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Abstract

Predicting protein thermostability change upon mutation is crucial for under-

standing diseases and designing therapeutics. However, accurately estimating

Gibbs free energy change of the protein remained a challenge. Some methods

struggle to generalize on examples with no homology and produce uncali-

brated predictions. Here we leverage advances in graph neural networks for

protein feature extraction to tackle this structure–property prediction task. Our

method, BayeStab, is then tested on four test datasets, including S669, S611,

S350, and Myoglobin, showing high generalization and symmetry perfor-

mance. Meanwhile, we apply concrete dropout enabled Bayesian neural net-

works to infer plausible models and estimate uncertainty. By decomposing the

uncertainty into parts induced by data noise and model, we demonstrate that

the probabilistic method allows insights into the inherent noise of the training

datasets, which is closely relevant to the upper bound of the task. Finally, the

BayeStab web server is created and can be found at: http://www.bayestab.com.

The code for this work is available at: https://github.com/HongzhouTang/

BayeStab.
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1 | INTRODUCTION

A critical approach to investigate protein folding is to
measure its thermodynamic properties. The folding pro-
cess might be disturbed in mutated states, leading to
changes in Gibbs free energy (ΔΔG). This change is
sometimes desired in the pharmaceutical industry, as
antibody drugs typically need high thermal stability.1

Also, such a process is essential to understand how
genome variation in drug targets can cause resistance to
therapeutic drugs.2,3

To predict the stability change of proteins upon muta-
tion with high throughput, computational approaches have
been widely used. There were methods based on various
evolutionary and physical chemical hypotheses with high
performance. Another branch leveraged machine learning
for fast identification, using techniques, such as support vec-
tor machine (SVM),4–6 gradient boosting,7–9 artificial neural
network (ANN),10,11 and combinations of them.12–20 How-
ever, several studies pointed out the significantly biased
results of the machine learning-based methods.21–23 In
other words, they predict the destabilizing mutation more
than the stabilizing mutation, and the seemingly high linear
correlation between predicted and experimental results
might not be shown in the stabilizing mutations.Hongzhou Tang and Shuyu Wang are co-first authors.
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Recent studies based on deep learning techniques,
such as the convolution neural network, seem to handle
this issue well, showing symmetric prediction.24–27 Gen-
erally, deep learning requires large amounts of training
data to improve performance.28 Currently, deep learning-
based approaches have been demonstrated with high per-
formance comparable to classic machine learning
methods. With new collected data29,30 and potentially
more in the future, it is not yet known how deep
learning-based methods will perform.

One conundrum in this field is how to further
improve the representation learning of the models when
limited experimental data are available. The graph neural
network (GNN) is a powerful tool for extracting informa-
tion from graph data.31 Graph convolutional networks
apply spectral convolution in the graph Fourier domain
to aggregate neighboring representations for feature
learning.32 They have been used for protein structure
refinement33 and protein function prediction.34 These
attempts to encode protein context information make the
prediction of mutation induced stability changes possible,
yet it is still scarcely investigated.

Overfitting is another critical challenge to consider in
machine learning-based predictions. It happens when
only limited experimental data are available, and the
well-trained models might not generalize well on unob-
served datasets. Thus, the model must be flexible enough
to capture all properties of the data.35 Probabilistic pro-
gramming offers a way to generalize the models, allowing
much richer representations of the model. It addresses
this challenge by developing a distribution that encom-
passes the models using Bayesian theory.36 The key idea
behind the probabilistic machine learning is to infer
plausible models from the data with uncertainty. Com-
pared to a pure deep learning model, which predicts a
definite output, Bayesian machine learning's prediction
corresponds to the aggregation of different neural net-
works trained on the same dataset.37 One advantage of
the Bayesian approach is less prone to overfitting, since
they are averaged over the parameters.

Meanwhile, the uncertainty quantified by the Bayes-
ian method can be applied to investigate the inherent
noise of the dataset, which is related to the upper bound
performance.38 The key difficulty in using Bayesian neu-
ral networks (BNNs) is that Bayesian inference is compu-
tationally intractable. To reduce computation cost,
researchers proposed using dropout at test times to
enable uncertainty quantification of the predictive distri-
bution.39 Concrete dropout is a dropout variant, which
can be seen as a continuous relaxation of the discrete
dropout. With appropriate regularization terms, this tech-
nique allows the dropout probability to be tuned using
gradient methods and the uncertainty to be estimated.

Here we demonstrate that BNNs enabled by concrete
dropout can be coupled with graph neural networks
(GNN) to predict protein mutations' ΔΔGs and estimate
the uncertainties. The molecular representations learned
by the feature extractor are operated on graph networks.
After being combined with the coordination of the atoms,
they are then processed by fully connected layers to map
the high-dimensional features to the low-dimensional
properties. To enable faster training, we retained the
mutant part only and trimmed the rest. Our deep learn-
ing model is trained end-to-end, from protein feature vec-
tors to the output property (Figure 1a).

We test our method on four public datasets, and the
model outperforms previous approaches, showing
improved generalization ability. Based on the BNN, we
estimate the prediction uncertainty and decompose the
uncertainty into parts induced by model data noise,
which offers significant insights for investigating the
upper bound of the performance. Last, BayeStab web
server is presented to serve the broad scientific
community.

2 | THEORETICAL BACKGROUND

In this section, we first introduce the Bayesian inference
model and variational inference as an approximation.
Then, we illustrate how to quantify the uncertainty in a
BNN. Next, we explain the working principle of
our GNN.

2.1 | Bayesian inference

Given a training set {X, Y}, where X is the protein feature
and Y is ΔΔG upon mutation. p (YjX, w) is the likeli-
hood of the model and p(w) is the prior distribution.
w = {W1, …, Wk} is the model parameters with a struc-
ture of k layers structure. In a Bayesian framework, the
posterior is calculated as:

p w j X,Yð Þ¼ p Y j X,wð Þp wð Þ
p YjXð Þ ð1Þ

The predictive distribution of the problem can be
defined as follows:

p y� j x�,X,Yð Þ¼
Z

p y�jx�,wð Þp w j X,Yð Þdw ð2Þ

where y* is the output of input x* for a given w.
Direct application of the formula is impractical due to

the high computation cost. Variational inference can
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approximate the posterior using a tractable distribution
qθ (w) parameterized by the parameter θ. By minimizing
the Kullback–Leibler (KL) divergence,

KL qθ wð Þ
���p w j X,Yð Þ

� �
¼
Z
Ω
qθ wð Þ log qθ wð Þ

p w j X,Yð Þdw

ð3Þ

We can combine the intractable posterior distribution
in Equation (3) with Equation (1). Then, the variational
approximation of the negative evidence lower-bond
becomes:

ℒVI θð Þ¼�
Z
Ω
qθ wð Þ log p Y jX,wð ÞdwþKL qθ wð Þ

���p wð Þ
�

ð4Þ

To implement a Bayesian model, qθ (w) is needed.
Concrete dropout inside a neural network can

approximate the posterior distribution without extra learn-
able parameters, and the integral across the full parameter
space can be retrieved by Monte Carlo (MC) sampling.

2.2 | Quantification of uncertainty
with BNN

Given a new input x*, the variational distribution of the
output, y*, can be obtained as:

qθ y�jx�ð Þ¼
Z

p y�jfw x�ð Þð Þqθ wð Þdw ð5Þ

where f w(x*) is the output of the model for a given w.
The predictive mean of this distribution with T times of
MC sampling is estimated for regression tasks by:

Ê y�jx�½ � ¼ 1
T

XT
t¼1

f ŵt x�ð Þ ð6Þ

FIGURE 1 (a) The BayeStab's processing can be summarized into five steps: input the protein data, trim the nonmutant part, encode

the protein vector representation, train the BNN, and predict the ΔΔG and uncertainty. (b) Illustration of the adjacency matrix and

molecular information in the feature vectors. (c) The structure of the BayeStab model. (d) The underlying theory of Bayesian method to

predict ΔΔG and quantify the uncertainty
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and a predictive variance is estimated by:

Vâr y�jx�½ � ¼ 1
T

XT
t¼1

f ŵtc x�ð ÞTf ŵt x�ð Þ� Ê y�jx�½ �TÊ y�jx�½ �

ð7Þ

The uncertainty can be divided in two parts: aleatoric
and epistemic uncertainty. The aleatoric uncertainty is
inherent in the noise from the datasets, while the episte-
mic uncertainty is caused by the prediction of the model.
The uncertainty's segmentation is as follows:

Vâr y�jx�½ � ¼ 1
T

XT
t¼1

ŷ�t �y
� �

ŷ�t �y
� �T

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
epostemic

þ 1
T

XT
t¼1

diag ŷ�t
� �� ŷ�t

� �
ŷ�t
� �T� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
aleatoric

ð8Þ

where y¼PT
t¼1

ŷ�t =T. ŷ
�
t = softmax(fw t(xt)), and fw t(xt) is

the neural network's output with input xt.

2.3 | GNN for feature learning

The inputs to the GNN X = H(0) are the adjacency matrix,
A, and the initial node features, which consisted of atom
types, adjacent atoms, number of adjacent hydrogen,
implicit valence and aromatic bonds (Figure 1b).

The GNN's message passing through a single layer is
as follows:

H lþ1ð Þ ¼Leaky_relu W lð ÞAH lð Þ
� �

ð9Þ

where H(l) and W(l) are node features and trainable
parameters at the l-th layer, l � {0, …, L}, respectively.
The GNN updates the node feature H(l+1) with
information from adjacent nodes for representation
learning.

To improve the feature extraction performance, we
integrated the gating mechanism into the network as:

H lþ1ð Þ
gate ¼GH lþ1ð Þ

gate þ 1�Gð ÞH lð Þ
gate ð10Þ

with

G¼ leaky_relu Wgate H lð Þ
gate H

lþ1ð Þ
gate

h i
þB

� �
ð11Þ

After updating the mode features L-times through
feedforward computations, the graph feature hG is
obtained by summation of all N node:

hG ¼
X
n � N

NN H Lð Þ
n

� �
ð12Þ

3 | EXPERIMENTS AND METHODS

3.1 | Datasets

S2648 contains 2,648 single point mutations from 131 dif-
ferent globular proteins. The ProTherm database is the
source of the dataset. In this dataset, 2,080 of them are
destabilizing and 568 are stabilizing. We use S2648 as the
training dataset for BayeStab.

Q3421 includes 3,421 mutations from 150 proteins.
We use the dataset for 10-fold cross-validation.

S350 consists of 350 mutations in 67 different pro-
teins. It is a subset of the S2648 dataset, so the overlapped
part needs to be tailored during training.

S611 is developed by DynaMut2,17 which is split from
a dataset of 4,633 mutations.

S669 is a latest curated test dataset40 manually
cleaned from the ThermoMutDB database. It consists of
669 variants of protein sequences that do not share
homology with the S2648 dataset and Varibench.

Myoglobin is the globular protein that regulates the
concentration of cellular oxygen.41 The dataset consists of
134 mutations scattered throughout the protein chain,
which also does not overlap with the training dataset.

Ssym contains 684 variations, and half of them are
reverse variations with crystal structures of the corre-
sponding mutant proteins.42 We use the Ssym dataset to
investigate the uncertainty in the dataset and in the
model.

3.2 | Implementation and evaluation

The schematic view of the BayeStab is shown in
Figure 1c, and the sizes of each layer in the architecture
are listed in Table 1.

The two branches for processing wild and mutant
proteins are symmetric, with both the GNN module and
the FC module. The summation of the atom coordinates
is concatenated to the latent feature extracted by the
GNN. Finally, the output of the wild protein is subtracted
from the mutant protein to obtain the ΔΔG. At each hid-
den layer, we applied the concrete dropout, which leads
to the corresponding uncertainty estimation. The
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principles for quantifying and decomposing the uncer-
tainty are also illustrated in Figure 1d.

In the training phase, we used the Adam optimizer
with the learning rate of 10�3 for 400 epochs. The drop-
out was performed at the inference phases, sampled with
T = 10 for Bayesian inference. The model was implemen-
ted using Pytorch on a GTX-3070 processor.

To evaluate the prediction accuracy, we use the Pear-
son correlation coefficient (r) between experimental and
predicted ΔΔGs and the root mean squared error (σ) of
predictions. To quantify the prediction bias, we adopt
r between the predicted results for direct mutations and
reverse mutations and the error, δ = ΔΔGrev + ΔΔGdir.

42

4 | RESULT AND DISCUSSION

4.1 | Testing results on four datasets

After 10-fold cross-validation of the S2648 dataset, BayeS-
tab showed r = 0.61 and σ = 1.19 kcal/mol. The Pearson
correlation coefficient increased to 0.69 and σ decreased
to 1.06 kcal/mol after removing 5% of the outliers
(Figure 2). When we performed a 10-fold cross-validation
on the Q3421 dataset, r was 0.68, and σ was reduced to
1.29 kcal/mol, if 5% of the outliers were removed
(Figure 3).

Then, we tested the trained model on S611, S350,
Myoglobin, and S669 datasets, respectively. Before train-
ing, the overlap between the training and testing datasets
were tailored for assessment. Since BayeStab can predict
with the corresponding uncertainty, we marked the data
points with various colors to indicate its probability
(Figure 4).

When evaluated using the S611 dataset, BayeStab
obtained r = 0.73, σ = 0.99 kcal/mol in the direct muta-
tions, r = 0.73, σ = 0.99 kcal/mol in the reverse muta-
tions, and r = �0.97, δ = 0.01 in direct-reverse prediction
(Figure 4a–c). We further analyze the performance of the

TABLE 1 The architecture of the BayeStab

Layer type Specifications

GNN layer + dropout �4 Size:1400

FC layer + dropout + ReLU Size:1024

FC layer + dropout + ReLU Size:512

FC layer + dropout + ReLU Size:256

FC layer + dropout Size:1

FIGURE 2 Cross validation results

of the S2648 dataset. With 5% of the

outliers removed (blue dots), r = 0.69,

σ = 1.06 kcal/mol
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stabilizing and destabilizing mutations, respectively.
BayeStab's performance on destabilizing and stabilizing
mutations were r = 0.72, σ = 1.02 kcal/mol and r = 0.48,
σ = 1.28 kcal/mol. Comparing with other methods,
BayeStab improved performance on the overall (Table 2).

Next, BayeStab was tested on the S350 dataset and
achieved r = 0.75, σ = 1.09 kcal/mol in direct mutations,
r = 0.75, σ = 1.05 kcal/mol in reverse mutations, and
r = �0.97, δ = �0.02 kcal/mol in direct-reverse predic-
tion (Figure 4d–f). Meanwhile, we split the results into
stabilizing and destabilizing mutations. We found that
BayeStab's strong performances on stabilizing mutations
were r = 0.66, σ = 1.29 kcal/mol, and destabilizing muta-
tions showed r = 0.62, σ = 1.37 kcal/mol. Our results
tested on S350 dataset were also compared with six other
methods (Table 3). BayeStab's performance also exceeded
prior methods when dealing with the imbalance
problem.

The Myoglobin dataset does not overlap with the training
data, indicating that it is appropriate for estimating overfitting.
Our tested results on this dataset were r = 0.47, σ = 1.07 kcal/
mol on direct mutations, r = 0.47, σ = 1.07 kcal/mol on reverse
mutations, and r = �0.97, δ = �0.01 kcal/mol on the direct-
reverse predictions (Figure 4g–i).

The latest curated dataset, S669, is also highly convinc-
ing for performance evaluation, since it is not included in
the widely available training datasets. On the S669 dataset,
BayeStab also achieved superior symmetry, showing
r = �0.97, δ = �0.01 kcal/mol for direct-reverse predic-
tion. Its performance on direct mutations reached r = 0.54,
σ = 1.60 kcal/mol, and MAE = 1.07 kcal/mol. The reverse
mutations showed r = 0.53, σ = 1.62 kcal/mol, and
MAE = 1.07 kcal/mol (Figure 4j–l). Fifteen recently shown
methods were also listed for comparison with BayeStab
(Table 4). Our method's performance is highly competitive
to be the state-of-the-art approach, showing highest linear
correlation and improved symmetry.

4.2 | Uncertainty decomposition

We then decomposed the uncertainties obtained from
BayeStab and compared the uncertainties with all, 1/2,
and 1/4 of the training dataset. When we tested on the
Ssym dataset, we found the aleatoric uncertainty remained
almost unchanged, whereas the epistemic uncertainty
increased as the amount of training data decreased
(Table 5). This effect can be explained as the model-

FIGURE 3 Cross validation results

of the Q3421 dataset. With 5% of the

outliers removed (blue dots), r = 0.68,

σ = 1.29 kcal/mol
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induced uncertainty increased due to the less training
data, while the uncertainty inherent in the experimental
data remained the same.

Besides, we could estimate how much noise from the
dataset contributed to the predicted error. For the past
two decades, the performance of the machine learning-
based method seemed to have an upper bound. The pre-
diction error, σ, stagnated at around 1 kcal/mol, yet the
inherent noise of the dataset was rarely explored.

With BNN's powerful uncertainty division, we may find
the dataset's noise is dominant in the overall uncertainty,
indicating the model has almost reached the upper bound
performance with the data available. More experimental
data with the current measurement accuracy may not lead
to higher performance, as the epistemic uncertainty is
already very small compared with the aleatoric uncertainty.

4.3 | Web server

We built a freely available and user-friendly web server
(http://www.bayestab.com) using Flask. The home page
and the result page of the web server are shown in
Figure 5.

The web server takes the structure information of the
protein as the input. Users can upload PDB files of the
wild type and mutant types to the server. The mutant
type PDB files can be generated by Rosetta. Next, the user
needs to fill in the mutation information. For example,
L37S indicates that at the position of amino acid number
37, and leucine (L) becomes serine (S). Users also need to
fill in the mutant protein chain information, such as A or
B. Last, the user can get the predicted ΔΔG after submit-
ting the task.

FIGURE 4 BayeStab's performance when tested on four datasets. The corresponding prediction uncertainty is marked using four

different colors. (a) Predicting ΔΔG for direct mutations in S611, (b) reverse mutations in S611, (c) direct versus reverse ΔΔG values in S611.

(d) Predicting ΔΔG for direct mutations in S350, (e) reverse mutations in S350, (f) direct versus reverse ΔΔG values in S350. (g) Predicting

ΔΔG for direct mutations in Myoglobin, (h) reverse mutations in Myoglobin, (i) direct versus reverse ΔΔG values in Myoglobin,

(j) predicting ΔΔG for direct mutations in S669, (k) reverse mutations in S669, (l) direct versus reverse ΔΔG values in S669
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5 | CONCLUSION

Here, we fuse the BNN and GNN-based methods to pre-
dict proteins' stability change upon mutations with

quantified uncertainty. Our end-to-end deep learning
model, BayeStab, can effectively learn molecular feature
representations to predict the ΔΔG with significantly
high performance.

FIGURE 4 (Continued)

TABLE 2 Comparison of different

methods tested on the S611 dataset
Overall Stabilizing mutations Destabilizing mutations

Method σ r σ r σ r

BayeStab 0.99 0.73 1.28 0.48 1.02 0.72

DUET 1.40 0.48 1.75 0.09 1.00 0.58

DynaMut2 1.14 0.68 1.02 0.51 0.91 0.62

SDM 1.93 0.35 1.62 0.48 �0.77 0.03

mCSM 1.42 0.46 1.81 0.11 0.98 0.56

MAESTRO 1.55 �0.36 1.17 0.27 1.81 0.43

I-mutant 1.47 0.33 1.83 0.03 1.09 0.49
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The cross-validations on S2648 and Q3421 datasets
show high linearity and low errors. Superior performance
is also demonstrated when tested on four datasets. The
predicted results are highly symmetric between direct and
reverse mutations without bias toward predicting

destabilization. The test results on the S669 are especially
persuasive for proving BayeStab's improved generalization,
as it has novel variants never encountered by the prior pre-
diction tools. BayeStab achieved high Pearson correlation
coefficients that outperformed state-of-the-art methods.

In addition, we propose to integrate concrete dropout
in the GNN as our Bayesian approach to quantify the
uncertainty, then we further decompose the uncertainty
to model-induced and data noise-induced parts. To the
best knowledge of the authors, this is a novel work to
introduce uncertainty quantification into this field. Using
the model trained on S2648 and tested on Ssym, we find
the noise from the dataset is dominant in the prediction
errors, indicating that the prediction upper bound is
almost approaching. We also suspect that even if more

TABLE 3 Comparison of different

methods tested on the S350 dataset
Overall Stabilizing mutations Destabilizing mutations

Method σ r σ r σ r

BayeStab 1.09 0.75 1.29 0.66 1.37 0.62

DUET 1.31 0.67 1.00 0.65 2.23 0.28

DynaMut2 1.37 0.66 1.16 0.63 2.01 0.38

SDM 1.80 0.52 1.43 0.42 3.12 0.15

mCSM 1.08 0.66 1.01 0.63 2.48 0.31

MAESTRO 1.79 0.55 1.52 0.43 1.37 0.61

I-mutant 1.75 0.53 1.42 0.42 2.89 0.25

TABLE 4 BayeStab compared with

15 recent methods tested on the S669

dataset. The data are adopted from

Reference 40

Direct Reverse Dir-rev

Method r σ MAE r σ MAE rd-r δ

BayeStab 0.54 1.60 1.07 0.53 1.62 1.07 �0.97 �0.01

ACDC-NN 0.46 1.49 1.05 0.45 1.50 1.06 �0.98 �0.02

DDGun3D 0.43 1.60 1.11 0.41 1.62 1.14 �0.97 �0.05

PremPS 0.41 1.50 1.08 0.42 1.49 1.05 �0.85 0.09

ThermoNet 0.39 1.62 1.17 0.38 1.66 1.23 �0.85 �0.05

Rosetta 0.39 2.70 2.08 0.40 2.68 2.02 �0.72 �0.61

Dynamut 0.41 1.6 1.19 0.34 1.69 1.24 �0.58 �0.06

INPS3D 0.43 1.5 1.07 0.33 1.77 1.31 �0.50 �0.06

SDM 0.41 1.67 1.26 0.13 2.16 1.64 �0.40 �0.40

PopMuSic 0.41 1.51 1.09 0.24 2.09 1.64 �0.32 �0.69

MAESTRO 0.50 1.44 1.06 0.20 2.10 1.65 0.22 �0.57

FoldX 0.22 2.30 1.56 0.22 2.48 1.50 �0.20 �0.34

DUET 0.41 1.52 1.10 0.23 2.14 1.68 �0.12 �0.67

I-Mutant3.0 0.36 1.52 1.12 0.15 2.32 1.87 �0.06 �0.81

mCSM 0.36 1.54 1.13 0.22 2.30 1.86 �0.05 �0.85

Dynamut2 0.34 1.58 1.15 0.17 2.16 1.69 0.03 �0.64

TABLE 5 BayStab estimated the epistemic and aleatoric

uncertainties when trained using various amounts of the S2648

dataset and tested on the Ssym dataset

Training dataset Epistemic Aleatoric

S2648 0.03 0.25

S2648/2 0.08 0.24

S2648/4 0.13 0.25
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experimental data are available, the improvement might
still be subtle.

Last, BayeStab is also made accessible to wider users
through a free web server. In the future, we hope BayeS-
tab would benefit the research community to study pro-
tein dynamics and envision its contribution to deepen the
understanding of mutations in diseases.
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