450k BeadChip on bisulfite-treated samples [2]. We chose to examine two 

measures of EAA based upon the previous report by Shiau et al that found associations between 

in-utero exposure and offspring EAA [9], as well as other reports finding correlations between 

these measures and with glucose, insulin resistance, and diabetes in adults [5, 10]. These 

epigenetic age estimates were developed by regressing chronological age on individual CpG sites 
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using supervised machine learning algorithms to select the most informative set to predict 

chronological age [6, 7].  

Intrinsic EAA can be calculated as the residual from a multivariable regression of 

Horvath EAA and blood cell count estimates on chronological age, and thus is independent of 

age-related changes in blood cell composition [6, 17]. To account for cell composition variability 

we estimated the proportions of CD4 + T lymphocytes, CD8 + T lymphocytes, B lymphocytes, 

natural killer cells, monocytes, and granulocytes using the Houseman et al. method [18]. 

Extrinsic EAA can be calculated by first combining Hannum EAA with three imputed blood cell 

components (naïve cytotoxic T cells, exhausted cytotoxic T cells, and plasmablasts estimated 

using the approach described by Klemera and Doubal[19]) to form an aggregate measure and 

then regressing this measure onto chronologic age. Thus, this measure captures both intrinsic 

epigenetic age as well as the weighted average of age-related characteristic changes in blood cell 

composition such as decreases in naive CD8+ T cells and increases in memory or exhausted 

CD8+ T cells.  

 

GDM; insulin sensitivity; insulin secretion 

Demographic information was collected via self‐report. Race/ethnicity was collected 

using 2000 U.S. Census-based questions and categorized as Hispanic (any race), non-Hispanic 

white, non-Hispanic African-American, and non-Hispanic other, which were further categorized 

as white vs. non-white. Exposure to maternal GDM and maternal pre-pregnancy body mass 

index (BMI) were obtained from KPCO medical records. All pregnant women at KPCO were 

routinely screened for gestational diabetes (GDM) at 24–28 weeks using the two-step standard 

protocol [20]; GDM was diagnosed if glucose values exceeded two or more thresholds set by the 
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National Diabetes Data Group on the 3-h, 100-g oral glucose tolerance test [21]. At visits 1 and 

2, after an overnight fast, children underwent fasting venous blood measurement of glucose and 

insulin and whole blood draw. The computer-based homeostatic model was used to calculate 

insulin resistance [updated homeostatic model assessment of insulin resistance (HOMA2-IS)] 

and β-cell function [updated homeostatic model assessment of β-cell function (HOMA2-β)] 

(https://www.dtu.ox.ac.uk/homacalculator).  

 

Covariates 

In EPOCH, offspring diet in childhood and adolescence was assessed with the Block Kids Food 

Frequency Questionnaire,[22] the data from which was in turn used to calculate Healthy Eating 

Index 2010, a diet quality index ranging from 1–100.[23] Offspring physical activity in 

childhood and adolescence was assessed at both research visits with the 3-day Physical Activity 

Recall.[24] Participants recalled prior day activities in 30-minute blocks, along with intensity 

level (light, moderate, hard, very hard) as appropriate. We calculated the average daily number 

of 30-minute blocks of physical activities with metabolic equivalents (METs) of 6 or greater.[23] 

Pubertal development was self-assessed using a diagrammatic representation of Tanner staging 

adapted from Marshall and Tanner;[25] for the purpose of the analysis, youth were categorized 

as prepubertal (Tanner <2) and pubertal (Tanner 2–5).[13] 

 

Statistical analysis 

Baseline characteristics were described using numbers (percentages) for categorical 

variables and means (standard deviations) and medians (interquartile ranges) for quantitative 

https://www.dtu.ox.ac.uk/homacalculator
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variables with normal and skewed distributions, respectively (Table 1).  Baseline characteristics 

were compared between groups with and without GDM. Continuous variables were compared 

using Satterthwaite t-tests, and categorical variables were compared using chi-square tests.  

HOMA2-S and HOMA2-β were log transformed for comparison testing.  

First, we fit separate general linear regression models to examine the association between 

GDM with EAA. The outcome was EAA and the main predictor was GDM. Models were 

adjusted for offspring chronologic age and sex. Next, general linear mixed models were fit to 

assess whether intrinsic or extrinsic EAA at visit 1 were associated with repeated measurements 

of indicators for insulin sensitivity (HOMA2-S) and secretion (HOMA2-β) at visits 1 and 2. 

(Table 2).  The outcome was repeated measurements of HOMA2, and the main predictor was 

EAA. Models examining the association between EAA and offspring insulin sensitivity and 

secretion were adjusted for offspring chronological age and sex. A random intercept was fit to 

account for within-participant correlation. HOMA2 measures were log-transformed to meet 

assumptions of normality. We also examined the pattern of associations between EAA at visit 1 

with visit 1 insulin secretion and sensitivity measures (adjusting for chronologic age at visit 1), 

and between EAA at visit 1 with visit 2 insulin secretion and sensitivity measures (adjusting for 

chronologic age at visit 1) (Table 3). Models were adjusted for offspring chronological age and 

sex. A random intercept was fit to account for within-participant correlation, and a random slope 

was fit for age using unstructured covariance. Along similar lines, when models adjusted for 

measures of adiposity, random slopes were fit when there were repeated measures. HOMA2 

measures were log-transformed to meet assumptions of normality. We also examined the pattern 

of associations between EAA at visit 1 with visit 1 insulin secretion and sensitivity measures 
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(adjusting for chronologic age at visit 1), and between EAA at visit 1 with visit 2 insulin 

secretion and sensitivity measures (adjusting for chronologic age at visit 1)  (Table 3).  

A series of sensitivity analyses were performed. First, models were re-run using estimates 

of EAA that were not adjusted for cell counts. Second, models were adjusted for race/ethnicity. 

Interactions with sex were assessed.  

We also examined whether associations persisted after adjustment for maternal and child 

adiposity measures. When offspring insulin secretion and insulin resistance were the dependent 

variables, both maternal and offspring adiposity measures were used as covariates. These 

adiposity measures included maternal pre-pregnancy BMI; childhood BMI; childhood waist-to-

height ratio, and childhood visceral adiposity (Table 2). Along similar lines, we examined 

whether the pattern of associations changed when we examined fetal nutrition, defined as the 

presence of maternal overweight (pre-pregnancy BMI > 25 kg/m2) OR GDM, was the 

independent variable. Analyses were performed using the Statistical Analysis Software (SAS) 

version 9.4 (SAS Institute). 

 

Results 

Table 1 shows participant characteristics by GDM status. In these unadjusted 

comparisons, compared to offspring without GDM, offspring who were exposed to GDM had 

mothers with higher pre-pregnancy BMI. Offspring who were exposed to GDM had greater 

waist-to-height ratio than offspring not exposed to GDM, although offspring BMI and visceral 

adiposity were similar by GDM exposure. Offspring with exposure to GDM had higher extrinsic 

EAA, while intrinsic EAA was similar by GDM status. Offspring with exposure to GDM also 
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had similar estimates of insulin sensitivity and secretion from visits 1 and 2 when compared to 

offspring not exposed to GDM. 

In models examining the association between in-utero exposure to GDM (independent 

variable) and offspring EAA, GDM was associated with higher extrinsic EAA after adjustment 

for offspring age and sex (beta-coefficient 2.00, 95% CI [0.71, 3.28], p=0.0025). We have 

previously reported that fetal overnutrition, defined as GDM or in-utero exposure to maternal 

overweight/obesity (pre-pregnancy BMI > 25 kg/m2), was associated with offspring insulin 

sensitivity.[15] Therefore, we examined whether fetal overnutrition was associated with 

epigenetic aging. In these models, fetal overnutrition was linked to faster extrinsic EAA (beta-

coefficient 2.14, 95% CI [0.84, 3.44], p=0.0014). Exposure to maternal overweight/obesity had a 

weaker and non-statistically significant association with extrinsic EAA (beta-coefficient, 1.42 (-

0.23, 3.07), p=0.09) than the association between GDM and epigenetic aging. Taken together, 

these analyses suggest that exposure to maternal GDM, rather than maternal overweight, 

informed the association between fetal overnutrition and extrinsic EAA. 

GDM was not associated with higher intrinsic EAA after adjustment for offspring age 

and sex (beta-coefficient -0.03, 95% CI [-0.71, 0.65], p=0.93). Fetal overnutrition was also not 

associated with intrinsic EAA after adjustment for age and sex (beta-coefficient -0.064 95% CI [-

0.76, 0.63], p=0.86) were observed. Associations between GDM and intrinsic EAA remained 

non-significant after additional adjustment for maternal BMI (beta-coefficient -0.24, 95% CI -

1.15, 0.68, p=0.61). 

Table 2 shows the associations between EAA assessed at visit 1 and measures of insulin 

sensitivity and secretion assessed at visit 1 and visit 2. Higher extrinsic EAA was associated with 

lower HOMA2-S and higher HOMA2-β. However, intrinsic EAA was not associated with higher 
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HOMA2-S or HOMA2-β. The associations between extrinsic EAA and log HOMA2- β remained 

significant after adjustment for maternal BMI and measures of offspring adiposity, although the 

association between extrinsic EAA and log HOMA2S was attenuated. (Table 2). Associations 

were primarily driven by associations between EAA at visit 1 and insulin secretion and 

resistance at visit 1, since associations between EAA at visit 1 and insulin secretion and 

resistance at visit 2 were not significant (Table 3). 

In sensitivity analyses, we investigated whether the association between extrinsic EAA at 

visit 1 and insulin resistance and secretion at visit 1 were altered by adjustment for adjustment 

for additional covariates at visit 1 in addition to chronologic age and sex. These covariates 

included HEI score; METS per day; and pre-pubertal stage vs. pubertal stage. After adjustment 

for these covariates, the patterns of associations remained similar (Ancillary Table).  

 In sensitivity analyses, the pattern of associations was similar when we examined 

estimates of EAA that were not adjusted for cell counts, so we present only conventional 

intrinsic and extrinsic EAA measures. The pattern of associations was also similar when we 

adjusted for race/ethnicity, with the exception that the association between extrinsic EAA and 

log HOMA2-S slightly decreased (p=0.055). Given the small number of persons who were black 

(n=8) or other race/ethnicity (n=7), we present analyses that do not adjust for these variables, 

Interactions with sex were not significant at p<0.10 and thus non-stratified analyses are 

presented. 

 

Discussion 

Although in-utero exposure to GDM is recognized to have adverse effects on offspring 

metabolism, the role that epigenetic modification plays is not completely understood [2, 4, 26]. 



13 
 

Interpreting EWAS through the framework of epigenetic aging may be useful in integrating the 

disparate findings from several cohorts, particularly since EAA is associated with glucose 

metabolism in adults [5, 10, 27]. Such associations are important to understand given the high 

prevalence of GDM and subsequent increased risk of glucose intolerance in offspring [28, 29]. 

Using data from a well-characterized cohort of children, we found that in-utero exposure to 

GDM was associated with more rapid epigenetic aging by one measure of EAA. More rapid 

epigenetic aging was associated with lower insulin sensitivity and higher insulin secretion when 

children were aged 10 to 17 years of age, a time of rapid maturation. These associations persisted 

after adjustment for measures of maternal and childhood adiposity, although cross-sectional 

associations were stronger than prospective associations. Other reports have not examined 

whether epigenetic aging is associated with glucose and insulin metabolism in youth.  

Only one other report has examined whether in-utero exposure to GDM predicts EAA in 

offspring. Our findings regarding the association between GDM exposure and extrinsic EAA are 

similar to those reported in the Tianjin GDM Observational Study, which found that six year-old 

children exposed to GDM had more rapid EAA [30]. Our findings expand on that study in that 

we examined a cohort with a different racial/ethnic composition and we also examined children 

who were approximately four years older, which may be important in that childhood is a time of 

rapid growth as well as greater  discrepancies between epigenetic age and chronologic age [31]. 

Unlike that study, we did not find that GDM was associated with greater intrinsic EAA, which 

may reflect the smaller size of our study, our examination of different ethnicities, or the older age 

of children in EPOCH compared to the Tianjin GDM study. Other studies have reported 

inconsistent associations between GDM and methylation of particular CpGs; a meta-analysis of 

seven pregnancy cohorts in the Pregnancy and Childhood Epigenetics (PACE) consortium 
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(which also included our EPOCH cohort) noted that exposure to GDM was not associated with 

specific CpGs identified through EWAS of cord blood, although exposure to GDM was 

associated with differentially methylated regions including the promotor of a gene associated 

with autism spectrum disorder and of the gene body of CYP2E1, which is upregulated in type 1 

and type 2 diabetes [4]. The clinical significance of this association is still uncertain. 

No reports examine the relationship between EAA measures and glucose and insulin 

metabolism in pre-pubertal children, although one report did examine associations between EAA 

and insulin sensitivity at 17 years of age. In this Australian cohort, EAA measures were also 

associated with lower insulin sensitivity estimated from fasting insulin and glucose measures 

[12].  In the Tianjin cohort, greater EAA was associated with several anthropometric measures, 

including weight for age Z score, BMI for age Z score, body fat percentage, skin fold 

measurements and blood pressure [30]. Associations with glucose and insulin were not reported. 

In older persons, greater EAA is associated with adverse indicators of glucose metabolism in 

cross-sectional and longitudinal analyses. Among mid-life adults, estimates of EAA are 

associated with metabolic syndrome, and intrinsic EAA predicted incident metabolic syndrome 

[10]. In the same cohort, epigenetic age estimates using another epigenetic clock was associated 

with incident diabetes [32]. In a cohort of hypertensive African-Americans approximately 60 

years of age, higher extrinsic EAA was associated with higher fasting insulin [33].  

The extent to which insulin and glucose affect EAA or vice-versa is not established. In 

one report, bariatric surgery led to substantial decreases in BMI and also small, but significant, 

improvements in EAA over one year, suggesting that insulin and glucose might affect EAA even 

though EAA measures predict incident metabolic derangement [34]. Our finding that cross-
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sectional associations were stronger than longitudinal associations suggest that insulin resistance 

and secretion might influence EAA in children rather than vice-versa. 

We found a more consistent and significant pattern of associations using extrinsic EAA 

rather than intrinsic EAA. This may be due to the fact that EPOCH estimates of EAA were 

derived from blood, and the Hannum calculator (the basis of extrinsic EAA) was trained using 

venous samples, whereas the Horvath calculator (the basis of intrinsic EAA) was trained using a 

range of tissue types. Despite these differences in associations, and the fact that these clocks 

share only 6 CpG sites of the 71 CpG sites in the Hannum clock [5] and the 353 CpG sites in the 

Horvath clock [6, 7], intrinsic and extrinsic EAA estimates are highly correlated (r=0.76) with 

each other and with mortality [17]. An analysis of microarray expression data from monocytes 

note that these different clocks do share several overlapping transcriptional profiles, namely 

involving epidermal growth factor receptor signaling, mitochondrial translation and function, and 

oxidative phosphorylation, whereas transcriptional profiles unique to each clock are 

hypothesized to reflect tissue differences reflecting how each clock was developed [8]. 

The strengths of this report include a diverse longitudinal cohort assessing youth during 

the pubertal transition and assessment of insulin sensitivity and secretion. However, there are 

several limitations. It is unclear whether the association between GDM and EAA was determined 

by dysglycemia vs. other in-utero factors other than adiposity, and examinations are needed 

which are powered to distinguish the effects of treatment and the degree of glucose elevations. In 

addition, as mentioned above, EPOCH only assessed epigenome-wide DNA methylation at one 

point in time, and repeated measures would be useful in determining directionality of 

associations. Finally, the study of epigenetic aging in relation to outcomes other than mortality is 

recent, and no consensus exists on optimal choice of epigenetic clock particularly in younger 
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populations. Although we chose epigenetic measures that have been examined in adults with 

respect to glucose and insulin metabolism, these measures have not been previously validated 

using glucose and insulin or chronologic age in youth. Our analyses suggest that depending on 

how epigenetic age was derived in a particular cohort (from blood only or a range of tissue 

types) may influence selection of the optimal epigenetic age measure. 

We conclude that GDM is associated with offspring epigenetic EAA as estimated with at 

least one epigenetic clock. We also conclude that EAA, insulin secretion and resistance are also 

associated. Additional examinations are needed to determine whether the relationship between 

GDM and EAA is due to dysglycemia or other in-utero exposures, whether offspring metabolism 

affects EAA in children, and to what extent this relationship is similar across other measures of 

aging, such as telomere length. Such studies would ideally involve aging measures assessed at 

several points in time.   
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Table 1. Visit 1 characteristics of offspring who underwent EWAS in EPOCH. Means (standard 
deviations), median (interquartile range), or n (percent) shown. 
 
 Exposed to GDM  Not exposed to GDM  p-value 
 (n=88) (n=91)  
    
Age (years) 9.5 (1.7) 10.0 (1.4) 0.07 
    
Girls (n, %) 43 (48.9) 46 (50.6) 0.82 
    
Race/ethnicity (n, %)   0.99 
    Non-Hispanic White 56 (61.5) 54 (61.4)  
    Hispanic 27 (29.7) 27 (30.7)  
    Non-Hispanic Black 4 (4.4) 4 (4.6)  
    Other 4 (4.4) 3 (3.4)  
    
Maternal pre-pregnancy BMI (kg/m2) 27.8 (6.4) 24.2 (5.5) 0.001 
    
Offspring BMI (kg/m2) at visit 1 18.6 (3.8) 17.9 (3.7) 0.23 
    
Visceral Adiposity (cm2) at visit 1 23.3 (18.7) 21.7 (15.8) 0.61 
    
Waist-to-height ratio at visit 1 0.47 (0.07) 0.43 (0.05) 0.0006 
    
Healthy Eating Index score at visit 1 50.2 (9.2) 49.3 (9.6) 0.51 
    
METS per day at visit 1 66.3 (11.7) 68.6 (9.7) 0.17 
    
Tanner stage 1 (pre-pubertal), (n, %) 41 (62) 31 (46) 0.067 
    
Extrinsic EAA at visit 1 0.95 (6.02) -0.92 (5.43) 0.03 
    
Intrinsic EAA at visit 1 0.05 (4.05) -0.06 (3.02) 0.85 
    
HOMA2-β at visit 1 118.7 (99.0) 107.5 (64.1) 0.11 
    
HOMA2-β at visit 2 160.0 (60.7) 148.5 (54.2) 0.92 
    
HOMA2-S at visit 1 103.5 (134.9) 95.7 (131.8) 0.69 
    
HOMA2-S at visit 2 53.8 (26.5) 58.1 (34.2) 0.17 
    
Fasting glucose levels at visit 1 (mmol/l, 
DCCT units) 

4.5 (1.4) 
(2.6, 2.3) 

4.8 (0.5) 
(6.5, 2.2) 

0.08 
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Table 1. Visit 1 characteristics of offspring who underwent EWAS in EPOCH. Means (standard 
deviations), median (interquartile range), or n (percent) shown. 
 
    
Fasting glucose levels at visit 2 (mmol/l, 
DCCT units) 

5.4 (2.5) 
(2.6, 2.4) 

4.9 (0.5) 
(2.6, 2.2) 

0.20 
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Table 2.  Association between epigenetic age acceleration (EAA) (independent variable) at visit 1 
and repeated measures of insulin sensitivity and secretion (dependent variables) at visits 1 and 2, 
assuming no visit by predictor interaction. Models were adjusted for offspring chronologic age 
(years) and sex. For covariates of offspring age and measures of adiposity, random slopes were fit, 
essentially accounting for repeated measures at visit 1 and 2 and the correlation between 
individuals. Beta-coefficients and 95% confidence intervals shown.  
 log HOMA2-S log HOMA2-β  

Model 1: adjusted for age and sex 
Extrinsic EAA 
 

-0.018 (-0.035, -0.002) 
p=0.03 

0.018 (0.006, 0.030) 
p=0.003 

Intrinsic EAA  
 

0.013 (-0.024, 0.049) 
p=0.49 

0.003 (-0.024, 0.030) 
p=0.83 

   
Model 2: adjusted for age, sex, and maternal pre-pregnancy BMI 

Extrinsic EAA 
 

-0.02 (-0.03, 0.001) 
p = 0.06 

0.02 (0.01, 0.03) 
p = 0.004 

Intrinsic EAA  
 

0.01 (-0.03, 0.05) 
p = 0.72 

0.01 (-0.02, 0.04) 
p = 0.61 

   
Model 3: adjusted for age, sex, and childhood BMI 

Extrinsic EAA 
 

-0.01 (-0.03, 0.005) 
p = 0.17 

0.01 (0.003, 0.03) 
p = 0.012 

   
Intrinsic EAA 0.01 (-0.02, 0.05) 

p = 0.40 
0.002 (-0.02, 0.03) 

p = 0.87 
   

Model 4: adjusted for age, sex, and childhood waist-to-height ratio 

Extrinsic EAA 
 

-0.01 (-0.02, 0.01) 
p = 0.24 

0.01 (0.002, 0.02) 
p = 0.02 

   
Intrinsic EAA 0.02 (-0.02, 0.05) 

p = 0.32 
0.001 (-0.02, 0.03) 

p = 0.94 
Model 4: adjusted for age, sex, and childhood visceral adiposity 

Extrinsic EAA 
 

-0.01 (-0.03, 0.004) 
p = 0.13 

0.02 (0.01, 0.03) 
p = 0.006 

   
Intrinsic EAA 0.01 (-0.02, 0.04) 

p = 0.65 
0.01 (-0.02, 0.03) 

p = 0.54 
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Table 3.  Separate single timepoint models for the association between epigenetic age acceleration 
(EAA) (independent variable) at visit 1 and measures of insulin sensitivity and secretion 
(dependent variables), at each visit. Models were adjusted for offspring chronologic age (years) at 
visit 1 and sex. Beta-coefficients and 95% confidence intervals shown.  

 log HOMA2-S at visit 1 log HOMA2-β at visit 1 
Model 1: adjusted for age and sex 

Extrinsic EAA at visit 1 
 

-0.02 (-0.04, -0.001) 
p = 0.04 

0.02 (0.01, 0.04) 
p = 0.0023 

Intrinsic EAA at visit 1 
 

-0.01 (-0.06, 0.03) 
p = 0.54 

0.02 (-0.02, 0.05) 
p = 0.33 

Model 1: adjusted for age and sex 
 log HOMA2-S at visit 2 log HOMA2-β at visit 2 

Extrinsic EAA at visit 1 
 

-0.005 (-0.03, 0.02) 
p = 0.67 

0.01 (-0.01, 0.02) 
p = 0.37 

Intrinsic EAA at visit 1 
 

0.04 (-0.01, 0.09) 
p = 0.08 

-0.01 (-0.05, 0.02) 
p = 0.49 

 

 




