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Abstract
Purpose: Current radiation therapy (RT) treatment planning relies mainly on
pre-defined dose-based objectives and constraints to develop plans that aim to
control disease while limiting damage to normal tissues during treatment.These
objectives and constraints are generally population-based,in that they are devel-
oped from the aggregate response of a broad patient population to radiation.
However, correlations of new biologic markers and patient-specific factors to
treatment efficacy and toxicity provide the opportunity to further stratify patient
populations and develop a more individualized approach to RT planning. We
introduce a novel intensity-modulated radiation therapy (IMRT) optimization
strategy that directly incorporates patient-specific dose response models into
the planning process. In this strategy, we integrate the concept of utility-based
planning where the optimization objective is to maximize the predicted value of
overall treatment utility, defined by the probability of efficacy (e.g., local control)
minus the weighted sum of toxicity probabilities. To demonstrate the feasibility
of the approach, we apply the strategy to treatment planning for non-small cell
lung cancer (NSCLC) patients.
Methods and materials: We developed a prioritized approach to patient-
specific IMRT planning. Using a commercial treatment planning system (TPS),
we calculate dose based on an influence matrix of beamlet-dose contributions
to regions-of -interest. Then, outside of the TPS, we hierarchically solve two
optimization problems to generate optimal beamlet weights that can then be
imported back to the TPS. The first optimization problem maximizes a patient’s
overall plan utility subject to typical clinical dose constraints. In this process,
we facilitate direct optimization of efficacy and toxicity trade-off based on indi-
vidualized dose-response models. After optimal utility is determined, we solve
a secondary optimization problem that minimizes a conventional dose-based
objective subject to the same clinical dose constraints as the first stage but with
the addition of a constraint to maintain the optimal utility from the first optimiza-
tion solution. We tested this method by retrospectively generating plans for five
previously treated NSCLC patients and comparing the prioritized utility plans to
conventional plans optimized with only dose metric objectives. To define a plan
utility function for each patient, we utilized previously published correlations of
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dose to local control and grade 3–5 toxicities that include patient age, stage,
microRNA levels, and cytokine levels, among other clinical factors.
Results: The proposed optimization approach successfully generated RT plans
for five NSCLC patients that improve overall plan utility based on personalized
efficacy and toxicity models while accounting for clinical dose constraints.Priori-
tized utility plans demonstrated the largest average improvement in local control
(16.6%) when compared to plans generated with conventional planning objec-
tives. However, for some patients, the utility-based plans resulted in similar local
control estimates with decreased estimated toxicity.
Conclusion: The proposed optimization approach,where the maximization of a
patient’s RT plan utility is prioritized over the minimization of standardized dose
metrics, has the potential to improve treatment outcomes by directly accounting
for variability within a patient population. The implementation of the utility-
based objective function offers an intuitive, humanized approach to biological
optimization in which planning trade-offs are explicitly optimized.
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1 INTRODUCTION

Advances in radiation therapy (RT) planning and deliv-
ery techniques have led to improved outcomes for
cancer patients, both in terms of increased control rates
and decreased treatment toxicity.1–3 However, balancing
disease control with adverse therapy effects contin-
ues to be a challenge in RT and across many other
cancer treatment modalities. In external beam RT, this
trade-off is inherent because delivery of radiation to
the tumor often requires the use of beam trajectories
that traverse adjacent normal tissue structures prior to
and after converging on the target.4 Consequently, pro-
viding a sufficient therapeutic dose to the tumor may
result in radiation-induced normal tissue toxicities,which
can negatively impact a patient’s quality-of -life during
and after treatment.1–5 Modern RT techniques, such
as intensity-modulated radiation therapy (IMRT), have
made it possible to deliver highly non-uniform dose
distributions with steep dose gradients between tar-
get locations and organs-at-risk (OARs). While this has
enabled improved OAR sparing,optimizing an RT plan to
best balance the individualized potential for disease pro-
gression and treatment toxicities remains hindered by
conventional dose-metric-based planning techniques.

Conventional RT treatment planning attempts to
address these trade-offs by optimizing radiation deliv-
ery based on predefined dose-based objectives that
have either been previously correlated with measures of
control and toxicity or determined from expert consen-
sus and institutional standards. In inverse IMRT treat-
ment planning, these surrogates of biological response
are often incorporated into a single objective func-
tion through individually weighted linear or quadratic
penalties, and the fluence map is optimized to mini-
mize the sum of these penalties.6 During this process,

treatment guidelines and acceptable clinical trade-offs
are implicitly translated and incorporated into the opti-
mization objective by adjusting the relative importance
of each dose-based penalty, relying heavily on the plan-
ner’s experience and expertise to guide the process.7

Although a substantial amount of research has focused
on weight selection to improve plan quality,8–16 this opti-
mization approach is limited by the inability to directly
include individualized, quantitative estimates of the
biological outcomes in the optimization process.

Recently, advancements in optimization approaches
and availability of commercial products for biological
optimization have facilitated the move beyond conven-
tional dosimetric planning, allowing for the inclusion
of tumor control probability (TCP) and normal tissue
toxicity probability (NTCP) models in the plan optimiza-
tion process.17 Although implementations of available
biological optimization methods differ, they are gen-
erally restricted in the ability to use both estimated
biological response objectives and conventional dose-
based objectives to drive the optimization process.17–19

Instead,dose-based objectives may only be regarded as
hard constraints in the optimization process, potentially
limiting the ability to decrease dose to OARs with unde-
fined biological response objectives.17–19 Additionally,
these systems continue to rely on aggregated response
models and do not account for patient-to-patient vari-
ability in tissue radiosensitivity. Recent studies have
focused on addressing this through the inclusion of per-
sonalized models in the planning process.20–23 While
these studies have demonstrated the ability to opti-
mize treatments based on patient-specific outcome
predictions, they remain limited to three-dimensional
conformal radiotherapy (3DCRT) optimizing the beam
angles and monitoring units20–22 or prescription.23 Addi-
tionally, these methods do not explicitly incorporate
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currently accepted clinical dose constraints which may
impede clinical acceptance or diminish the realized
benefit of the planning strategies.

To overcome these limitations, we propose an IMRT
optimization method, termed prioritized utility optimiza-
tion (PUO), that augments the traditional dosimetric
inverse treatment planning process by directly incorpo-
rating quantitative estimates of personalized biological
response while maintaining current dose-based plan-
ning objectives. This builds upon previous work that
introduced the concept of utility-based planning, in
which individualized optimal dose was selected by max-
imizing plan utility defined by a weighted combination of
predicted efficacy and toxicity probabilities.24–25 These
studies demonstrated the ability of utility-based plan-
ning to increase efficacy while maintaining or reducing
toxicity levels in a population but were limited to scal-
ing of fixed dose distributions. In the proposed IMRT
optimization approach, we translate this methodology
into a constrained hierarchical optimization problem that
prioritizes maximization of plan utility over minimiza-
tion of typical dose metrics and is subject to clinical
hard constraints throughout. Through this approach, we
add the ability to redistribute dose and aim to fur-
ther exploit predictive models of efficacy and toxicity
based on biological markers, clinical factors, and patient
demographics, to improve the personalization of plan-
ning trade-offs. To the authors’ knowledge, this is the
first study to propose a prioritized approach to biologi-
cally based treatment planning. This approach attempts
to overcome the current limitations of biological opti-
mization techniques by improving user-interpretability
of the biological objective and optimization process,
directly integrating tradeoff exploration between pre-
dictive outcome models, and allowing for the inclu-
sion of dose-based constraints and objectives. Overall,
the methodology outlined in this study aims to pro-
vide patient-specific outcome-based treatment planning
without compromising currently accepted dose-based
treatment planning standards. In this study,we introduce
and evaluate the feasibility of the proposed method,
PUO, by applying it to the cohort of previously treated
non-small cell lung cancer (NSCLC) patients.

2 MATERIALS AND METHODS

2.1 Optimization overview

Our proposed approach utilizes a two-stage optimiza-
tion process to first maximize plan utility and then
minimize dose-based metrics. Figure 1 provides the
mathematical formulation of the optimization problems
and Table 1 provides a full description of the notation
used in defining the problems. In Stage 1, the objec-
tive is to maximize plan utility defined by the predicted
efficacy probability based on target dose, minus the

weighted sum of predicted toxicity probabilities across
multiple OARs based on respective OAR doses. The
efficacy and toxicity models are assumed to be mono-
tonic functions of a dose metric, with increasing dose to
the structure never decreasing the predicted probability
of the event occurring to that structure. The weighting
parameter for each toxicity,θ, represents the undesirabil-
ity of toxicity relative to the efficacy measure and can
be adjusted based upon physician and/or patient prefer-
ence,or tuned to result in an acceptable rate of predicted
toxicity across a patient population.25

The maximization of plan utility in Stage 1 is subject to
inviolable clinical criteria for the plan, guaranteeing that
any solution meets dose-based hard constraints (1b–
f), presented in Figure 1. These constraints are based
on the following three rationales. First, for any individ-
ual patient, increasing predicted efficacy can only occur
by increasing dose to the target. Since a single target
dose metric is used to predict efficacy, maximization of
utility through increasing efficacy may result in unac-
ceptable target dose heterogeneity. This has previously
been noted as a potential issue in biological optimiza-
tion methods and is addressed through constraint (1b).17

Second, it is possible that optimal solutions exist at dose
values above or below levels that physicians would be
comfortable prescribing. Hard constraints (1c) and (1d)
are used to avoid these solutions and avoid extrapolat-
ing model predictions to dose values beyond those in
the dataset used to fit the models. Lastly, it is unlikely
that every dose-limiting OAR will have a toxicity model
corresponding to every dose metric typically used to
limit OAR doses during planning. Therefore, constraints
(1d–f) are included to ensure that any solution remains
within traditional OAR dose limits. To avoid non-convex
functions of dose,dose-volume constraints (DVC),which
are typically represented by value-at-risk (VaR) metrics
(e.g., V20Gy, D0.1cc), are instead represented by upper
conditional value-at risk (CVaR+) metrics in constraint
(1f). CVaR+ represents a convex DVC that captures the
mean upper-tail dose of a structure’s dose-volume his-
togram and has previously been used to formulate linear
RT optimization problems.26–28

In Stage 2, the objective is to minimize dose-
based metrics similar to traditional plan optimization
approaches. Stage 1 (biological objective) and Stage
2 (dose-based objective) are intentionally separated to
eliminate the need to weight outcomes directly against
dose metrics and maintain user interpretability of the
utility objective and outcome weighting factors in Stage
1. Although the utility objective is prioritized, the inclu-
sion of dose-based constraints in Stage 1 prevents
the solution from compromising physical dose require-
ments. However, Stage 1 effectively only optimizes the
OAR dose-metrics used in toxicity models for the utility
function. Therefore, the plan resulting from the Stage 1
optimization solution may not be Pareto optimal across
all clinically relevant OARs and corresponding dose
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F IGURE 1 Mathematical formulation of the optimization problems

TABLE 1 Optimization notation glossary

Symbol Description Symbol Description

s Structure index 𝜃s,m Weight for structure s, metric m

Vs Voxel set for structure s PE Estimated probability of efficacy

x Fluence map Ps,m
T Estimated probability of toxicity metric m for structure s

A Influence matrix Hs Heterogeneity coefficient for structure s

As Influence matrix corresponding to structure s CVaR+ Upper conditional value-at-risk

As,j Influence matrix corresponding to voxel j in structure s ds,k

CVaR+ Upper CVaR dose limit for structure s at level k

ds
min Minimum dose limit for structure s Δk Volume fraction for CVaR+metric at level k

ds
max Maximum dose limit for structure s 𝜁s,k Free variable for structure s, metric k

ds
mean Mean dose limit for structure s f ∗1 Stage 1 optimal objective value

𝓁EUD Linear equivalent uniform dose 𝜂 Relaxation parameter between utility metrics for Stages 1 and 2

𝛼s 𝓁EUD weighting factor for structure s
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metrics, and dose metrics not used in the toxicity mod-
els can still potentially be reduced. Therefore, Stage 2
can be considered a solution “clean-up” or refinement
step, in which all OAR doses are reduced while attempt-
ing to maintain the optimal plan utility from Stage 1. For
computational efficiency, the objective function is a sum
of linearized equivalent uniform dose (ℓEUD). ℓEUD is
a convex piecewise-linear (PWL) approximation of gen-
eralized equivalent uniform dose and is calculated as
a linear weighted combination of the mean and max-
imum doses for a structure.29 In this formulation, the
structure-specific parameter α defines the importance
of max dose and mean dose, ranging from 0 to 1. Con-
straints (2a–f) are simply carried over from constraints
(1a–f) in Stage 1. However, a new constraint, (2g), is
added to preserve the optimal plan utility from Stage
1. This constraint allows for relaxation of the Stage 1
plan utility value to allow sufficient search space for the
Stage 2 optimization to reduce OAR doses. The relax-
ation parameter, η, determines the allowable plan utility
degradation between Stage 1 and Stage 2. Although a
value of 1 is ideal (maintaining the optimal utility found in
Stage 1), in practice a value slightly less than 1 may be
required to provide the optimization algorithm sufficient
search space to improve dose metrics in Stage 2.

2.2 Technical implementation

Optimization first requires calculation of an influence
matrix, A, which represents the dose contribution of a
discretized beam to a set of voxels, or points, within
a patient volume. To facilitate this process, we built a
plugin using a research version of the Eclipse Scripting
Application Program Interface (ESAPI v15.5) (Varian
Medical System Inc., Palo Alto, CA) to allow inte-
gration of our process with our commercial Eclipse
treatment planning system (TPS). Integration with the
TPS provided access to patient images, structures,
beam configuration, and dose calculation as needed
throughout the planning process. Point clouds were
generated using pseudorandom point sampling of
pre-defined structures within a patient’s body with
adjustable structure-specific point spacing. Multi-field
IMRT plans were configured using pre-defined beam
angle templates that were initially fit to the target struc-
ture(s) and then expanded to create a beam that could
be divided into uniform beamlet sizes. To calculate the
influence matrix, we used an ESAPI method that sep-
arates a beam into beamlets based on a user-defined
size parameter and calculates a full-scatter influence
matrix using the analytical anisotropic algorithm (AAA
v15.5.11) (Varian Medical System Inc., Palo Alto, CA).
To reduce the overall size and complexity (i.e., num-
ber of variables and constraints) of the optimization
problems, this clinically accurate influence matrix cal-
culation was separated into primary and secondary

dose contributions. Secondary dose contributions,
consisting of low dose scatter components, were
removed from the influence matrix and summed for
each point separately across each beam. These con-
tributions were then incorporated into the optimization
dose estimation by multiplying the total low dose scatter
component by the corresponding average beam flu-
ence.The decision variables in the optimization problem
were beamlet fluence intensities, x, that were forced to
be non-negative with constraints (1a) and (2a).

Maximization of the utility function (f1) requires that
the efficacy model is concave relative to dose, and the
toxicity models are convex relative to dose, within the
relevant prediction range. Although predictive models
of efficacy and toxicity could take on many non-linear
forms, they are typically represented by sigmoidal func-
tions of dose (e.g., NTCP and TCP). Methods exist for
transforming these types of partially convex and con-
cave functions into purely convex or concave functions
for the purposes of optimization and are useful in deter-
mining Pareto efficient solutions.30–32 However, these
transforms obscure the relative importance of abso-
lute changes in efficacy and toxicity in a weighted-sum
approach and do not preserve the interpretability of the
utility function and weights (θ’s). Therefore, PWL relax-
ations of these models were implemented for the Stage
1 objective function and for constraint (2g) in Stage 2,
reducing the problems to linear programs which can
be efficiently solved with off -the-shelf commercial opti-
mization solvers. PWL functions are routinely used to
approximate nonlinear optimization problems with more
computationally manageable linear ones while preserv-
ing continuity and concavity.33 For the utility function
f1, PWL approximations extended across the convex or
concave envelope of the dose response functions with
extensions beyond the envelope acceptable within the
maximum allowable error of 0.5% (absolute). To cre-
ate the linear segments within the PWL approximations,
we sampled breakpoints on the original nonlinear dose-
response functions starting with 10 segments per func-
tion. If the initial approximation was found to have error
exceeding the allowable threshold at any point within the
approximation,additional segments were added until the
error was below the threshold. Additionally, since many
predictive models are based on biological dose, rather
than physical dose, we implemented the ability for mod-
els to be based on equivalent dose in 2 Gy fractions
(EQD2) for OARs using PWL approximations (starting
with four segments), and linear scaling for target vol-
umes with approximation errors less than 1 Gy (EQD2)
over the relevant dose range.To eliminate approximation
errors during plan evaluation, plan utility and individ-
ual components of the utility function were recalculated
after optimization using the original functions.The result-
ing linear optimization problems were solved using a
third-party commercial optimization solver Gurobi v9.0.3
(Gurobi Optimization, LLC, Beaverton, OR) through the
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TABLE 2 Patient characteristics and overall plan utility metrics

Target details Plan utility (D95% (Gy))
Patient
number

PTV volume
(cc) Laterality Description 3DCRT VMAT DOO PUOS1,mod PUO

1 124 Right Near heart with separate posterior
node

0.474 (64.3) 0.423 (60.1) 0.449 (60.1) 0.726 (85.4) 0.720 (83.0)

2 119 Right Middle lobe, single target 0.298 (61.9) 0.414 (60.2) 0.427 (60.2) 0.729 (85.1) 0.728 (85.3)

3 333 Right Superior lobe with mediastinal
involvement

0.355 (62.1) 0.314 (60.0) 0.341 (60.0) 0.578 (84.8) 0.442 (65.3)

4 282 Left Mid-superior lobe near esophagus
with separate node

0.271 (71.3) 0.360 (60.0) 0.339 (60.0) 0.421 (60.6) 0.409 (58.6)

5 929 Left Encompassing the 0.206 (65.1) 0.294 (60.0) 0.295 (60.0) 0.382 (60.7) 0.371 (60.0)

Superior lobe

Abbreviations: 3DCRT, three-dimensional conformal radiotherapy; DOO, dose-only optimization; PUO, prioritized utility optimization; PUOS1,mod, prioritized utility
optimization stage 1 without OAR hard constraints; VMAT, volumetric modulated arc therapy.

.NET interface on a workstation with dual Intel Xeon
E5-2620 v4 8-core processors and 64 GB of memory.
Interior point, or barrier, methods have recently demon-
strated good performance across linear and non-linear
optimization problems in radiation therapy, including
prioritized approaches.34,35 Therefore, for our linear
problems,we tested both barrier and simplex algorithms
implemented in Gurobi to determine which method was
more suitable for this set of optimization problems.

Following optimization, the optimal fluence map can
be directly imported into the TPS using ESAPI, allow-
ing for leaf sequencing, final dose calculation, and plan
visualization. Since our optimization process does not
include a fluence smoothing stage or intermediate full
dose calculation,dose discrepancies after leaf sequenc-
ing and final dose calculation are expected but are
not the focus of this initial feasibility study. Therefore,
quantitative plan comparisons for this study are lim-
ited to optimization solutions prior to these steps when
possible.

2.2.1 Retrospective planning study

For this initial demonstration of the proposed optimiza-
tion strategy, five previously treated NSCLC patients
were selected for retrospective treatment planning and
plan comparison. These patients were selected to
be representative of the variation in patient geome-
try, target size, and model inputs from a cohort of
125 stage II-III NSCLC patients previously treated on
institution review board (IRB) approved prospective
studies. Table 2 provides details for the five patients.
All patients were treated with definitive standard or
dose-escalated 3DCRT with or without sequential or
concurrent chemotherapy. These studies included data
collection previously used to generate predictive mod-
els of local regional progression-free survival at 2
years (LRPFS2y),36 grade ≥3 cardiac events within

2 years (CE3+,2y),37 grade ≥3 radiation esophagi-
tis (RE3+),38 grade ≥3 radiation-induced lung toxicity
(RILT3+)39 based on patient demographics, clinical fac-
tors,and biomarkers.The RE3+ and RILT3+ models were
based on toxicities reported and graded during regu-
larly scheduled follow-up evaluations for up to 2 years
following RT.38,39 Although the referenced LRPFS2y and
CE3+,2y models were developed using longer term retro-
spective review of patient data, for this study we limited
these models to time endpoints of 2 years following
RT to match the timeframe for the RE3+ and RILT3+
models, which is also similar to the reported median
overall survival time for this patient cohort.36,37 We used
these previously published models, further described
in Table 3, to generate personalized predictive dose
response curves, shown in Figure 2. These patient-
specific predictions are utilized in Stage 1 of the PUO
process for optimization and calculation of overall plan
utility, as well as constraint (2g) of Stage 2. For this
initial study, θ values were uniformly set to 1, represent-
ing equal trade-off between efficacy and each toxicity
in the utility function. To avoid use of a non-convex
DVC in the optimization process, max dose was used
in place of D2cc for the esophagus model, leading to
slight over-estimation of RE3+ during optimization (typ-
ically <0.5%, absolute). Although a CVaR+ metric could
alternatively be used to estimate D2cc, it also represents
an approximation and results in similar over-estimation
error. Therefore, to reduce computational complexity,
max dose was used during optimization. However, final
utility values for plan evaluation were calculated using
D2cc for the RE3+ prediction.

IMRT plans using the PUO approach were generated
for the five patients. These 30-fraction plans consisted
of 8 non-opposing 6 MV photon treatment fields placed
at standardized beam angles based on target laterality.
Beam angle templates were determined by a dosimetrist
with clinical experience in IMRT planning for lung cases
and were reviewed for appropriateness based on the
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TABLE 3 Models used in the calculation of plan utility for NSCLC

Model Reference Structure
Dose
metric α/β Covariate(s)

LRPFS2y 36 PTV Mean EQD2 10 Serum microRNA, age, concurrent chemotherapy, stage, KPS

CE3+,2y 37 Heart Mean EQD2 2.5 Pre-existing cardiac disease

RE3+ 38 Esophagus D2cc EQD2 10 Age, chemotherapy utilization, smoking status, KPS

RILT3+ 39 Lungs (-GTV) Mean EQD2 3 Baseline cytokine levels, age, former smoking status,
concurrent chemotherapy

Abbreviations: CE3+,2y, grade ≥ 3 cardiac events within 2 years; KPS, Karnofsky performance status; LRPFS2y, local regional progression-free survival at 2 years;
RE3+, grade ≥ 3 radiation esophagitis; RILT3+, grade ≥ 3 radiation-induced lung toxicity.

F IGURE 2 Predictive efficacy and toxicity models used to estimate overall plan utility: local regional progression-free survival at 2 years
(LRPFS2y, top left), grade ≥ 3 cardiac events within 2 years (CE3+,2y, top right), grade ≥ 3 radiation esophagitis (RE3+, bottom left), and grade ≥

3 radiation-induced lung toxicity (RILT3+, bottom right). All cases included in the generation of the models are plotted with gray solid lines while
the five cases used for plan comparison are plotted with colored dashed lines. White background areas represent the model ranges used in
study, whereas the gray background represents ranges excluded by hard constraints during optimization. The CE3+ model only stratifies into
two distinct groups since it is based one binary covariate, baseline cardiac disease, with heart dose.

planning geometry in these five cases. For the influence
matrix calculation, beamlets were set to a size of 0.5 ×
0.5 cm except for patient 5 which required 1.0 × 1.0 cm
beamlets due to the large planning target volume (PTV)
volume and computational limitations.Volume dose was
calculated at a resolution of 2.5 × 2.5 × 3.0 mm3 and the
influence matrix was sampled with 2 to 6 mm isotropic
point spacing depending on the volume and importance
of the structure.

Structure constraints used in the optimization are
shown in Table 4. Mean and max OAR dose constraints
were based on our institution’s standard-of -care dose
objectives for conventionally fractioned lung RT.The PTV

mean EQD2 limits (50–100 Gy, α/β = 10) were selected
to reflect the range of prescription doses from the orig-
inal patient cohort corresponding to the development
of the response models. For this cohort treated on IRB
approved prospective studies, the median EQD2 pre-
scription dose was 70 Gy (range: 47–96 Gy,α/β = 10).37

Heterogeneity in the PTV dose was constrained to be
similar to the heterogeneity considered clinically accept-
able at our institution.CVaR+ constraints were added as
convex representations of the VaR-based DVCs used
clinically at our institution, including lung-GTV V20Gy <
35%,heart V30Gy < 50%,and heart V50Gy < 25%.These
constraints were tuned based on a linear fit of CVaR+



6286 RT PLANNING USING PERSONALIZED MODELS

TABLE 4 Structure hard constraints used for optimization

Structure Metric Constraint

PTV Mean ≥50 Gy EQD2 (α/β = 10)

Mean ≤100 Gy EQD2 (α/β = 10)

H ≤1.15

Heart Mean ≤20 Gy

Max ≤107% PTVmin

CVaR+
50% ≤45 Gy

CVaR+
25% ≤55 Gy

Esophagus Mean ≤34 Gy

CVaR+
2cc ≤68 Gy

Lungs–GTV Mean ≤20 Gy

CVaR+
35% ≤35 Gy

Cord Max ≤45 Gy

Brachial Plexus Max ≤66 Gy

Abbreviations: CVaR, conditional value at risk; H, heterogeneity coefficient.

to the corresponding VaR metric based on a retrospec-
tive analysis of IMRT plans from a separate cohort of
30 previously treated NSCLC patients. Additionally, a
CVaR+ constraint for the esophagus was added as a
conservative representation of D2cc < 68 Gy. VaR dose
metrics were checked after plan optimization to ensure
that plans remained within the original VaR clinical limits.
ℓEUD weighting factors were set to 0.5 for all structures
with equal weighting between structures for the Stage 2
objective. Based on empirical testing, η was set to 0.999
(0.1% overall utility loss acceptable), constraining Stage
2 to retain nearly the same overall plan utility as Stage 1
while still providing the optimization algorithm sufficient
search space.

2.2.2 Planning comparison

The proposed PUO method was compared to the
clinically delivered 3DCRT plans, and retrospectively
generated dose-only optimization (DOO) IMRT and vol-
umetric modulated arc therapy (VMAT) plans. DOO
plans were generated to represent plans with the same
beam angles and hard constraints as the PUO plans but
optimized with only a typical dose-metric-based objec-
tive. These plans were created using a similar workflow
as the PUO plans, but only used Stage 2 of the PUO
process and excluded the utility constraint (2g).An addi-
tional constraint for minimum target dose of 60 Gy (30
fractions) was added to make plans that followed current
clinical planning prescription guidelines. VMAT plans
with a 60 Gy (30 fractions) target dose goal were gen-
erated in Eclipse by a dosimetrist with prior experience
in clinical lung treatment planning. These VMAT plans
were used as a modern,clinically deliverable benchmark
for the DOO IMRT plans generated with our external

optimization process and fixed beam angles. To pro-
vide a uniform comparison between planning methods,
VMAT plans were normalized to the D95% of the cor-
responding DOO plans (normalization values <102%).
3DCRT, VMAT, DOO, and PUO plans were compared
by calculating the final plan utility. Dose-volume his-
tograms (DVHs) of DOO and PUO plans directly from
the optimal solutions were also compared. Non-tumor
integral dose (NTID) was calculated for the DOO and
PUO plans using the methods outlined by D’Souza and
Rosen assuming uniform normal tissue density and
voxel size.40 Variable prescription doses in PUO plans
have the potential to influence NTID, so differences
should be considered in the context of potential dose
escalation and de-escalation relative to DOO plans. To
provide a comparison of intermediate dose spill, R50%
(defined as the ratio of 50% prescription isodose vol-
ume to PTV) was calculated for the DOO and PUO
plans. Additionally, results from Stage 1 of the opti-
mization process without clinical dosimetric OAR hard
constraints(1c–f), labeled PUOS1,mod,were compared to
the final PUO utility results to determine what effect,
if any, the inclusion of OAR hard constraints had on
the maximum achievable plan utility. PUOS1,mod plans
are expected to show similar or increased plan utility
compared to the unmodified PUO algorithm because
they ignore acceptable OAR dose limits. Utility results
are compared in terms of absolute utility difference.
Therefore, given θ values of 1, any change in plan util-
ity directly corresponds to a combination of changes in
the predicted absolute probabilities of efficacy and tox-
icity. For example, if the predicted probability of efficacy
increases by 5% (absolute, e.g., 55% to 60%) with pre-
dicted toxicity remaining the same, then the overall utility
improvement would be 0.05. Alternatively, if the same
increase in efficacy occurs,but one of the predicted tox-
icity probabilities increases by 7% (absolute), then the
overall utility change would be 0.05 − 0.07 = −0.02.

3 RESULTS

For all five NSCLC cases, our approach successfully
generated optimal beamlet weights that maximize util-
ity while remaining within dose-based constraints. Total
(Stage 1 and Stage 2) solution times ranged from 16
to 71 min, with the number of beamlets and points in
the optimization problems ranging from 1144 to 2610
and 41888 to 96523, respectively, requiring 0.6–1.9 GB
when encoded in protocol buffers format. Separation
of the primary and secondary dose contributions within
the influence matrix reduced the number of non-zero
matrix elements by 83%–92%, which greatly reduced
solver time while still providing an accurate estimates
of plan dose and predicted outcomes. On average, 78%
of total solver time was spent on Stage 2, of which 67%
was spent in the crossover solver phase to produce a
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F IGURE 3 Utility results for the original clinically delivered 3DCRT plans and retrospective VMAT, dose-only optimization (DOO), and
prioritized utility optimization (PUO) replans for the five patients used for plan comparison. Results include overall plan utility (left), local regional
progression-free survival at 2 years (LRPFS2y, middle-top), grade ≥ 3 cardiac events within 2 years (CE3+,2y, right-top), grade ≥ 3 radiation
esophagitis (RE3+,middle-bottom), and grade ≥ 3 radiation-induced lung toxicity (RILT3+,right-bottom). As an example, patient 1 estimated
probabilities for LRPFS2y, CE3+,2y, RE3+, and RILT3+ were 53.6%, 4.3%, 0.4%, and 3.9%, for the DOO plan and 86.2%, 4.8%, 2.1%, 7.4% for the
PUO plan. Therefore, the overall plan utility improvement using PUO is calculated as
[0.862 − (0.048 + 0.021 + 0.074)] − [0.536 − (0.043 + 0.004 + 0.039)] = 0.719 − 0.450 = 0.269.

basic solution. For our linear problems, Gurobi’s barrier
method was found to be faster than primal and dual sim-
plex methods but required modification of the numerical
focus to the maximum setting and decreasing the barrier
convergence tolerance to reduce crossover solver time.

Plan utility values and target D95% values for the
various planning methods are shown in Table 2 with
a further breakdown of the utility metrics shown in
Figure 3. The PUO method resulted in average abso-
lute utility improvements of 0.21 (range: 0.09–0.43),
0.17 (0.05–0.31), and 0.16 (0.07–0.30) when compared
to 3DCRT, VMAT, and DOO plans, respectively. DOO
IMRT plans were shown to have similar utility to VMAT
plans, demonstrating that the DOO plans provide a clin-
ically reasonable comparison for PUO plans. Analysis
of individual components of the utility function showed
that when compared to DOO, PUO improved abso-
lute predicted LRPFS2y by, on average, 16.6% (range:
2.7%–32.6%). Improvements in predicted efficacy were
met with smaller changes in predicted grade 3–5 tox-
icities, with average changes of 0.1% (−0.5%–0.5%),
−0.9% (−4.0%–1.7%),and 1.0% (−0.3%–3.5%) for pre-
dicted CE3+,2y, RE3+, and RILT3+, respectively. PUO

resulted in increased target dose, based on analysis
of PTV D95%, for three of the five patients, with one
patient’s PUO plan retaining a 60 Gy D95% and another’s
deceasing target dose slightly. NTID was on average
11.6% (−4.4%–44%) higher in the PUO plans com-
pared to the DOO plans, with the largest increases
occurring for patient 1 (44%) and patient 2 (42%), cor-
responding to increases in prescription doses in the
PUO plans of 38.3% and 42.2%, respectively, relative
to the DOO plans. NTID and R50% metrics were found
to be similar or better in the PUO plans. Compari-
son of the PUOS1,mod utility metrics to the final PUO
plan metrics showed that the incorporation of clinically
relevant hard constraints reduced the potential maxi-
mum plan utility by, on average, 0.03 (range: 0.00–0.14).
Patient 3 had the largest decrease, resulting mainly
from the constraints on maximum esophagus and cord
doses.

For patients 1 and 2, PUO led to large utility improve-
ments over DOO. These improvements were mainly
driven by increases in predicted LRPFS2y, as visual-
ized in Figure 3, with the predicted probability of RILT3+
moderately increasing and probabilities of RE3+ and
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F IGURE 4 Absolute (top) and relative (bottom) DVH comparisons between the dose-only optimization (DOO) plan (dashed lines) and the
prioritized utility optimization (PUO) plan (solid lines) for patient 2

RP3+ remaining similar. The PUO plan for patient 3
had a moderate increase in utility compared to the
DOO plan caused by increasing predicted LRPFS2y
with similar overall predicted toxicity risk. For patients
4 and 5, slight utility improvements in PUO plans were
driven by improved predicted LRPFS2y and decreased
probabilities of RE3+ and RILT3+. For patient 5, PUO
planning also slightly decreased the predicted probably
of CE3+,2y.

Absolute and relative DVHs in Figures 4 and 5
show comparisons of the DOO and PUO plans for
patients 2 and 4, respectively. For patient 2, a large
increase in target dose was noted with non-proportional
increases in esophagus and cord doses. For patient
4, the PUO method slightly improved target coverage
and decreased mean lung dose and maximum esopha-
gus dose. Mean cardiac dose remained similar between
the two methods, but the PUO plan increased max-
imum cord dose by 24.8 Gy. Variable increases in
maximum cord dose were present in all PUO plans,
since a cord toxicity risk model was not included in the
Stage 1 optimization model. However, all maximum cord
doses remained below 45 Gy as enforced by the hard
constraint.

4 DISCUSSION

The current clinical standard for RT planning, employ-
ing objective functions based upon standardized dose
metrics, does not adequately account for patient vari-
ability in the optimization process. In many cases, these
objectives are based on historical rates of control or
toxicity in a patient population without incorporating per-
sonalized factors related to the radiosensitivity of tumors
and OARs.Additionally,most cost functions require user-
assigned weights for the dose penalties, relying on the
expertise of planners and physicians to subjectively
determine the appropriate weights for a patient.Through
this method, allowable planning trade-offs, based on
treatment outcomes rather than dose metrics, could be
inconsistently decided upon since they are not directly
prioritized or optimized. The proposed method pre-
sented in this study aims to augment this standard
approach by facilitating a direct exploration of planning
trade-offs based on patient-specific predictive models of
efficacy and toxicity. Through the implementation of a
utility-based objective, we believe our strategy offers a
more intuitive, tunable approach to balance a patient’s
potential therapeutic benefit and risk. The proposed
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F IGURE 5 Absolute (top) and relative (bottom) DVH comparisons between the dose-only optimization (DOO) plan (dashed lines) and the
prioritized utility optimization (PUO) plan (solid lines) for patient 4

method integrates the ability for non-uniform weight-
ing of predicted toxicities in an interpretable manner
with direct relation to the predicted probabilities of treat-
ment outcomes. Therefore, toxicity weights (θ’s) can be
elicited directly by determining the relative harm associ-
ated with a given toxicity compared to a given efficacy
metric. These values could be assigned independently
by a clinician prior to plan creation, potentially incor-
porating patient input, or based on expert consensus
opinion determined through a method similar to Hobbs
et al.41

We demonstrated the feasibility of this method in a
small cohort of NSCLC patients, which is a population
of interest given the evident trade-offs between local
control and lung, heart, and esophageal toxicities in RT
planning. Additionally, failure of the Radiation Therapy
Oncology Group (RTOG) 0617 phase III randomized
trial to demonstrate improved outcomes at higher doses
suggests that utilization of dose escalation in the treat-
ment of NSCLC may only be beneficial for a subset of
patients.23,37,42,43 Although 60 Gy in 2 Gy fractions has
become the standard-of -care for patients with stage III
NSCLC, individualized dose escalation remains of inter-
est to improve the relatively poor outcomes for these

patients.44–46 This includes isotoxic approaches to indi-
vidualize dose escalation in which escalation is based
on pre-specified, uniform normal tissue dose limits with-
out consideration of underlying heterogeneity in the
patient population.45,46 Our method provides a quan-
titative approach for determining which patients may
benefit from dose escalation or redistribution based on
patient-specific clinical factors and biomarkers while
also accounting for patient geometry and OAR dose
limits.

While this study illustrates the potential for the pro-
posed planning strategy, it does have several limitations.
Although we compared plan utility metrics between mul-
tiple planning methods, DVH comparison was limited
to the DOO and PUO plans prior to leaf sequencing
and final volumetric dose calculation due to dose-
discrepancies between optimal plans from the optimizer
and plans imported,sequenced,and calculated inside of
our TPS. However, dose colorwash comparisons follow-
ing these steps, noting possible discrepancies, for DOO
and PUO are available in a supplemental document for
patient 2 (Figure S1) and patient 4 (Figure S2). These
discrepancies have been previously noted in other opti-
mization methods and are normally addressed through
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updating the optimization process with intermediate
full dose calculations.47 However, in our hierarchical
approach,this update process could invalidate hard con-
straints. Future work will look at addressing this discrep-
ancy through the implementation of a fluence smoothing
optimization stage, heterogeneity constraints, or a cor-
rection step similar to that presented in Zarepisheh
et al.48 Additionally, we found Gurobi’s barrier solver to
perform well for this optimization problem and did not
test other methods or algorithms beyond the simplex
method included in Gurobi. It is possible that first-order
algorithms could improve performance;however,the bar-
rier solver performance could likely be improved through
additional tuning of the algorithm’s parameters. Further-
more, in a clinical setting, the crossover solver phase
(used to convert an interior-point solution to a basic solu-
tion) can be eliminated to improve solve times by more
than 50% while causing very little impact to the optimal
fluence map.

Our study did not evaluate the effect of beam angle
selection on the optimization process or achievable
plan utility. Further investigation will be required to
determine this impact of this and if utility could be
improved through beam angle optimization.Alternatively,
arc-based IMRT delivery methods, such as VMAT, could
be used to alleviate the need for beam angle selec-
tion. However, VMAT optimization methods are currently
inhibited by non-convexity and associated local minima,
and therefore require additional development to facilitate
implementation of constrained hierarchical optimization
strategies.49

The PUO approach facilitates the use of personal-
ized dose-response models in the optimization process,
but aggregated response models could also be utilized.
In testing this method for NSCLC patients, we used
previously developed models of response based upon
patients treated with 3DCRT. Ideally, modeling would
be based on a cohort that was treated with the same
delivery technique as that being optimized since dose
response could be, in part, correlated to the underly-
ing dose distribution. This distribution, particularly within
OARs,could systematically differ between varying treat-
ment delivery techniques.While our approach optimizes
a patient’s tumor dose, rather than assigning a fixed
dose goal prior to optimization, modeling for this aspect
is challenging because it requires previously treated
patients to receive a range of prescription doses to
determine the relationship between treatment efficacy
and dose. In the era of increasingly uniform prescrip-
tion doses, such as the 60 Gy standard-of -care for
NSCLC patients,modeling dose-based efficacy may not
be fully possible. In the absence of an efficacy model,
the PUO strategy could still be utilized to reduce total
patient-specific toxicity burden at a fixed prescription
dose.

Our initial results from this method demonstrate that
plan utility for NSCLC patients has the potential to be

improved, although drawing additional conclusions from
the results is limited by the small sample size. For
these cases, increased plan utility resulted in similar or
increased doses to structures that were unrepresented
in the utility function. Increases to unrepresented struc-
tures are anticipated in this prioritized approach, but all
doses remained within currently acceptable limits. The
impact of these hard constraints on achievable plan
utility are variable but can be large depending on plan
geometry as noted in the comparison of the PUOS1,mod
and unmodified PUO plans for patient 3. If the increases
in doses are determined to be clinically unacceptable,
stricter constraints and penalties can be implemented,
but this must be balanced with the impact on achievable
utility. Alternatively, a more beneficial approach would
be to directly capture clinically acceptable tradeoffs
by adding additional components representing these
structures to the utility objective. By implementing this
strategy, the PUO’s two-stage approach allows for the
progressive transition to more holistic biologically based
treatment planning without completely deviating from
physical dose-based planning for structures with poorly
understood or unmodeled dose response.

In this study, we introduced and demonstrated the
feasibility of PUO, but did not investigate the clinical
impact or acceptability of planning tradeoffs, includ-
ing the potentially large variability in prescription doses
with fixed fractionation, captured using PUO compared
to DOO. In silico and prospective clinical trials will be
required to determine the clinical efficacy and effective-
ness of PUO. Additionally, we did not investigate the
effects of potential error and uncertainty in the dose-
response models or the selection of objective function
parameters (e.g., θ’s) on the optimization process and
resulting plans. Future studies will aim to address this
through application of the PUO strategy in additional
disease sites and on larger cohorts of patients.

5 CONCLUSIONS

We developed and studied an inverse IMRT plan-
ning strategy where patient-specific radiosensitivities of
tumors and normal tissues are directly factored into
the optimization objective. Through this approach, we
aim to improve a patient’s overall RT outcome by bal-
ancing potential therapeutic benefit with the associated
risk in an interpretable and tunable manner. First, a
patient’s overall plan utility, based upon personalized
models of biological response, is maximized subject
to relevant clinical constraints. Then, through a hier-
archical optimization technique, a typical dose-based
objective function is minimized while retaining maximal
or near-maximal plan utility.

We demonstrated the feasibility of the approach using
a cohort of NSCLC patients with previously developed
predictive models of treatment efficacy and toxicity
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based on demographics, clinical factors, and biomark-
ers. The proposed planning method generated plans
conforming to clinical constraints with improved overall
utility when compared to plans generated using typical
dose-based objectives.
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