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Abstract

Background: Human metapneumovirus (hMPV) is an important cause of pediatric

respiratory infection. We leveraged the Nicaraguan Pediatric Influenza Cohort Study

(NPICS) to assess the burden and seasonality of symptomatic hMPV infection in

children.

Methods: NPICS is an ongoing prospective study of children in Managua, Nicaragua.

We assessed children for hMPV infection via real-time reverse-transcription poly-

merase chain reaction (RT-PCR). We used classical additive decomposition analysis

to assess the temporal trends, and generalized growth models (GGMs) were used to

estimate effective reproduction numbers.

Results: From 2011 to 2016, there were 564 hMPV symptomatic infections, yielding

an incidence rate of 5.74 cases per 100 person-years (95% CI 5.3, 6.2). Children expe-

rienced 3509 acute lower respiratory infections (ALRIs), of which 160 (4.6%) were

associated with hMPV infection. Children under the age of one had 55% of all symp-

tomatic hMPV infections (62/112) develop into hMPV-associated ALRIs and were

five times as likely as children over one to have an hMPV-associated ALRI (rate ratio

5.5 95% CI 4.1, 7.4 p < 0.001). Additionally, symptomatic reinfection with hMPV was

common. In total, 87 (15%) of all observed symptomatic infections were detected

reinfections. The seasonality of symptomatic hMPV outbreaks varied considerably.

From 2011 to 2016, four epidemic periods were observed, following a biennial sea-

sonal pattern. The mean ascending phase of the epidemic periods were 7.7 weeks,

with an overall mean estimated reproductive number of 1.2 (95% CI 1.1, 1.4).

Conclusions: Symptomatic hMPV infection was associated with substantial burden

among children in the first year of life. Timing and frequency of symptomatic hMPV

incidence followed biennial patterns.
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1 | INTRODUCTION

Human metapneumovirus (hMPV) is a viral respiratory pathogen of

global importance.1–4 First identified in 2001, hMPV is a single-

stranded negative-sense RNA pneumovirus which, based on serologic

studies, has circulated worldwide in human populations for at least

seven decades.5 HMPV is divided into two genetic groups: A and B,

which are further differentiated into six known lineages A1, A2a, A2b,

A2c, B1, and B26–8 and infects all ages, with severe events occurring

in children, the elderly, and the immunocompromised.9 In children,

hMPV is pervasive in early life, causing both upper10 and severe lower

respiratory infections.1,11 Indeed, most children are seropositive for

hMPV by age five.5,11–13 Severe hMPV infection is also an important

cause in respiratory-associated childhood hospitalization and has

globally been estimated to account for 4–18% of acute lower respira-

tory infection (ALRI) hospital admissions.2,14,15

Despite the importance of hMPV as a childhood respiratory infec-

tion, key questions regarding incidence, severity, and seasonality of

hMPV infections particularly in lower- and middle-income countries

(LMIC) remain. Globally, there is significant variation in seasonality of

hMPV by location, and hMPV infections can occur throughout the

year.3,16 Reinfection and repeat symptomatic episodes of hMPV in

both children and adults have also been noted12,17–19 highlighting the

clinical challenge of this ubiquitous pathogen.

Currently no vaccine exists for hMPV. An important step toward

this goal is describing the seasonality and burden of hMPV particularly

in LMICs. While research on hMPV is increasing, there are few long-

standing cohort studies conducted in Central and Latin America.3 In this

study, we describe the burden, symptomatic incidence rate, reinfection,

and seasonality of hMPV among a cohort of children in Managua,

Nicaragua. We additionally describe estimates of effective reproduction

numbers for each of the epidemic peaks observed from 2011 to 2016.

2 | METHODS

2.1 | Study population

A detailed report on the methods and protocol used for the

Nicaraguan Pediatric Influenza Cohort (NPICS) has been described pre-

viously.20,21 Briefly, the primary aim of the NPICS study is to assess

the burden, incidence, and seasonality of influenza in Nicaragua. How-

ever, while most infectious disease studies focus on a single pathogen

or syndrome, NPICS was developed with the goal of assessing multiple

respiratory pathogens and can test stored samples for additional path-

ogens. The NPICS study is an ongoing prospective cohort study initi-

ated in 2011 and includes children aged 0–14 years, residing in

District II in Managua, Nicaragua. Legal guardians are encouraged to

bring their children to the Health Center S�ocrates Flores Vias (HCSFV),

at the first sign of illness and receive free medical care and are thus

incentivized to use this health outpost as opposed to seeking care at

other medical clinics. Initial enrollment for the cohort study was con-

ducted in 2011 by randomly sampling children aged 3–11 years who

were enrolled in a previous cohort study for influenza within District II,

and additional children aged 0–2 were recruited through house-to-

house visits within the catchment area. The age distribution of the

NPICS cohort is representative of children of Nicaragua20 and spatially

representative of district II in Managua.20 Additional children aged 0–

2 years were recruited from houses throughout the study catchment

area. Children ≤4 weeks old are enrolled monthly into NPICS and age

out of the study on their 15th birthday. In this study, we assess those

enrolled in NPICS from 2011 to 2016.

2.2 | Case identification

Children aged 0–14 years were followed via annual surveys in addi-

tion to clinic visits where caregivers were asked to bring their children

at the first sign of illness. In this study, our primary outcome is symp-

tomatic real-time reverse-transcription polymerase chain reaction

(RT-PCR)-positive hMPV cases of children brought to clinic. Samples

were tested using RT-PCR if children met specific clinical features:

(1) Reported fever (37.8C) or feverishness with cough, sore throat or

runny nose for children aged 2 years and older, (2) Only fever or

feverishness for children under 2, (3) Severe respiratory symptoms as

evaluated by a physician including wheezing, chest indrawing, and

apnea, and (4) Hospitalization with respiratory symptoms or sepsis.

Our secondary outcome was hMPV-associated acute lower respi-

ratory infection (ALRI), which was determined as patients that pre-

sented with a diagnosis of bronchiolitis, bronchitis, bronchopneumonia,

or pneumonia or bronchial hyper-reactivity as determined by study

physicians. To assess hMPV-associated ALRI, we selected all clinic

visits that met the ALRI criteria occurring up to 14 days prior to the

clinic visit or 28 days after an hMPV-positive RT-PCR. HMPV positive

tests spaced more than 30 days apart with different symptom onset

dates were considered separate episodes. If the hMPV positive tests

were less than 30 days apart, the first symptom onset date was used.

2.3 | Sample collection and laboratory testing for
hMPV

Nasal oropharyngeal specimens were collected for all children

≤6 months for those that met the clinical testing definitions. Com-

bined nasal and oropharyngeal swabs were collected for children

>6 months who met the testing criteria. RNA was extracted (QIAamp

Viral RNA Mini Kit, Qiagen) and then tested by RT-PCR for hMPV

using CDC (Center for Disease Control) standardized protocols.22 Lab-

oratory protocols were unchanged throughout the study.

2.4 | Statistics

2.4.1 | Incidence calculations

Incidence rates were calculated for all symptomatic hMPV infections

in addition to stratifying by age, sex, and hMPV-associated ALRI from

2011 to 2016. Person-time was calculated as the amount of time
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starting at participant enrollment to December 30, 2016, or with-

drawal from the study. Withdrawal for those who were lost to follow-

up was calculated as the midpoint of the date of last contact and the

date recorded by study personnel as lost to follow-up. Incidence was

calculated using generalized linear models with Poisson distributions,

participant age was calculated on a weekly basis.

To assess if there were significant differences in hMPV-

associated ALRI reported by sex, we used generalized estimating

equations (GEE) assuming a dependence on the individual across the

sampling weeks. Weeks when hMPV-associated ALRI was not

reported was assumed to be negative for hMPV-associated ALRI.

2.5 | Age and time between repeat hMPV
infections

To assess the association between participant age and time between

repeat hMPV illnesses, we selected participants with multiple hMPV

illnesses. We then calculated the interval in months between infec-

tions. We used a generalized additive model (GAM) to assess the rela-

tionship between participant age and the interval between infections.

To account for right-censoring of our data we used a cox-proportional

hazard model to estimate survival curves for those who had their first

PCR detected symptomatic hMPV infection in their first 2 years of life

(those who are most likely seronaive prior to symptomatic infection;

Figure S2), those 3–5 years old, and those 6 or older. We used a G-

computation approach to generate adjusted survival curves for the

two age-brackets.23,24

2.6 | Seasonality and seasonal decomposition
analysis of hMPV

We evaluated the number and incidence of weekly hMPV cases and

hMPV-associated ALRI cases from 2011 to 2016. We used R’s25

(R Version 4.0.4) decompose (part of the stats package) and forecast

package26 to assess the temporal dynamics of hMPV cases and specif-

ically isolate the trend, seasonal, and error components. Because the

magnitude of the seasonal fluctuations and the variation around the

trend-cycle do not vary proportionally with time, we used an additive

time-series decomposition approach to isolate the temporal trend,

seasonality, and error components. In additive decomposition, we

assume

yt ¼ StþTtþRt

where yt is the data, St is the seasonal component, Tt is the trend com-

ponent, and Rt is the remainder component.

2.7 | Effective reproduction numbers

We estimated the effective reproduction number (R effective) from

the initial growth phase of the local hMPV epidemics using the

generalized-growth method,27 which links the generation interval of

the disease with the trajectory of the number of new cases per week

to derive our R estimates. This method is especially useful to charac-

terize a range of growth dynamics via two parameters: The growth

rate (r) and the epidemic growth scaling (p). This growth dynamics

value ranges from constant incidence (p = 0) to exponential growth

(p = 1).27 We assumed a gamma distributed serial interval of 5 and

7.5 days and a standard deviation of 1 day.28,29

3 | RESULTS

3.1 | Study participation

From 2011 to 2016, 2576 children were enrolled in NPICS, 1269

(49.3%) were boys and 1307 (49.7%) were girls. The age distribution,

enrollment, and reported sex by year are summarized in Figure 1. The

overall age distribution by cohort year is described in Figure 1A. The

age structure for those under 1 year old are summarized in Figure 1B.

The median age of those entering the cohort after January 2011 was

5 months old (IQR 0.7–29.4 months), the majority being enrolled in

their first year of life (Figure 1C). The median age of enrollees exiting

the cohort was 7 years (IQR 4–11 years). Study participants consis-

tently visited the clinic throughout the study period (Figure S1), across

the study period 24.8% of participant clinic visits (11 677/47006) met

the hMPV testing criteria, and 9.3% (4346/47006) met the criteria for

ALRI. The loss-to-follow up throughout the study period was low,

ranging from 2%–5% per year and are described in detail in Table S1.

3.2 | Symptomatic hMPV

From 2011 to 2016, of the 2576 children that participated in the

cohort 478 (18.6%) had at least one RT-PCR confirmed hMPV illness

episode (Table 1). The overall symptomatic incidence rate was 5.74

(95% CI 5.3, 6.2) per 100 person-years (Table S2). Most symptomatic

hMPV illness occurred in the first year of life (Figure 2), with the high-

est incidence rate occurring between 6–8 months (23.5 cases per

100 person years 95% CI 16.8, 32.0). The lowest incidence was

observed in the 10–12 age group (1.0 case per 100 person years 95%

CI 0.6, 1.7). Children under 1 year old had 3.2 times the incidence of

children 1 year or older (Rate Ratio 3.2 95% CI 2.6, 4.0 p < 0.001).

There was no significant difference (p > 0.05) observed between

sexes (Table S2).

Of the total 564 hMPV symptomatic cases, 87 (15%) were

detected symptomatic reinfections (Table 1, Figure 3). To determine

an age cut-point for children likely to be experiencing a first infection

we examined hMPV antibodies in a subset of the cohort, which is

detailed in Supplemental Methods and Figure S2. However, in a sub-

set 34 children who had a symptomatic hMPV event recorded in the

cohort (Supplemental Methods, Figure S2), only 20% of children in

this subset ever presented a seronegative, and all were 2 years old or

younger. Thus, children under 2 at first symptomatic infection, were

more likely experiencing a first infection, while those 3 and older were
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likely to be experiencing a second or subsequent infection. Without

accounting for right-sided censoring, the median time to detected

symptomatic reinfection was 22 months, or 1.8 years (min 1 month,

max 5.1 years), and the median age of detected symptomatic reinfec-

tion was 40 months, or 3.3 years (min 6 months, max 10.2 years). Par-

ticipant age was significantly associated with the amount of time

between positive RT-PCRs (p < 0.001) (Figure 3A). Children 2 years

old or younger at first detected symptomatic infection (the only popu-

lation likely to be seronaive in the study cohort; Figure S2) had the

greatest probability to experience a symptomatic reinfection

(Figure 3B). Indeed, the probability of secondary symptomatic infec-

tion was significantly higher for those whose first infection occurred

in their first 2 years of life compared with symptomatic infections

occurring later in life (Figure 3B).

3.3 | hMPV-associated ALRI

During the study period, 3509 ALRI events were recorded at the

study clinics. Of those events, 160 (4.6%) were associated with hMPV.

Out of the total 564 hMPV positive cases, 160 (28%) were associated

with an ALRI diagnosis (Table S2). The incidence rate for hMPV-

associated ALRI was 2.1 cases per 100 person-years (95% CI 1.9, 2.4).

Of the 160 ALRI events, 7 (4.4%) were severe enough to transfer the

children to a hospital for further treatment. Like symptomatic hMPV

cases, there were more ALRI events reported in males (N = 116, 42%

of males with hMPV) in our study compared with females (N = 94,

33% of females with hMPV), however this difference was not signifi-

cant. There was a significant difference in incidence rate observed

between hMPV-associated ALRI episodes in those under 1 year of

age compared with those over a year (rate ratio 5.5 95% CI 4.1, 7.4

p < 0.001). For children under the age of one, 55% of all symptomatic

hMPV episodes resulted in an ALRI event compared with just 33% for

children over one.

3.4 | Seasonality and seasonal decomposition
analysis of hMPV

HMPV epidemics occurred in alternate years (Figure 4). Years with

the highest hMPV incidence were 2011, 2013, and 2015. Cases

tended to peak during July–August, however there was additional var-

iation of incidence throughout the year, which was particularly

T AB L E 1 Symptomatic hMPV illness and subsequent positive
symptomatic episodes. Total number of symptomatic hMPV positive
infections and reinfections and summary statistics

Number of
symptomatic
hMPV cases

Male sex
(%)

All PCR confirmed symptomatic hMPV

Cases

564 279 (49.4)

Primary symptomatic episode 478 240 (50.0)

Secondary symptomatic episode 79 34 (44.2)

Tertiary symptomatic episode 7 3 (42.9)

Quaternary symptomatic episode 1 1 (100)

F I GU R E 1 Age characteristics of the
Nicaraguan Pediatric Influenza Cohort Study
(NPICS) from 2011 to 2016. (A) Age of all children
enrolled in NPICS from 2011 to 2016, (B) age
structure of NPICS cohort for those under 1 year
of age, (C) age of new enrollees by year following
the initial enrollment period, (D) reported sex and
age distribution of all enrollees
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notable in 2015 (Figure 4 and Figure S3). In 2012 and 2014 there was

no major epidemic. There was a rise in case numbers in 2016 in

September–January which differs from peaks in previous years, how-

ever it is possible that the peak epidemic period occurred later into

2017 (Figure 4, Figure S3).

When the trend (Tt) was isolated from the seasonal and remainder

components in classical additive decomposition, there was no overall

observable increase or decrease in the number of monthly symptom-

atic hMPV cases (Figure 5B). When the seasonality and remainder

were extracted from the trend there was a distinct decrease of the

number of cases in 2012 and 2014 (Figure 5B), and an increase in

cases in 2013 and 2015. This trend was also noted in the remainder

component where there were significant increases and decreases that

were not explained by the trend (Tt) or seasonal component (St)

(Figure 5C,D). The increases in symptomatic hMPV cases when annual

seasonal patterns (St) and longitudinal trend were extracted (Tt)

revealed a biennial residual pattern.

3.5 | Effective reproduction numbers

Four main epidemic periods were observed (in 2011, 2013, 2015, and

2016) and are described in detail in Figure 4 and Table S3. The mean

ascending phase of the epidemic periods were 7.7 weeks. Effective

reproduction numbers ranged from 1.1–1.7 with a mean effective

reproduction number of 1.3, depending on epidemic period and esti-

mated serial interval (Figure 4B, Table S3).

4 | DISCUSSION

In this prospective cohort, we demonstrate substantial burden of

symptomatic-hMPV infection in children (5.7 cases per 100 person-

years) and is an important cause of ALRI particularly for children in

their first year of life. While the seroprevalence of hMPV in children

varies globally, ranging from <5% to >30%,3 the overall incidence

among all children in the Nicaraguan cohort is one of the highest

recorded in Central and South America.30,30–35 Few prospective

cohort studies assess for hMPV in children, and studies that screen

for hMPV primarily occur at surveillance hospitals making precise

comparisons of incidence across communities and countries challeng-

ing. To our knowledge, this study is the longest running clinical-based

community cohort in Central or South America assessing hMPV in

children.

In the Nicaraguan study cohort, the majority of symptomatic-

hMPV and critically hMPV-associated ALRI occurred in first year of

F I G U R E 2 Incidence of symptomatic-hMPV
and hMPV-associated ALRI infection by age
category with 95% CI. Incidence rate per
100 person-years of symptomatic hMPV cases
and hMPV-associated ALRIs (A) by age category
and (B) stratified by 0–1 year and 2–12 years

F I G U R E 3 Age of patients with PCR detected
repeat symptomatic-hMPV infections compared
with the time since previous infection. (A) Fitted
generalized additive model (GAM) comparing age
of illness in months and the amount of time since
previous infections not accounting for right
censoring. (B) Adjusted survival curve using direct
adjustment to assess the probability of only
having one PCR-detected symptomatic hMPV
reinfection given the age group at first
symptomatic infection accounting for right
censoring. Age groups are stratified by 0–2 years
of age (most likely to be seronaïve prior to first
PCR-detected symptomatic hMPV infection based
on serology Figure S2), 3–5 years of age, and
those over 6.
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life (Figure 3). Those under 1 year old were 3.2 times more likely to

have a symptomatic hMPV episode compared with those aged 1–14.

Worldwide hMPV infection is greatest in those <5 years old,2,3 how-

ever there is considerable variation in age and infection in children

under five.11,36–38 However, in long-running prospective cohort stud-

ies in children the burden appears to primarily affect those under a

year of age.36,39 Recent global modeling studies indicate that infants

under 1 year have disproportionally high risks for hMPV-associated

ALRI similar to Respiratory Syncytial Virus (RSV) and influenza.2

Indeed, the highest incidence for influenza-associated ALRI for chil-

dren aged 9–11, in the same study cohort was 4.8 influenza-

associated ALRI cases (95%CI: 2.8–8.3) per 100 person-year com-

pared with 13.7 hMPV-associated ALRI per 100 person-year for chil-

dren of the same age (95% CI: 8.7–20.6).20 This study also indicates

that children under a year 6 months old in LMICs are at an increased

risk of death compared with upper-middle-income countries. In the

United States, a long-running cohort found that the hMPV infection

was greatest in those under 1 year of age.39 Similarly, in Guatemala, a

hospital-based cohort similar in size and scope to our study, also

found increasing hMPV incidence throughout the first year of life.36

Our study demonstrates that not only are children at a high risk of

acquiring symptomatic hMPV, but also symptomatic infection with

hMPV is likely to result in an ALRI event, particularly for infants under

a year old.

We additionally found that symptomatic reinfection of hMPV

was common. While this study did not capture asymptomatic reinfec-

tions, the total number of symptomatic reinfections is substantial.

Indeed, based on the subset of children whose serology was evalu-

ated, only those two or younger were seronaive. It is therefore likely

that symptomatic infections captured in this study by children older

than two are likely experiencing reinfections. Globally reinfection is

common, likely due to poor development of T and B cell

F I GU R E 4 Weekly hMPV case counts and symptomatic incidence rate from 2011 to 2016. (A) Weekly count of hMPV cases in the NPICS
cohort from 2011 to 2016. (B) Weekly symptomatic incidence rate for hMPV cases in the NPICS cohort within a 95% confidence interval from
2011 to 2016. Yellow bars indicate the ascending phase length for each outbreak and the subsequent estimated mean effective reproductive
number based on a 5-day serial number. (C) Weekly symptomatic incidence of hMPV cases causing acute lower-respiratory infection (ALRI) in the
NPICS cohort within a 95% confidence interval from 2011 to 2016
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immunological memory or a lack of sterilizing immunity.12,17–19 Addi-

tionally, changes in the predominate circulating strain or co-circulating

strains or viral evolution may also have implications for sterilizing

immunity, reinfection dynamics, and age at symptomatic reinfection,

but without additional genetic information and asymptomatic infec-

tion it is challenging to assess this question directly. However, we

demonstrate that reinfection of symptomatic hMPV is common, and

more likely to occur in younger age groups. This pattern of symptom-

atic infections occurring early in life and decreasing with age may

demonstrate growing immunity as children become exposed to vari-

ous strains in early life. These early exposures may only confer partial

immunity, however as children become reinfected they continue to

build immunity which may result in fewer symptomatic infections as

they age, a pattern found in other viral infections.40–42

Similar to other studies, hMPV-associated ALRI events accounted

for a substantial proportion of symptomatic hMPV episodes.3,11,39

Throughout the study period, hMPV-associated ALRI constituted 27%

- 43% of all symptomatic hMPV infections. The likelihood of hMPV-

associated ALRI was five-times higher in children under the age of

one compared with those older than one. This severity is consistent

with other hospital cohort studies.15 In the United States, the annual

rate of hospitalization was highest for infants in the 0- to 5-month

range.15

Seasonality of symptomatic hMPV varied considerably year to

year. While hMPV infection occurred throughout the study period,

four epidemic peaks were identified. Effective reproductive numbers

varied based on year and depending on the estimate of serial interval

used. We were unable to find other published estimates of the repro-

ductive number for hMPV and while better estimates of generation

interval are needed for more precise estimates, this study is an impor-

tant step forward in estimating the potential spread of pediatric

hMPV. During the epidemic periods observed, cases peaked in July or

August corresponding to the rainy season which lasts from June to

November. This seasonality is similar to other studies conducted in

tropical and subtropical areas where epidemic peaks tended to occur

during periods of high rainfall and high relative humidity,37,43,44 in

contrast to temperate areas where hMPV infection predominately

peaks in the winter and spring months.3 Globally, seasonality of hMPV

is broadly influenced by climatic features, but local metrological condi-

tions likely influence variation regionally and locally.3,16

While longer time scales are needed to assess fixed patterns

in seasonality, biennial seasonality occurred during the first

4 years. While most studies observe annual hMPV epidemic

cycles,16,31,36–38,44–48 biennial seasonality in hMPV infection is

uncommon,49 and has not been observed in the tropics. For some

infectious diseases, like measles, periodicity resulting in biennial trans-

mission is due to the variation of the proportion of susceptible individ-

uals in a population.50,51 While age structure and distribution of those

entering the cohort was stable throughout the study period, we are

unable to broadly assess if the total number of susceptible individuals

are changing and if this change influences the seasonality of hMPV.

This study was not without limitations. While this study is longer

compared with many cohort studies on hMPV, it is not long enough

to describe temporal patterns accurate of seasonal dynamics.

F I G U R E 5 Classical additive decomposition
of monthly hMPV infections. Panel A shows the
original non-detrended data of symptomatic
hMPV episodes per month from 2011 to 2017.
Panel B shows the trend-cycle component for
monthly data (seasonal and remainder
components extracted). Panel C shows the
seasonal component extracted from the original
data. Panel D shows the remainder component
when the trend-cycle and seasonal component are
extracted. The grey bars to the right of the panels
denote the scales of each of the components.
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Additionally, we did not assess genetic variation in hMPV, which

might offer insight into seasonal dynamics, disease severity, and rein-

fection dynamics. Based on current literature, there are no strong

associations between these lineages and disease severity, or when

detected, were found in smaller studies lacking substantial

power.16,45,48,52 It is likely that multiple lineages and changes in line-

age are occurring during the study period. Studies assessing the sea-

sonality of subgroup types have found alternating subgroup

seasonality, with subgroup dominance shifting every 1–3 years while

the clinical presentation of hMPV remained unchanged. This is consis-

tent with our study where hMPV-associated ALRI events were consis-

tently proportional to the number of symptomatic events. It is

therefore unlikely that changes in lineage effect the number of severe

ALRI outcomes. While specific genetic groupings are globally more

common in specific regions, for example in Asian countries after 2005

A2c and A2b genetic groupings were more common,6 than samples

derived from Europe, multiple lineages circulating in a specific season

are common and found globally3,6,10,15,16,30,31,38,45,47,53–57 without

substantial changes to their yearly seasonal dynamics.

hMPV is a ubiquitous childhood respiratory illness. While sero-

prevalence for hMPV is high, globally little is known about hMPV in

Latin America or how its dynamics might influence prevention, predic-

tion, and surveillance of hMPV. Here, we demonstrate that hMPV

infection is an important cause of ALRI in children and is particularly

important for children under 1 year of age. While hMPV infections

occur throughout the year, distinct biennial seasonality for hMPV

infection was evident in our cohort and may be important in defining

timing of future interventions.
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