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Abstract 

 Ecological communities are being impacted by global change worldwide. Experiments 

are a powerful tool to understand how global change will impact communities by comparing 

control and treatment replicates. Communities consist of multiple species and their associated 

abundances making multivariate methods a effective approach to studying community 

compositional differences between control and treated replicates. Dissimilarity metrics are a 

commonly employed multivariate measure of compositional differences; however, while highly 

informative, dissimilarity metrics do not elucidate the specific ways in which communities differ. 

Integrating two multivariate methods, dissimilarity metrics and rank abundance curves has the 

potential to detect complex differences based on dissimilarity metrics and detail the how these 

differences came about through differences in richness, evenness, species ranks, or species 

identity. Here we use a database of 106 global change experiments located in herbaceous 

ecosystems and explore how patterns of ordinations based on dissimilarity metrics relate to rank 

abundance-curve based differences. We find that combining dissimilarity metrics alongside rank 

abundance curve-based measures clarify how global change treatments are altering communities. 

We find that when there is no difference in community composition (no distance between 

centroids of control and treated replicates), there are rarely differences in species ranks or species 

identities and more often differences in richness or evenness alone. In contrast, when there are 

differences between centroids of control and treated replicates, this is most often associated with 

differences in ranks either alone or co-occurring with differences in richness, evenness, or 

species identities. We suggest that integrating these two multivariate measures of community 

composition results in a deeper understanding of how global change impacts communities. 



 

Key words: Centroids, data synthesis, dispersion, dissimilarity metrics, rank abundance curves, 

richness 

 

Introduction 

 Given the pressing concern of global change impacts on ecological communities 

(Franklin et al. 2016), there is an explosive growth of experiments studying global change. For 

example, globally distributed experiments alone (e.g. Henry and Molau 1997, Borer et al. 2014, 

Yahdjian et al. 2021), such as the Nutrient Network, Drought-NET, and the International Tundra 

Experiment, result in 100s of experiments worldwide. A key aspect of global change 

experiments – to understand the impacts of global change on biodiversity – presents a challenge 

because studying biodiversity is complex, and there is no agreed upon best approach (Avolio et 

al. 2015, McGill et al. 2015, Magurran 2016, Hillebrand et al. 2018). Two key aspects of 

biological community data are the species present and their associated abundances (Foster and 

Dunstan 2010, Avolio et al. 2019). Univariate measures, such as species richness boils all this 

complexity down to simply how many species are present, while most multivariate measures 

consider species identities and their abundances (Foster and Dunstan 2010). Not surprisingly, 

multivariate measures have been shown to be more sensitive than richness to detecting 

experimental impacts on plant communities (Komatsu et al. 2019).  

One common multivariate method is to use dissimilarity metrics, such as Bray-Curtis 

dissimilarity, to compare biological communities (Legendre and Anderson 1999, Legendre and 

Legendre 2012, Buckley et al. 2021). A benefit of this approach is that it summarizes complex 

community data into interpretable numbers – creating a scale with which to compare the 



similarity of biological communities. Another benefit is that these dissimilarity measures can be 

visualized in ordinations, typically called multivariate community space (Figure 1A) (McCune 

and Grace 2002, Legendre and Legendre 2012). When comparing two treatments, such as control 

and treated replicates, there are two aspects that can be reported on, the distance between the 

centroids (representative of overall differences in community composition) (Anderson 2001), 

and the dispersion of points (replicates) around the treatment centroid (representative of 

community variability among replicates) (Anderson 2006) (Figure 1A). 

 Dissimilarity-based measures have been shown to be useful for visualizing and detecting 

community changes over time or difference over space. However, ordinations do not clearly 

detail how community composition is different between treatments, and rank-abundance curves 

have been suggested to be a link between dissimilarity measures and specific community 

composition differences (Avolio et al. 2015, 2019). Rank-abundance curves are a type of species 

abundance distribution (McGill et al. 2007) that plots a species’ abundance versus its abundance-

rank in a community (Figure 1B). Most work on rank-abundance curves has been on quantifying 

the shape of the curve (e.g. Ulrich et al. 2010); however, important information is gained when 

attention is also paid to species identity (Mac Nally 2007). When accounting for species identity, 

rank-abundance curves can be used to compare two communities and detail all possible 

compositional differences (Figure 1B) (Avolio et al. 2019). Two communities can differ in 

richness (only measures the number of species, and ignores species identity and abundances), 

evenness (only measures distribution of abundances among species, ignores species identity), 

species identity (only measures species shared, and ignores abundances), and ranks (considers 

both species identities and their abundances) (Figure 1B). Thus, integrating rank abundance 

curve-based differences alongside dissimilarity-based measures of difference might be a 



powerful way to understand the impacts of experimental treatments on ecological community 

composition.  

Avolio et al. (2015) presented evidence of six patterns, hereafter scenarios, of 

dissimilarity-based multivariate differences (Figure 2) that are found in global change 

experiments. These six scenarios consider both differences in centroid means of replicates in a 

treatment and dispersion of replicates around the centroid in a treatment (Figure 1A). Next, 

Avolio et al. (2015) suggested using rank abundance curves (RACs) to understand what about 

community composition was different (Figure 1B), and outlined hypotheses for each of the six 

scenarios on how the communities differ between control and treatments (Table 1; Figure 2). 

Avolio et al. (2015) hypothesize that scenario 1 (no difference in composition or dispersion) 

corresponds with no difference in richness, evenness, ranks, or species identities. They 

hypothesized scenario 2 (no difference in composition but an increase in dispersion) and scenario 

3 (no difference in composition and a decrease in dispersion) were being driven by changes in 

rare species only, because compositional differences must be subtle for there to be no differences 

in centroids. They hypothesized that scenario 4 (a difference in composition with no change in 

dispersion) could not be the result of differences in richness or evenness alone, because 

differences in centroid means would necessitate differences in ranks or species identities. Finally, 

they hypothesized scenario 5 (a difference in centroids and an increase dispersion) and scenario 6 

(a difference in centroid means and a decrease in dispersions), required differences in ranks or 

species identities but that an increase in dispersion would occur when different species become 

highly abundant in replicates, and a decrease in dispersion would occur when the same species 

became highly abundant in replicates (Avolio et al. 2015). 



Our goal is to explore how dissimilarity-based scenarios of community responses to 

experimental treatments are related to differences in rank-abundance curves by testing the 

hypotheses presented in Avolio et al. (2015). For these analyses, we used the CoRRE database 

(Community Responses to Resource Experiments; www.corredata.weebly.com), which enabled 

us to compare control versus treatment community compositional differences across 106 

experiments worldwide.  

 

Methods 

Database 

The CoRRE database is a collection of global change experiments that manipulate at least 

one plant resource: CO2, water, and nutrients (see Appendix S1: Table S1 for a list of 

experiments). Not all treatments in each experiment are required to be resource manipulations 

and thus, we have non-resource treatments such as warming and herbivory. Additionally, each 

experiment in the database must have species abundance data for every species recorded in each 

replicate, at least three years of data, and a minimum of four replicates per treatment, however, 

data collection methods vary by experiment. All replicates are assigned as either control or a 

treatment. The experiments included in this analysis ranged from 183-1568 mm mean annual 

precipitation and from -12 to 22 ℃ mean annual temperature. For these analyses, we made 

control-treatment comparisons for each treatment within an experiment for each year of data, 

resulting in 2831 control-treatment comparisons. Komatsu et al. (2019) and Avolio et al. (2021) 

reported how plant communities responded to global change drivers; here we focus on how rank 

abundance curve-based measures are related to dissimilarity-based measures of community 

differences.  



Rank-abundance curve-based measures of community differences 

There are four rank abundance curve-based (RAC) measures of community 

compositional differences (Figure 1B) – differences in richness, evenness, rank, and species 

identity – which are detailed in Avolio et al. (2019). Briefly, richness difference is a proportional 

measure that ranges from -1 to 1 and is the difference in the number of species between the 

control and treated plots divided by the total number of species in the control and treated plots. 

Evenness difference ranges from -1 to 1 and is the difference in evenness measured using Evar 

(Smith and Wilson 1996) between control and treated plots. Rank difference ranges from 0 to 0.5 

and is the average difference in rank for each species between control and treated plots divided 

by the total number of species in treated and control plots. Species identity difference ranges 

from 0 to 1 and is the difference in species identity (or turnover) between two samples only, 

removing richness differences caused by species nestedness (Baselga 2010, Carvalho et al. 

2012).  

Statistical Analysis 

All analyses were done in R (R Core Team, 2021) using an alpha of 0.05, using data 

archived on EDI (Avolio et al. 2022a) and code archived on Zenodo (Avolio et al. 2022b; DOI 

10.5281/zenodo.6689891). We chose to do analyses for each year separately because we are 

interested in the relationships between measures of community composition rather than global 

change effects per se, and this way have the greatest possible control-treatment comparisons with 

which to detect patterns. To investigate patterns of community differences using dissimilarity 

metrics we calculated the difference in community composition and dispersion for each 

treatment in an experiment between control and treatment plots for all years of an experiment 

using Bray-Curtis dissimilarity in the multivariate_difference() function in library(codyn) 



(Avolio et al. 2019, Hallett et al. 2020). We also determined whether there were significant 

differences between control and treatment centroids using the adonis() function and differences 

in dispersion around the centroids using the betadisper() function in library(vegan) (Oksanen et 

al. 2019), again based on Bray-Curtis dissimilarity. We corrected for multiple comparisons 

within each dataset, adjusting the p-value for the total number comparisons including four RAC 

difference measures, number of years, and number of treatments using Benjamini-Hochberg 

correction (Benjamini and Hochberg 1996) with p.adjust() in R. For example, if an experiment 

had four treatments plus controls and five years of data, we corrected for 80 comparisons (4 

RAC distance measures × 4 treatment-control comparisons × 5 years). When there was a 

significant difference in dispersion between controls and treated plots, we noted whether the 

treatment had either greater or less dispersion than control plots, using the output from 

multivariate_difference(). Depending on whether there was a significant difference in centroids 

(p-value from adonis < 0.05) or dispersion (p-value from betadisper < 0.05) (Figure 2), and 

whether dispersion increased or decreased, we classified patterns of differences in centroids and 

dispersion according to the six scenarios outlined in Avolio et al. (2015). Thus, the different 

scenarios only reflect patterns based on dissimilarity-based multivariate measures. 

To link these dissimilarity-based metrics of differences between control and treatment 

plots with differences in rank abundance curves, we calculated the RAC differences (richness, 

evenness, rank, species identity) between control and treated plots for each year of an experiment 

using the RAC_difference() function in library(codyn). Specifically, we were interested in 

whether differences between control and treated plots significantly different from what would be 

expected from just natural heterogeneity, which we calculated as differences among control plots 

only. To determine difference in control and treated plots, each control plot was compared to 



each treatment plot for all treatments in the experiment, because most experiments were not 

blocked we did not account for blocks in this analysis. We then took the average of the control-

treatment differences for each control plot in each treatment. Thus, if there were six control plots 

and six treatment plots, for each control plot the average difference between it and each 

treatment plot was calculated, resulting in n = 6. We repeated this analysis, but for the control 

plots only, as a comparison for natural heterogeneity among control plots for each year of an 

experiment. For each control plot, we calculated the average of how different it was from all 

other control plots. Thus, similarly to the control-treatment comparisons, if there were six control 

plots, for each control plot the average difference between it and each control plot was 

calculated, resulting in n = 6. We then ran t-tests between control-treatment difference versus 

control-control difference for each treatment for each year of the experiment. We again corrected 

for multiple comparisons for each dataset using the Benjamini-Hochberg method. We binned 

these responses as significant (p < 0.05) or not, with significant effects demonstrating that the 

control-treatment differences were more different than the control-control differences. We first 

look at whether each RAC based measure alone was different for each scenario and then 

combined these measures to encompass all the possible combinations. Because Avolio et al. 

(2015) hypothesized that differences richness and evenness alone could not result in a difference 

between centroids, we first combined these two measures only, and then combined them with 

differences in ranks and differences in species identities. Finally, we combined differences in 

ranks and species identities with differences in richness and/or evenness. 

We hypothesized that rare species drive changes in dispersion when there is no 

concurrent change in community centroids (scenarios 2 and 3). To test this hypothesis, we re-ran 

the adnois(), betadisper(), and multivariate_difference() functions excluding rare species. Rare 



species were defined as those species that has less than 5% relative cover, averaged over all 

control plots for all years of the experiment. If the hypothesis was correct, the percent of studies 

that fit those scenarios would decrease with rare species removed. Finally, to test whether the 

same or different species were becoming more abundant in scenarios 5 and 6, we used the 

abundance_difference() function in codyn comparing the treatment to the control plots. For each 

species we the calculated difference in relative abundance between treatment and control plots.  

We then calculated the proportion of treatment plots where a species increased by at least 20% in 

their relative abundance relative to the control plots (similar results were obtained with a 10% 

increase). If the same species was increasing in many/most plots, the hypothesis for scenario 6, 

this would be a high proportion. In contrast, if different species were increasing in different 

replicates, the hypothesis for scenario 5, this would be a lower proportion. We performed a t-test 

to study the difference in proportion of treatment plots a species became dominant in scenario 5 

versus scenario 6, expecting it to be higher in 6 than 5. 

 

Results 

Linking multivariate scenarios to rank abundance curve-based measures   

Scenario 1 (= composition, = dispersion) – This scenario was the most common scenario 

(Figure 3). We hypothesized that when no community differences were detected based on 

multivariate measures, there would also be no differences in richness, evenness, ranks or species 

identity of control and treated replicates. For the most part, we find support for this hypothesis, 

as we detected the fewest control-treatment differences with measures based on rank abundance 

curves (RACs) (Figure 4). The most common control-treatment differences were in richness or 

evenness only (Figure 4). However, there was some mismatch, as we detected some significant 



control-treatment RAC difference in 20% of comparisons, suggesting that some control-

treatment differences are occasionally not detected by multivariate measures. 

Scenarios 2 (= composition, ↑ dispersion) and 3 (= composition, ↓ dispersion) – 

Scenarios 2 and 3 rarely occurred (Figure 3). We hypothesized that scenarios 2 and 3 were being 

driven by rare species. When we removed rare species, there was no change in the percent of 

studies that fit that scenario 2 and an increase to 7% of the number of control-treatment 

comparisons that fit scenario 3. Thus, we found no evidence that these scenarios are being driven 

by rare species; in fact, rare species appear to dilute the ability of betadisper() to pick up 

significant decreases in treatment plot dispersions (scenario 3). For scenario 2, most cases 

involved differences in species ranks either alone or co-occurring with other measures (Figure 4). 

For scenario 3, most cases exhibited differences in richness with a few others showing 

differences in species identities co-occurring with other (Figure 4). Interestingly, while both 

scenarios 2 and 3 reflect community differences between treated and control replicates, again, 

there was a mismatch between what was detected by rank-abundance curve measures. When 

dispersion was significantly different, measures based on rank abundance curves detected 

significant differences only 49% of the time for scenario 2 and only 27% of the time for scenario 

3. 

Scenario 4 (Δ composition, = dispersion)– Scenario 4 was the second most common 

multivariate scenario of control-treatment differences detected (Figure 3). When there were only 

differences in centroid means between control and treated replicates, there were most often 

differences in ranks co-occurring with richness or evenness differences, and less commonly with 

any one measure alone (Figure 4). Generally, there was agreement between multivariate and 



rank-abundance curve measures of community differences; RAC differences were detected in 

85% of the studies with significant control-treatment centroid differences. 

Scenarios 5 (Δ composition, ↑ dispersion) and 6 (Δ composition, ↓ dispersion) – 

Scenarios 5 and 6 were also uncommon (Figure 3). Scenario 5 was most associated with 

differences in ranks co-occurring with other RAC differences, while scenario 6 was most 

associated with differences in ranks and species identity differences co-occurring with 

differences in richness and evenness (Figure 4). There was also the strongest agreement between 

detecting significant differences based on dissimilarity measures versus rank abundance curve-

based measures; rank abundance-curve based measures detected at least one aspect of control-

treatment differences: 95% of the time for scenario 5 and 92% of the time for scenario 6. Avolio 

et al. (2015) hypothesized the difference between scenarios 5 and 6 was dependent on the 

proportion of replicates in which the same species increased in abundance. For scenario 5, when 

there is divergence, it was hypothesized that a species would become abundant in a small 

proportion of treatment replicates. In contrast, it was hypothesized that in scenario 6, when there 

is convergence, the same species would become abundant in many of the treatment replicates. 

We found evidence for both hypotheses, where similar species became dominant in only 25.7% 

± 0.3 of replicates in Scenario 5, whereas similar species became dominant in significantly more 

replicates (59% ± 2.2) in Scenario 6 (t = -14.75; p < 0.001).  

Discussion 

Gaining insights into how biodiversity is impacted by global change is a top research 

priority (O’Connor et al. 2021), and numerous studies have pointed to the necessity of including 

both species identity and their abundances in our attempts to understand community changes 

(Hill 1973, Help et al. 1998, Gotelli and Colwell 2001, Wilsey et al. 2005). Experiments are an 



important tool for studying global change (Schlesinger 2006), and here, we compare and 

integrate two different methods for studying multivariate community compositional differences 

between control and treated replicates – dissimilarity metrics (and their ordinations) (Bray and 

Curtis 1957, Anderson et al. 2006) and rank abundance curves (RACs) (Foster and Dunstan 

2010, Avolio et al. 2019). We assessed relationships between scenarios of community 

compositional differences based on dissimilarity metrics with compositional differences based on 

rank-abundance curves. Overall, we find support for the hypotheses put forth in Avolio et al. 

(2015). For example, differences in richness and evenness alone rarely resulted in differences in 

centroids. Further, we found intuitive links between dissimilarity-based scenario of control-

treatment differences and rank-abundance curve-based measures of community differences.  

When comparing control and treatment replicates, if there is no difference between their 

centroids (Anderson et al. 2008), one would conclude there is no compositional difference 

between control and treatment communities (Scenarios 1-3; Figure 2). Overall, when there was 

no difference between control-treatment centroids, we found many fewer control-treatment 

differences based on rank-abundance curves. Differences in dispersion were associated with all 

RAC-based measures of community composition differences except species differences alone. 

Interestingly, we found much fewer significant control-treatment differences based on rank 

abundance curve-based measures demonstrating that dispersion is a subtle aspect of community 

difference. Detecting differences in variance is important for ecological properties (Benedetti-

Cecchi 2003), and dissimilarity metrics appear to be most sensitive to detecting these 

differences. 

When there are differences in control-treatment centroids (scenarios 4-6; Figure 2), one 

can conclude that there are compositional differences between these communities. Avolio et al. 



(2015) hypothesized that rarely would richness or evenness alone result in differences in 

centroids, which we confirmed. Richness has been recognized as an insensitive measure of 

community compositional differences (Magurran 2016), with evenness less investigated. We 

found differences in centroids was most associated with differences in ranks either alone or co-

occurring with other measures of differences, such as richness, evenness, or species identity. 

Shifts in the rank order of species in a community is an underappreciated mechanism by which 

community composition can change (Jones et al. 2017), in comparison to species identity 

differences and turnover. In the context of global change, while species migrations will occur as 

species track their more ideal environmental conditions (Neilson et al. 2005), for terrestrial plant 

species, this will be a slow process (Jump and Penuelas 2005, Aitken et al. 2008). Instead 

changes in local competitive conditions will result in different species hierarchies as species 

increase or decrease in dominance. Thus, paying attention to shifts in ranks may be a more 

important process on shorter time scales than shifts in species identities. In contrast, we found 

that differences between control and treatment communities rarely were the result of species 

identity differences. Dissimilarity metrics have been used as a proxy for compositional 

differences, or turnover (Magurran et al. 2010); however, our finding here suggest that 

compositional differences inferred from ordinations based on Bray-Curtis dissimilarity rarely 

reflect species identity differences, and instead reflect differences in ranks (Avolio et al. 2019). 

Instead, different indeces that focus on turnover may be necessary to directly study species 

identity differences (Vellend 2001).  

The number of ways to study community composition is large and increasing. Here, we 

demonstrate that ordination patterns based on dissimilarity metrics, a common approach to 

comparing two or more communities, intuitively reflect underlying community compositional 



differences. This link between rank abundance curves and dissimilarity measures will hopefully 

yield insights into mechanisms underlying compositional responses of communities to global 

change. For example, knowing that differences in ranks are an important process, studies can 

then investigate which species have different ranks and try to pinpoint the mechanisms 

associated with these differences. One method may be to use rank clocks to visualize which 

species are undergoing the most drastic shifts in abundance (Collins et al. 2008). Our work 

stresses the importance of utilizing multiple measures of community differences to wholistically 

study biological communities from a variety of angles. This will provide more detailed 

management targets and predictions for cascading effects of altered community composition on 

ecosystem function. 
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Tables 

Table 1. Hypothesized relationships between rank abundance curves and dissimilarity-based 

community patterns between control and treated replicates (differences in centroid and 

dispersion). For each dissimilarity-based scenario, Avolio et al. (2015) hypothesized whether 

differences in one aspect of the rank abundance curve alone would likely give rise to that pattern, 

and our unit of consideration is each replicate. Please note that these differences are not mutually 

exclusive, meaning multiple aspects can be different simultaneously. Reprinted with 

modifications from Avolio et al. (2015)  

Scenario Multivariate Community 
pattern 

Rank Abundance Curve Differences 

Richness Evenness Ranks Species Identity  
Scenario 1 = composition, = dispersion  No No No No 
Scenario 2 = composition, ↑ dispersion  Yes 

 
Yes† Yes† Yes† 

Scenario 3 = composition, ↓ dispersion  Yes Yes† Yes† Yes† 
Scenario 4 Δ composition, = dispersion  No No Yes‡ Yes‡ 
Scenario 5 Δ composition, ↑ dispersion  No No Yes§ Yes§ 
Scenario 6 Δ composition, ↓ dispersion  No No Yes⸹ Yes⸹ 

 

† Will occur only if the response is limited to rare species  

‡ Will occur only if the same species respond similarly in all replicates  

§ Will only occur if different rare species become dominant across replicates 

⸹ Will only occur if the same species become dominant across replicates  



Figures 

Figure 1. Different methodological approaches to study community compositional differences. 

A) Dissimilarity-based measures assess differences between centroids and the dispersion of 

points around the centroid. B) Rank-abundance curve-based measures compare the richness, 

evenness, ranking of species, and species composition differences. Each colored point represents 

a species and S denotes the species richness. Figure modified from Avolio et al. (2019). 

Figure 2. Hypotheses of what mechanisms of compositional difference underlie patterns of 

dispersion and centroid differences. This figure is modified from Avolio et al. (2015), each 

scenario is numbered in red and matches the text accordingly. 

Figure 3. For each scenario, the percentage of times it was observed out of all 2831 control-

treatment comparisons. 

Figure 4. For each RAC difference measure alone and in combination, the percent of studies that 

found differences between control and treated replicates based t-tests. We binned community 

differences as differences in richness (R), evenness (E), rank (Ra), and species identity (S) alone, 

then differences in richness and evenness only (R + E), rank differences co-occurring with any 

combination of richness and evenness (Ra  + R &/or E), species identity difference co-occurring 

with any combination of richness and evenness (S + R &/or E), and finally, ranks and species 

identity difference co-occurring with any combination of richness and evenness (Ra + S + R 

&/or E). Scenarios (1-6) are denoted in the upper left corner of each panel. 
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