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Key Points: 19 

● The authors present the first global simulation of the Chicxulub impact tsunami 20 

● Total energy present in the impact tsunami is much greater than for any modern-day tsunami 21 

● Impact tsunami flow velocities are strong enough to disturb and erode sediment in basins halfway 22 
around the globe 23 

Abstract 24 

The Chicxulub crater is the site of an asteroid impact linked with the Cretaceous-Paleogene (K-Pg) mass 25 
extinction at ~66Ma. This asteroid struck in shallow water and caused a large tsunami. Here we present the 26 
first global simulation of the Chicxulub impact tsunami from initial contact of the projectile to global 27 
propagation. We use a hydrocode to model the displacement of water, sediment, and crust over the first ten 28 
minutes, and a shallow-water ocean model from that point onwards. The impact tsunami was up to 30,000 29 
times more energetic than the December 26, 2004 Indian Ocean tsunami, one of the largest tsunamis in the 30 
modern record. Flow velocities exceeded 20 cm/s along shorelines worldwide, as well as in open-ocean 31 
regions in the North Atlantic, equatorial South Atlantic, southern Pacific and the Central American 32 
Seaway, and therefore likely scoured the seafloor and disturbed sediments over 10,000 km from the impact 33 
origin. The distribution of erosion and hiatuses in the uppermost Cretaceous marine sediments are 34 
consistent with model results. 35 
 36 

Plain Language Summary 37 
 38 
At the end of the Cretaceous, about 66 million years ago, the Chicxulub asteroid impact near the Yucatan 39 
peninsula produced a global tsunami 30,000 times more energetic than any modern-day tsunami produced 40 
by earthquakes. Here we model the first ten minutes of the event with a crater impact model, and the 41 
subsequent propagation throughout the world oceans using two different global tsunami models.  The 42 
Chicxulub tsunami approached most coastlines of the North Atlantic and South Pacific with waves of over 43 



10 meters high and flow velocities in excess of 1 m/s offshore.  The tsunami was strong enough to scour 44 
the seafloor in these regions, thus removing the sedimentary records of conditions before and during this 45 
cataclysmic event in earth history and leaving either a gap in these records or a jumble of highly disturbed 46 
older sediments.  The gaps in sedimentary records generally occur in basins where the numerical model 47 
predicts larger bottom velocities.  48 
 49 
 50 
1 Introduction 51 

The impact of an approximately 14-km diameter asteroid is implicated in the Cretaceous/Paleogene (K-Pg) 52 

mass extinction (Schulte et al., 2010) approximately 66 Ma ago.  The bolide impact caused global 53 

temperature fluctuations (Schulte et al., 2010), large aerosol plumes (Bardeen et al., 2017), large plumes of 54 

soot and dust (Brugger et al., 2017), wildfires from ejecta re-entering the atmosphere (Busby et al., 2002; 55 

Morgan et al., 2013), and a massive tsunami (Matsui et al., 2002; Kinsland et al., 2021).  Drilling cores 56 

from the Integrated Ocean Drilling Program (Gulick et al., 2016) and the International Continental Drilling 57 

Program (ICDP) corroborated the models (Collins et al., 2008) of the exact physical and geophysical 58 

nature of the crater and its peak ring which has facilitated detailed modeling of the impact (Morgan et al., 59 

2016).  Earlier tsunami simulations described the effects of the tsunami within the confines of the Gulf of 60 

Mexico (e.g., Ward, 2012; Matsui et al., 2002; see Ward, 2021 for a more recent simulation extending 61 

beyond the Gulf of Mexico).  Subsequent submarine landslides on the marine shelf (Gulick et al., 2008) 62 

could potentially increase the energy of this tsunami. 63 

 64 

Most global tsunami simulations to date have been of tsunamis induced by underwater earthquakes, for 65 

instance, the 2004 Indian Ocean tsunami (Smith et al., 2005, Titov et al., 2005).  Tsunami propagation has 66 

traditionally been simulated with shallow-water ocean models, which assume hydrostatic water pressure 67 

and a small depth-to-wavelength ratio. Such models cannot be used to simulate the complex first ten 68 

minutes of the Chicxulub impact tsunami when there was large-scale deformation of the crust and the 69 

formation of a crater (Morgan et al., 2016). The crater formation and post-impact ejecta splashing back 70 

into the ocean create highly non-linear and non-hydrostatic waves. Modeling the impact tsunami requires a 71 

multi-stage simulation, with hydrocode modeling of crater formation and post-impact non-hydrostatic 72 

water waves, before hand-off of the solution to global shallow-water models.  We pursue such a two-stage 73 

strategy in this paper. 74 

 75 

These linked models seek to depict a complex set of events associated with the asteroid impact and to 76 

predict the pathways of propagation as applied to a world with very different sea levels, ocean gateways, 77 

and continental positions and boundaries. The models do not incorporate a description of the chaotic near-78 



field tectonic disturbances (e.g., faulting and slope failures) and the generation of smaller tsunamis by 79 

these disturbances. Did these aspects of the impact event alter the strength or the propagation pathway of 80 

the impact tsunami, or was this tsunami so large and so powerful that these other effects were masked and 81 

overpowered? To verify the modeled strength and pathways taken by the impact tsunami we look at a 82 

global array of K-Pg boundary intervals in marine sections on land and in ocean drilling cores. In these 83 

sites we will look for documented evidence of erosion, sediment disturbance, and/or redeposition of 84 

sediments that can be reasonably associated with the impact tsunami. 85 

 86 

2 Impact Modeling 87 

2.1 Methods 88 

We use the axisymmetric iSALE-2D hydrocode (Collins et al., 2004; Wünnemann et al., 2006) to simulate 89 

the initial formation of the Chicxulub impact tsunami.  iSALE-2D has been used to simulate impact-90 

induced tsunamis (e.g., Weiss et al., 2006; Weiss and Wünnemann, 2007; Wünnemann et al., 2010).  The 91 

results of our iSALE-2D simulations were used to create initial conditions for shallow-water models to 92 

trace the tsunami throughout the world’s ocean.  93 

 94 

Motivated by impact simulations that reproduce the seismically imaged structure of Chicxulub (Collins et 95 

al., 2008) as well as the peak shock pressures and composition of the basin’s peak-ring, as constrained by 96 

recent drilling (Morgan et al., 2016), we assume that the 14-km-diameter impactor had a density of 2650 97 

kg/m3 and struck Chicxulub at 12 km/s. Although the Chicxulub impact is thought to be oblique (45-60 98 

degrees from horizontal; Collins et al., 2020; Robertson et al., 2021) the axisymmetric nature of the code 99 

limits us to simulation of vertical impacts.  We expect this limitation to have a minor effect on our results 100 

as the formation of the outward propagating rim wave (more below) is dominated by emplacement of slow 101 

ejecta that tends to be symmetric (e.g., Anderson et al., 2003). Our simulations have the same setup as 102 

those in Collins et al. (2008), but with a finer grid spacing and a larger domain needed to track the 103 

formation and early evolution of the tsunami (see SI Table 1 and other material in Supporting Information; 104 

hereafter referred to as SI). We model the target as a granitic crust overlain by a 4-km-thick layer of 105 

sediments and an ocean with a constant depth of 1, 2, or 3 km (a 2-km ocean depth was used by Collins et 106 

al. (2008) for the northwestern sector of Chicxulub).  With a grid resolution of 100 m, the ocean depth is 107 

resolved by 10, 20, and 30 cells, respectively, depending on assumed ocean depths of 1, 2, and 3 km.  This 108 

number of grid cells is sufficient to resolve the rim wave (Bahlburg et al., 2010; SI). The atmosphere is not 109 

expected to significantly affect the early propagation of the tsunami. Thus, we do not include the 110 



atmosphere in our simulations.  Further details of the iSALE simulations used in this paper, and their 111 

sensitivities to grid spacing, can be found in SI.   112 

 113 

2.2 Results 114 

The dimensions and formation of the crater are similar to previous work (Collins et al., 2008; Morgan et 115 

al., 2016).  The results of our “fiducial” hydrocode impact simulation, with an assumed seafloor depth of 1 116 

km and a run time of 10 minutes, are shown in Figure 1.  About 2.5 minutes after contact of the projectile, 117 

a curtain of ejecta pushing water outward from the impact produced a 4.5-km-high wave (Fig. 1a). After 5 118 

minutes, falling ejecta continued to impart momentum to the ocean (Fig. 1b).  At 10 minutes, after all the 119 

ejecta had fallen, a 1.5-km-high wave, known as a rim wave, located 220 km from the point of impact was 120 

left propagating throughout the deep ocean (Fig. 1c).  121 

 122 

 123 

Figure 1. Formation of Chicxulub crater and the associated tsunami.  Time series with material colored 124 
according to material type (crustal material is brown, sediments are yellow, and the ocean is blue).  The 125 
origin marks the point of impact.  Black curves mark material interfaces (e.g., sediment-crust interface). 126 
An animation of these results, from 0 to 10 minutes in steps of 5 seconds, is shown in SI Video 1. 127 
 128 



The axisymmetric nature of our high-resolution hydrocode model requires an ocean layer with a constant 129 

water depth.  The ocean depth at the point of impact is estimated to be 100-200 m (Gulick et al. 2008) and 130 

becomes deeper toward the northwest.  Generation of the tsunami rim wave, however, is sensitive to the 131 

ocean depth at the crater rim, not at the point of impact.  Paleobathymetry estimates indicate that water 132 

depth was ~1 km where ejecta emplacement produces the initial rim-wave (50 km from basin center).  At 133 

~150 km from the point of impact the ocean was ~3 km deep (SI Fig. 1). To test for sensitivity of the rim 134 

wave and crater shape to pre-impact ocean depth we vary the thickness of the ocean layer from 1 to 3 135 

km.  The waveforms after the first 10 minutes of the fiducial simulation, and after the first 10 minutes of 136 

iSALE simulations with different water depths, are displayed in Figure 2.  These waveforms are in good 137 

agreement with the waveforms found in Bahlburg et al. (2010).  SI Fig. 4 demonstrates that handoff to the 138 

MOM6 “larger mesh” results at 600 s and 850 s give nearly identical globally integrated 139 

energies.  Surprisingly, the crater and rim wave structure at these early times do not depend strongly on 140 

assumed ocean depth within the range of 1-3 km (Figure 2).  We do not expect this moderate      141 

dependence to hold over much deeper or shallower ocean depths.  Our two-dimensional axisymmetric 142 

model with a constant depth is clearly a simplification of the bathymetry in the Gulf of Mexico.  In the 143 

case of the 1 km ocean depth simulation, a sediment rim on the impact crater ten minutes into the run rose 144 

above the water column, creating a ring-shaped island. As the rim was composed of loose sediment, it 145 

would likely have been quickly dispersed by wave action (Bell et al., 2004). Other authors however have 146 

argued that resurge of water into the crater occurred by penetration through the raised rim and erosion 147 

allowing flow at locations along the rim (Bahlburg et al. 2010). To test for sensitivity to this uncertainty, 148 

we model one initial condition with a sediment rim and one without.  We test for sensitivity between the 149 

two runs and found the tsunami energies to be comparable (not shown).  Therefore, the 1 km water depth 150 

iSALE simulation, with no sediment rim, is used for all subsequent runs.  151 

 152 

3 Tsunami Propagation Modeling 153 

3.1 Methods 154 

To simulate the global propagation of the impact tsunami, we use two different well-established shallow-155 

water models:  the Geophysical Fluid Dynamics Laboratory (GFDL) Modular Ocean Model Version 6 156 

(Adcroft, 2017; MOM6), and Methods Of Splitting Tsunamis (Titov et al, 2016; MOST).  The rim-wave 157 

has a wavelength of about 50-100 km, similar to the wavelengths seen in the 2004 Indian Ocean 158 

tsunami.  As this is much greater than average ocean depths of about 4 km, the shallow water assumption, 159 

which assumes hydrostatic balance and is based on a comparison of wavelengths vs. water depth, is well 160 

satisfied. The similarity of simulations from two different models using the same underlying shallow-water 161 
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in sea level relative to the resting sea level. The crater depths are displaced by about one km from each 185 
other because of the differing ocean depths of the three runs.  186 

 187 

MOM6 has been used to model tsunamis in the deep ocean, although it has not been used to forecast 188 

tsunamis. The barotropic solver in MOM6 is based on the solver in the Hallberg Isopycnal Model 189 

(HIM)/Generalized Ocean Layered Model (GOLD), which were used in the tsunami studies of Smith et al. 190 

(2005) and Kunkel et al. (2006).  The results in Adcroft (2013) suggest that deep-ocean, large-scale 191 

motions are not overly sensitive to the horizontal resolution of the model. The "forecasting" accuracy of 192 

the tsunami calculation is not relevant for the application of the Chicxulub impact tsunami, but at 1/10th 193 

degree global resolution the arrival times are accurate to about 1%.   194 

 195 

MOST was developed specifically for tsunami simulations (Titov & Synolakis, 1995; Titov et al., 196 

2016).  MOST has been extensively tested for various tsunami modeling applications and has been used to 197 

simulate historical tsunamis of different origins, including modeling of global tsunami propagation and 198 

local tsunami inundation impacts.  MOST is now used operationally for tsunami forecasts at NOAA 199 

Tsunami Warning Centers.  While MOM6 is run for all of the cases shown in this paper, MOST is run 200 

only in the fiducial case described below.   201 

 202 

Both tsunami propagation models used the same global 1/10th degree bathymetric grid (SI Tables 2 and 3). 203 

To accurately simulate tsunami propagation, a global Maastrichtian (66Ma) paleobathymetry is combined 204 

with the initial condition from the hydrocode results.  The sources for the global paleobathymetry are 205 

Müller et al. (2008) and Scotese (1997). More information about the bathymetries that we used, and the 206 

manner in which we combined them, can be found in SI Text S1.  207 

 208 

To continue the simulation with the tsunami propagation codes we convert the axisymmetric, constant 209 

water depth hydrocode results (see SI Figure 2) to more realistic, non-axisymmetric conditions with 210 

horizontally varying resting water depths.  The hydrocode results at 600 seconds post-impact were used for 211 

the shallow-water model initial condition. At this time there was no more resolved falling ejecta; less 212 

voluminous and potentially fine ejecta would continue to fall after 600 s, but we do not expect that this 213 

more distal ejecta would significantly affect the rim wave. At 600 s, there is a defined waveform of 214 

perturbation sea surface heights, in approximate hydrostatic balance because the wavelength is much 215 

greater than the water depth (see Fig. 2).  The waveform, crater shape and velocity are isolated from the 216 

density profile. Assuming radial symmetry, the waveform is converted into a ring-shaped outward 217 



propagating wave, dependent on resting sea level, and inserted into the paleobathymetry described 218 

above.  In the bathymetry the crater extended onto land where water was not initially present before 219 

impact.  We test having a crater purely in water, without the portion of the crater that is formed over land 220 

(‘Half Crater’), as well as a more complete crater that extended a full 360° onto land, (‘Full Crater’), and 221 

compare energies, as discussed further below.  The fiducial model employs the ‘Half Crater’ bathymetry. 222 

More information on the blending of the hydrocode results into the paleobathymetry is given in SI.  223 

 224 

To test sensitivity to the horizontal grid spacing of the shallow-water model, we run a shallow-water 225 

simulation at 1/5° grid spacing and compare snapshots of two-dimensional sea surface height perturbation 226 

fields (SI Fig. 3) and energies (SI Fig. 4) between this run and the nominal 1/10° run. To test for the 227 

sensitivity of the transfer point (“hand-off”) between the hydrocode and ocean model, we run a hydrocode 228 

simulation, with a larger mesh, out to 850 seconds before emplacement of the hydrocode conditions in the 229 

MOM6 model.  More details can be found in SI. 230 

 231 

3.2 Results 232 

Both shallow-water propagation models are run using the same fiducial run initial conditions and 233 

bathymetry data.  Snapshots of the MOM6 and MOST sea surface amplitudes are compared at the same 234 

times to ensure consistency of the results.  The models display similar tsunami propagation patterns (Fig. 235 

3).  The main dissimilarities in the model behaviors are in the later-stage wave dynamics. The differences 236 

reflect different numerical implementation of the shallow-water wave equations used in the two models. 237 

MOST is using the Godonov-type method (a Riemann solver) with a directional splitting, which 238 

emphasizes wave characteristics, and a discretization of non-linear terms in Lagrangian form. MOM6 239 

employs vector invariant equations using an energy conserving discretization, with an emphasis on a well-240 

behaved spectra in a turbulent cascade (not resolved or relevant to this problem).  In addition, the bottom 241 

dissipation is parameterized differently in the two models.  MOM6 displays more short-wavelength 242 

features after the initial, highest amplitude wave passing.  Additional differences arise from different 243 

treatments of the north and south boundaries by MOM6 (reflecting boundaries) and MOST (absorbing 244 

boundaries without reflection).  These model differences do not affect the leading order wave 245 

dynamics.  The impact tsunami spread outside the Gulf into the Atlantic after about one hour from impact 246 

(Fig. 3a); after 4 hours, through the Central American seaway, the waves enter into the Pacific (Fig. 3b); 247 

after 24 hours of propagation, the waves cross most of the Pacific from the east and Atlantic from the west 248 

and entered the Indian Ocean from both sides (Fig. 3c).  The tsunami front propagates in excess of 200 m/s 249 

in deep water, in accordance with the shallow-water celerity.  By 48 hours post-handoff, e.g., 48 hours 250 



after the handoff from the hydrocode to the shallow-water model, significant tsunami amplitudes have 251 

reached most of the world coastlines creating a complex amplitude pattern due to wave reflection and 252 

refraction (Fig. 3d). Due to wave shoaling the open ocean amplitudes can multiply many-fold near 253 

coastlines. The open-ocean amplitudes in most of the Gulf of Mexico are computed to be over 100 254 

m.  Along many North Atlantic coastal regions and some South America Pacific coastal regions the 255 

models show over 10 m offshore amplitudes. The simulations predict that most of the world ocean 256 

experiences maximum offshore amplitudes above 1 m, with the exception of some areas in the Indian 257 

Ocean and Mediterranean. Any historically documented tsunamis pale in comparison with such global 258 

impact. Depending on the geometries of the coast and the advancing waves, most coastal regions would be 259 

inundated and eroded to some extent.  The simulations used here do not include wave run-up onto land, as 260 

the model resolution of 1/10º is too low to resolve details of the inundation dynamics.  261 

 262 

The maximum wave amplitudes and flow velocities (current speeds) at each model grid cell, over the two-263 

day time period of the MOST simulation, are respectively shown in Figs. 4a and 4b.  The largest waves 264 

and current speeds are in the Gulf of Mexico, North Atlantic, and South Pacific.  Near the point of impact, 265 

the flow velocity exceeds 100 m/s. In other basins, flow velocities are up to a factor of 100 times smaller 266 

in the middle of the ocean than they are near the impact origin and along the coasts.  Flow velocities above 267 

20 cm/s are expected to cause erosion of fine-grained pelagic sediments (Lonsdale and Southard, 1974; 268 

McCave, 1984).  Velocities higher than 20 cm/s are predicted in offshore areas of the North Atlantic and 269 

the equatorial region of the South Atlantic, in the Central American seaway and in most of the southern 270 

and southwestern Pacific, more than 12,000 km from the impact area. Most coastal areas of the world 271 

experienced above-20-cm/s velocities. As discussed in SI, tsunami propagation and flow velocities of 272 

simulations with slightly different input configurations (varying model resolution, friction coefficients, 273 

hand-off times between hydrocode and shallow-water models, crater size, etc.) are also tested for 274 

sensitivity.  The energy of the tsunami is not greatly changed in any of these sensitivity tests except for the 275 

case in which the rim wave is removed.  276 

 277 
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 291 
4. Geologic Verification of the Models 292 

4.1 Methods  293 

 Identifying the K-Pg boundary in marine sections requires some form of stratigraphic information. This is 294 

usually provided by biostratigraphic or paleomagnetic investigations. Marine sections located above 295 

present-day sea level and exposed on land usually allow a broad view of boundaries in outcrop and 296 

extensive stratigraphic data can often be collected from the section. Based on these studies and the overall 297 

preservation and exposure of the interval, one section has been named the “type section”. The stratotype 298 

section for the K-Pg boundary is at El Kef, Tunisia (XXVIIIth International Geological Congress, 1989). 299 

The boundary itself has been linked to the anomalous abundance of Iridium that was derived from the 300 

impacting body.  301 

 302 

Close to the impact site reworked sedimentary deposits are mixed with ejecta from the impact. At 303 

intermediate distances the airborne ejecta may have arrived before the tsunami; thus, airborne ejecta with 304 

higher Iridium concentrations may lie below rip up clasts and redeposited older sediments. In distant 305 

regions, high concentrations of Iridium used to define the K-Pg boundary (Kiessling & Claeys, 2002) are 306 

thought to have arrived by settling from the stratosphere over a period up to several years (Claeys et al., 307 

2002; Toon et al, 1982). This is compared to the modeled tsunami reaching a global extent in just two 308 

days. To verify the strength and pathway of the modeled impact tsunami we pay particular attention to 309 

these more distal regions (Schulte et al. 2010). In these regions the effects of the tsunami should be found 310 

in the interval immediately below the K-Pg boundary itself in both marine sections on land (supplementary 311 

table ST-1) and in scientific ocean drilling cores (supplementary table ST-2). We take any sign of missing 312 

biostratigraphic or paleomagnetic intervals or depositional disturbance immediately below this level (e.g., 313 

erosional truncations of bedding or bioturbation features, sediment deformation, allochthonous clumps or 314 

clasts) as evidence of current activity or disturbance associated with the impact tsunami. 315 

   316 

 A few of the studied boundary sections have paleomagnetic stratigraphy. The K-Pg boundary has been 317 

found to be within the upper half of subchron C29r in Gubbio, Italy (Lowrie and Alvarez, 1977) and 318 

Agost, Spain (Canudo et al., 1991). The estimated duration of the Cretaceous part of subchron C29r is 300 319 

kyr (Husson et al. 2011).  Biostratigrapy often provides an important indication of missing section in 320 

deeper water, pelagic sections. The Abathomphalusmayaroensis Zone defines the uppermost Cretaceous 321 

foraminiferal zone in many of the older studies of the K-Pg boundary; however, Keller (1988) found that 322 



A. mayaroensis disappeared below the K-Pg boundary in the type section at El Kef. To fill this gap, Pardo 323 

et al. (1996) defined a total range biozone (Plummerita hantkeninoides) that marks the top of the 324 

Maastrichtian and lies within the lower half of subchron C29r. The uppermost Cretaceous nannofossil 325 

zone is defined by the range of Micula prinsii (Sissingh, 1977). This Zone occupies most of the lower half 326 

of subchron C29r. Other fossil assemblages have been used to evaluate the ages within the Late 327 

Cretaceous, but they have not been well documented in more than one or two complete K-Pg boundary 328 

sections. Carbon and oxygen isotope stratigraphies have been generated for several of the K-Pg boundary 329 

sections (Supplementary Tables ST-1, ST-2). The records of the carbon isotopes show an abrupt break at 330 

the K-Pg boundary, with the isotopes becoming sharply negative (a drop of 2‰ at El Kef; Keller and 331 

Lindinger, 1989). However, the oxygen isotopes signal is more variable and may depend on what 332 

microfossils are being measured (c.f. El Kef, in Keller and Lindinger, 1989; MacLeod et al., 2018, and 333 

other sections in Caravaca, in Canudo et al., 1991; and in Zumaia, in Margolis et al., 1987). 334 

 335 

The advent of orbital tuning of geologic records has greatly advanced our ability to develop estimates of 336 

ages with comparable precision well back into the Cretaceous (e.g., Batenburg et al, 2012; Dinarés-Turrel 337 

et al., 2014; Husson et al., 2011 and references therein).These studies use calculated variations in the 338 

earth’s orbit as a template for matching variations in stable isotopes, color, iron content, or bed thickness; 339 

however, beyond 60 Ma only the 405 kyr eccentricity cycle is known with sufficient accuracy to be used 340 

in tuning the time scale (Laskar et al., 2011; Westerhold et al., 2012). From these tuning efforts we know 341 

that the K-Pg boundary lies at the top of the 405 kyr orbital cycle of eccentricity designated as Ma405 1 342 

(Batenburg et al., 2012). Any effort at tuning must take place within a stratigraphic framework defined by 343 

other tools, normally a paleomagnetic stratigraphy, which in turn usually relies on a biostratigraphic 344 

framework. 345 

 346 

For the drill sites reported in this study, we list those sites (Supplementary Table ST-2) in which the K-Pg 347 

boundary interval is recovered and is fossiliferous, with stratigraphies that define the location of that 348 

boundary. Based on stratigraphic evaluations for both drilled cores and outcrop sections, we class the K-Pg 349 

boundary sections as: 1) complete, 2) apparently complete, 3) having a detectable depositional disturbance, 350 

hiatus, or disconformity, or 4) having a long erosional hiatus or non-depositional surface (Fig. 5). If such 351 

long missing sections range from the Cretaceous well up into the Paleocene or even younger sections, we 352 

cannot claim that they are attributable to the impact tsunami (category 4, above), and we discount them 353 

from our analysis. If, however, the lower part of the Paleocene is present, while a part of the Upper 354 

Cretaceous is missing, we classify this as possibly caused by the impact tsunami (category 3, above). 355 



 356 

4.2 Results 357 

The devastating effects of the asteroid impact in the Caribbean and Gulf of Mexico included earthquakes, 358 

slope failures, and debris flows, all of which could have contributed to tsunami formation, (e.g., Alegret 359 

and Thomas, 2005; Alvarez et al., 1992, 1995; Bourgeois et   al., 1988; Bralower et al., 1998; Campbell et 360 

al., 2008; Denne et al., 2013, Keller et al., 1997, 2007; Kinsland et al., 2021; Maurrasse et al., 1991; 361 

Montanari et al., 1994; Schulte et al., 2006,  2008; Smit et al., 1996; Sanford et al., 2016; Stinnesbeck et 362 

al., 1997). These ancillary effects are not accounted for in the impact tsunami models, but nevertheless 363 

disrupted the K-Pg boundary.  The modeled impact tsunami took principal radiation pathways directed to 364 

the east and northeast into the North Atlantic and to the southwest, through the Central American passage 365 

and into the southwestern Pacific (Fig. 4). At flow speeds greater than 20 cm/sec (Fig. 4b) the passing 366 

tsunami could have eroded fine-grained marine sediment even on the deep seafloor (Lonsdale and 367 

Southard, 1974; McCave, 1984).  368 

 369 

The Tethys region, the South Atlantic, the North Pacific, and the Indian Ocean basins were largely 370 

shielded from the stronger effects of the tsunami (Fig. 4). This is consistent with the location of the 371 

several complete sections described from the marine outcrops around the Mediterranean, including the 372 

type section at El Kef (Fig. 5). It is also consistent with the frequent recovery of complete sections at 373 

scientific ocean drilling sites in the South Atlantic Ocean and on Seymour Island in the Antarctic 374 

Peninsula, the several complete sections of the K-Pg boundary recovered in the North Pacific Ocean and 375 

on the island of Hokkaido, and the complete K-Pg boundary intervals drilled on bathymetric highs in the 376 

eastern Indian Ocean. 377 

 378 

Looking at K-Pg boundary intervals that lay in the modeled pathway of the tsunami, the results of the 379 

comparison are also largely consistent. The drilled sections in New Jersey show gaps, rip up clasts, or 380 

tempestites in the K-Pg boundary interval. Sections studied in western Europe (Germany, Denmark, 381 

France, Bulgaria, Austria; Supplementary Table ST-1) generally show biostratigraphic gaps, erosional 382 

truncations, or slumps and gravity flows in the uppermost part of the Maastrichtian section. In the North 383 

Atlantic Ocean only three sites in two areas contain what appear to be complete K-Pg boundary intervals 384 

(Fig. 5). Site U1403 is the deepest site drilled on the J-Anomaly Ridge off Newfoundland. The Upper 385 

Cretaceous section is relatively thick here, lying between two southeast trending basement highs 386 

(Expedition 342 Scientists, 2012) and may represent a depocenter for sediment eroded from the nearby 387 

locations. Sites 1259 and 1260 are located on the slope of the Demerara Rise off Suriname, South 388 



America. During the Late Cretaceous their location was within a few degrees north of the equator and 389 

may have been partially shielded from the main force of the tsunami (MacLeod et al., 2007). However, 390 

farther south on the coast near Recife, Brazil, at Pernambuco, a neritic section contains a graded sandy 391 

bed, including ejecta from the asteroid impact, and is overlain by an iridium anomaly (Albertaõ and 392 

Martins, 1996). 393 

 394 

Almost all the drill sites in the South Pacific basin appear to have a missing uppermost Maastrichtian 395 

section. This is true even on the southern part of the Ongtong-Java Plateau, which lies near the northern 396 

edge of higher velocities associated with the impact tsunami’s modeled pathway, while two sites on the 397 

northern side of the Plateau (Sites 803 and 807) have the only complete K-Pg sections recovered in the 398 

South Pacific basin of 65 Ma (Figs. 4b, 5). 399 

 400 

 401 

Figure 5. Plate reconstruction and site locations at 65 Ma from ODSN website 402 
(http://www.odsn.de/odsn/services/paleomap/paleomap.html) using the magnetic reference 403 
frame. Continental blocks in gray with modern continental outlines in red. Green shaded 404 
ocean areas depict approximate regions where the models of the K-Pg impact tsunami 405 
showed flow velocities in excess 20 cm/sec (see Fig. 4b). Most coastal regions were 406 
indicated by the models to have experienced such high velocities, but are not shown here. 407 
Drill site locations indicated by circles; K-Pg land outcrop sites indicated by squares (see 408 
legend). Small filled circles indicate sites with hiatuses of a million years or more duration 409 
that span the K-Pg boundary and range well into the Paleogene. 410 



 411 

Of particular interest are the outcrops of the K-Pg boundary interval on the southeast corner of North 412 

Island and northeast corner of South Island, New Zealand. Here the olistostromal deposits at the top of the 413 

Upper Cretaceous Whangi Formation were originally explained as the result of local tectonic activity 414 

(Laird et al., 2003) or mass flow deposit (Hines et al., 2013); but considering the stratigraphic position of 415 

this deposit and its location directly in line with the modeled pathway of the impact tsunami, we feel the 416 

olistostrome is recording the effects of the impact tsunami (Figs. 4, 5, 6). Hollis (2003) reviewed 16 417 

marine sections in New Zealand that ranged in paleo water depth from inner shelf to upper bathyal and 418 

found that at least 14 of them probably had a missing or disturbed K-Pg boundary interval. However, 419 

detailed biostratigraphic control of the uppermost Maastrichtian is lacking for the remaining two sections, 420 

which raises the possibility that these sections may also be incomplete. Paleomagnetic control on the 421 

sections has not been obtained due to pervasive demagnetization (Kodama et al., 2007). 422 

 423 

The tsunami models indicate that many coastal regions around the globe may have been affected by 424 

the impact tsunami; however, without a detailed knowledge of the bathymetry and coastal geometry at 425 

the end of the Cretaceous, and without a higher resolution model in these areas, we cannot evaluate 426 

how accurate the models might be in such shoreline areas. Our study shows that some distant near-427 

shore areas were strongly affected (e.g., New Jersey, New Zealand, Pernambuco), while others were 428 

not (e.g., Seymour Island, Hokkaido). Still, it is probably significant that the models show only minor 429 

coastal effects in the shielded Tethys basin (Fig. 5, 6) where all the neritic sections appear to be 430 

complete (Supplementary Table ST-1). 431 

 432 

In a similar manner, all the large, relatively shallow oceanic plateaus and rises show up in the higher 433 

velocity regions of the models (Fig. 4b); however, as in the coastal regions, the resolution of the models 434 

and that of the paleo bathymetry do not allow detailed comparison of the model results with the 435 

completeness of the recovered sections. We feel it is significant that only those prominent bathymetric 436 

highs that lie outside the main pathway of the impact tsunami show a preponderance of complete K-Pg 437 

sections (Figs 4b, 5). 438 
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5 Discussion 476 

5.1 Tsunami Mechanisms 477 

Earlier theoretical and regional simulations (e.g., Ward, 2012; Matsui et al., 2002; Wünnemann and Weiss, 478 

2015) differ on whether the rim wave or collapse wave dominates with respect to energy.   The rim wave 479 

refers to the water displaced from the impact that is pushed away from the origin (Wünnemann and Weiss, 480 

2015).  The collapse wave is the secondary process arising from the cavity collapse in the crater and water 481 

rushing into the crater (Wünnemann and Weiss, 2015). To test the relative contributions of the collapse 482 

and rim waves to the total tsunami energy, we ran a simulation (‘Crater Only’) with no rim wave or 483 

velocity, such that the tsunami is solely due to the collapse wave filling in the crater.  Our results agree 484 

with the conclusion of Wünnemann and Weiss (2015), that the rim wave is the source of most of the 485 

energy for this impact tsunami. Four hours after impact, the ‘Crater Only’ case is about 13 times less 486 

energetic than the ‘Full Crater, With Rim Wave’ case.  The MOM and MOST model simulations of the 487 

Full Crater scenario showed similar energy numbers four hours post-handoff (3.90 x 1019 and 3.84 x 1019 J 488 

correspondingly), such that the model energy estimates appear to be robust and independent of the exact 489 

model used. 490 

The efficiency of tsunamis can be quantified by the ratio between tsunami energy and the source energy. 491 

The efficiency of tsunami generation by the Chicxulub impact is similar to that of large earthquakes. The 492 

energy ratio for earthquake-generating tsunamis averages around 0.1% (with large variations from 0.02% 493 

to 0.8%, Tang et al., 2012), while we predict that the Chicxulub tsunami has an efficiency of 0.19% (SI 494 

Table 4).  SI Figure 4 shows that the impact tsunami energy dissipates relatively quickly, relative to 495 

seismogenic tsunamis, consistent with the “Van Dorn effect” (Van Dorn et al., 1968) of faster wave energy 496 

attenuation due to large non-linearities near the source of explosion-generated tsunamis.  Near-field 497 

tectonic activity, triggered by passage of strong stress wave produced by the impact, was not included in 498 

our simulations.  It is likely that any earthquake generated slides and collapses would be minor relative to 499 

the primary rim wave. 500 

 501 

5.2 Hiatus Distribution 502 

The better preserved, thicker, carbonate-rich sections in the oceans are commonly found on bathymetric 503 

highs such as continental terraces, oceanic plateaus, rises, aseismic ridges, and seamounts. Drill sites in 504 

which the K-Pg boundary is clearly identified are usually found in such locations. These locations do have 505 

their own problems, however. Such regions of bathymetric prominence also give rise to enhanced 506 



turbulence in the waters surrounding them (Cacchione & Drake, 1986; Cacchione et al., 2002; Rudnick et 507 

al., 2003; Wunsch & Ferrari, 2004); thus, they enhance the erosional power of tsunamis and tidal waves 508 

that pass over them. The preserved sedimentary sections atop bathymetric highs usually show clear 509 

evidence of erosion and the sculpting of pelagic deposits that sit upon them. The drilling strategy often 510 

employed by scientific ocean drilling expeditions takes advantage of the stratigraphic character of these 511 

deposits to sample relatively older intervals where overburden has been removed or was never deposited, 512 

the intention being to minimize the effects of diagenetic alteration on these older sediments. At other sites, 513 

full advantage was taken of the thicker, more complete sections to study the detailed paleoceanographic 514 

history. This duality of purpose means that many sites drilled on bathymetric highs contain significant 515 

gaps in the stratigraphic record, while on some highs there are close-by sites that have recovered complete 516 

sections. In regions with modeled flow velocities < 20 cm/sec, several sites locate the K-Pg boundary 517 

between recovered cores (ST-2); thus, the amount of missing section (if any) and the exact nature of the 518 

boundary is uncertain. 519 

 520 

In basins where almost all sites show incomplete uppermost Maastrichtian sections there are still a few 521 

deep-sea sections that appear to be complete (e.g., Sites 1259, 1260, U1403 in the North Atlantic). These 522 

may represent local bathymetric shielding from erosion or local depocenters that receive sediment which 523 

has been eroded from nearby areas. The coincidence of regions having few if any complete K-Pg boundary 524 

sections and the pathway of relatively strong tsunami flow, combined with the more common occurrence 525 

of complete K-Pg boundary sections in regions that did not have strong tsunami flow, support the results 526 

of the tsunami models. The lack of complete K-Pg boundary sections in the southern South Pacific and on 527 

the eastern shores of New Zealand strongly suggest that this tsunami was of global significance, reaching 528 

at least 12,000 km across the deep ocean. It also suggests that except for some shallow coastal regions, 529 

areas such as the Tethyan region, the North Pacific, the South Atlantic and much of the Indian Ocean basin 530 

were largely geographically shielded from the effects of the tsunami 531 

 532 

5.3 Comparison with Large Historical Tsunamis 533 

To provide perspective on the size of the impact tsunami, we compare our impact tsunami model estimates 534 

with some representative large historical tsunamis. The 2004 Indian Ocean tsunami (Smith et al., 2005) is 535 

possibly the largest modern-era tsunami; it killed over 230,000 people around the Indian Ocean and was 536 

recorded around the globe (Titov et al., 2005). The 2011 Tohoku tsunami was generated by a similarly 537 

strong earthquake and has become the costliest natural disaster of all time. Offshore amplitudes of the 538 



2004 Indian Ocean tsunami 2 hours after generation were measured to be about 0.6 m, and 2 meter waves 539 

were measured about 500 km away from the epicenter of the 2011 Tohoku tsunami, at a seafloor depth of 540 

5700 m.  These deep-ocean amplitudes led to runup at coastlines of up to 40 m (Sumatra Island) and 50 m 541 

(Honshu Island).  The 1883 Krakatau event generated another catastrophic tsunami with explosive-type 542 

initial conditions, potentially similar to the impact generation.  The Krakatau wave devastated local 543 

coastlines, killing over 30,000 (second most deadly record after the Indian Ocean tsunami) with waves that 544 

ran up to 40 m and traveled distances of up to 5 km inland, but did not generate significant waves outside 545 

Sunda Strait. All these tsunamis, among the largest in recorded history, are dwarfed by the wave 546 

amplitudes and energy of the simulated Chicxulub tsunami. The Chicxulub tsunami produces offshore 547 

amplitudes over 1 m around most of the world oceans (Figure 4a).  When tsunamis reach the shallow 548 

waters of a coastline or bathymetric high, wave amplitude increases due to shoaling. Comparison of our 549 

tsunami simulations with observations and modeling of the strongest recent tsunamis of 2004 and 2011 550 

implies that the coastal amplitudes for the Chicxulub tsunami would flood most coastlines, in a manner 551 

that would be catastrophic in modern times.  The total energy of our impact tsunami simulations is 552 

compared with the energy of these large historical tsunamis in SI Table 4 and SI Figure 4.  Energy values 553 

are calculated according to standard formulae for shallow-water energy (e.g., Arbic et al., 2004; their 554 

equation 14).  SI Figure 4 displays the ratios of energy in the impact tsunami simulations to the 2004 555 

Indian Ocean tsunami, as a function of time into the ocean simulation.  The energy in the impact tsunami 556 

decays faster than the energy in the 2004 Indian Ocean tsunami – another manifestation of the “Van Dorn 557 

effect”.  The initial energy in the impact tsunami was up to 30,000 times larger than the energy of any 558 

historically documented tsunamis.  Wave energies in the ‘Half Crater’ simulation are about 5% less than 559 

those in the ‘Full Crater’ simulation.  The ‘Crater Only’ simulation, without the large rim wave, still has 560 

much more energy than any other historical tsunamis. For a wide variety of sources, the portion of the 561 

source energy that goes into tsunami generation is less than 1%, with large variations from about 0.01% to 562 

0.3% (SI Table 4). An impact- and explosion-type of tsunami generation appears to have similar efficiency 563 

in transferring energy into long wave propagation.  However, impact- and explosion-generated tsunamis 564 

dissipate energy much faster during propagation. Nevertheless, the sheer amount of energy of the impactor 565 

is sufficient to generate a giant global tsunami, even if only 0.2% of the impact energy goes into the 566 

tsunami. 567 

 568 

5.4 Future work 569 

The first global simulation of the Chicxulub impact tsunami demonstrates that it was much larger than any 570 

recent earthquake-generated tsunami, and that it was likely large enough to leave a mark on marine 571 



sediment records.  Many uncertainties remain, and there is much room for improvement in future 572 

studies.  It is well known that most impacts are oblique with 45° impact angle being most likely (e.g., 573 

Robertson et al., 2021). With sufficient computer power, high-resolution, three-dimensional hydrocode 574 

simulations of the first ten or so minutes could be performed, thus allowing for varying water depth, non-575 

perpendicular impact angles, and other key uncertainties in the hydrocode simulation. Generally, we would 576 

expect a slightly larger rim wave in the downrange direction and a smaller wave up range. It may be 577 

instructive to vary initial conditions of the global simulation in a parameterized way to crudely account for 578 

impact angle. 579 

 580 

The January 15, 2022, Hunga Tonga-Hunga Ha'apai volcano explosion has demonstrated an additional 581 

mechanism of tsunami generation from large explosive events – the low frequency air pressure wave, e.g. 582 

Lamb wave (Duncombe, 2022). While the exact mechanism of the air pressure Lamb wave is not fully 583 

understood, it is clear that significant waves can be generated from such air pressure waves propagating 584 

over oceans. The full analysis of such tsunami generation is out of the scope of this paper and is a subject 585 

of future research. But based upon observations and initial modeling of the Tonga event, it is clear that the 586 

Lamb wave can be a source of significant secondary tsunamis around the world. These waves would reach 587 

world coastlines much earlier than the tsunami generated by the crater formation. The energy of the 588 

Chicxulub impact is at least 100,000 times larger than the Tonga explosion. The Lamb wave from the 589 

Tonga explosion generated tsunami waves of over a meter at some locations around the Pacific and up to 590 

half a meter at other oceans. Thus, the Lamb wave from the Chicxulub explosion can be a significant 591 

source of tsunamis in the far-field from the impact source, and will be a subject of future work. 592 

  593 

Dispersive effects may manifest themselves in the Chicxulub tsunami propagation simulations in two 594 

ways: (1) during the long-distance propagation as different wave frequencies separate from a single front; 595 

and (2) during the evolution of the initial steep wave front into an undular bore (Glimsdal et al., 2007). 596 

Tsunami amplitudes in shallow water wave approximation models may overpredict shorter dispersive 597 

waves or underpredict sharp frontal amplitudes experiencing fission and undular bore formation. In both 598 

cases the difference may be up to 50% of amplitudes in certain cases (see for example Son et al., 2011, 599 

Zhou et al., 2014, 2012).  Addressing these effects is a topic for future research.Both of these processes 600 

generally lead to the decrease of amplitudes in comparison with the classic shallow-water wave theory 601 

estimates.  Therefore, the non-linear shallow water approximation provides, in general, a conservative 602 

(upper-bound) estimate of potential tsunami amplitudes.  The use of Boussinesq-type models may provide 603 

a better resolution of the undular bore feature of the turbulent wave front.  However, tThese effects involve 604 



generation of much shorter (therefore much more dissipative) wavelengths that are     usually confined to a 605 

relatively small part of the wave      near the bore front (see for example Son et al., 2011, Matsuyama et al., 606 

2007), and therefore may have very limited effect on the global wave propagation pattern – the main goal 607 

of this study.  Also, the results of Glimsdal et al. (2007) show that the Boussinesq model appears to 608 

overestimate the dispersive front effects in comparison with the full hydro code, which may be attributed 609 

to difference in resolution or to the inherent tendency of Boussinesq models to overestimate dispersion. 610 

The detailed modeling of the dispersive front of the leading tsunami with higher spatial resolution 611 

dispersive simulations would show more precise dynamics of the tsunami in the near-source area and may 612 

change the details of the maximum amplitude distribution near the source. Therefore, such studies with 613 

higher resolution dispersive models would be a natural extension of this work, especially for more precise 614 

estimates of tsunami impact within the Gulf of Mexico. However, we don’t expect these details to 615 

significantly change our far-field estimates of the tsunami amplitudes and tsunami energy directionality 616 

(Zhou et al., 2012, 2014). 617 

  618 

In the case of our modeling, we expect the dispersive effects would be, at least partially, accounted for, 619 

since one of the models (MOST) includes the physical process of frequency dispersion approximated by 620 

numerical dispersion (Burwell et al., 2007).  MOST has been benchmarked against laboratory tests with 621 

highly dispersive and highly non-linear waves for wave breaking dynamics (Titov and Synolakis, 1995) 622 

and compared with dispersive models during the long-distance tsunami propagation (Zhou et al., 2012).  623 

These comparisons showed that MOST provides results closely resembling the dispersive models 624 

estimates.  The consistency of MOST and MOM6 results provides confidence in the robustness of our 625 

results.  However, dispersive effects as well as uncertainties such as in the details and size of the impactor, 626 

and in the paleo-bathymetry estimates should be investigated more fully in future work. 627 
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