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Key Points: 

● The authors present the first global simulation of the Chicxulub impact tsunami 

● Total energy present in the impact tsunami is much greater than for any modern-day tsunami 

● Impact tsunami flow velocities are strong enough to disturb and erode sediment in basins halfway 

around the globe 

Abstract 

The Chicxulub crater is the site of an asteroid impact linked with the Cretaceous-Paleogene (K-Pg) mass 

extinction at ~66Ma. This asteroid struck in shallow water and caused a large tsunami. Here we present the 

first global simulation of the Chicxulub impact tsunami from initial contact of the projectile to global 

propagation. We use a hydrocode to model the displacement of water, sediment, and crust over the first ten 

minutes, and a shallow-water ocean model from that point onwards. The impact tsunami was up to 30,000 

times more energetic than the December 26, 2004 Indian Ocean tsunami, one of the largest tsunamis in the 

modern record. Flow velocities exceeded 20 cm/s along shorelines worldwide, as well as in open-ocean 

regions in the North Atlantic, equatorial South Atlantic, southern Pacific and the Central American 

Seaway, and therefore likely scoured the seafloor and disturbed sediments over 10,000 km from the impact 

origin. The distribution of erosion and hiatuses in the uppermost Cretaceous marine sediments are 

consistent with model results. 

 

Plain Language Summary 
 

At the end of the Cretaceous, about 66 million years ago, the Chicxulub asteroid impact near the Yucatan 

peninsula produced a global tsunami 30,000 times more energetic than any modern-day tsunami produced 

by earthquakes. Here we model the first ten minutes of the event with a crater impact model, and the 

subsequent propagation throughout the world oceans using two different global tsunami models.  The 

Chicxulub tsunami approached most coastlines of the North Atlantic and South Pacific with waves of over A
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10 meters high and flow velocities in excess of 1 m/s offshore.  The tsunami was strong enough to scour 

the seafloor in these regions, thus removing the sedimentary records of conditions before and during this 

cataclysmic event in earth history and leaving either a gap in these records or a jumble of highly disturbed 

older sediments.  The gaps in sedimentary records generally occur in basins where the numerical model 

predicts larger bottom velocities.  

 

 

1 Introduction 

The impact of an approximately 14-km diameter asteroid is implicated in the Cretaceous/Paleogene (K-Pg) 

mass extinction (Schulte et al., 2010) approximately 66 Ma ago.  The bolide impact caused global 

temperature fluctuations (Schulte et al., 2010), large aerosol plumes (Bardeen et al., 2017), large plumes of 

soot and dust (Brugger et al., 2017), wildfires from ejecta re-entering the atmosphere (Busby et al., 2002; 

Morgan et al., 2013), and a massive tsunami (Matsui et al., 2002; Kinsland et al., 2021).  Drilling cores from 

the Integrated Ocean Drilling Program (Gulick et al., 2016) and the International Continental Drilling 

Program (ICDP) corroborated the models (Collins et al., 2008) of the exact physical and geophysical nature 

of the crater and its peak ring which has facilitated detailed modeling of the impact (Morgan et al., 

2016).  Earlier tsunami simulations described the effects of the tsunami within the confines of the Gulf of 

Mexico (e.g., Ward, 2012; Matsui et al., 2002; see Ward, 2021 for a more recent simulation extending 

beyond the Gulf of Mexico).  Subsequent submarine landslides on the marine shelf (Gulick et al., 2008) 

could potentially increase the energy of this tsunami. 

 

Most global tsunami simulations to date have been of tsunamis induced by underwater earthquakes, for 

instance, the 2004 Indian Ocean tsunami (Smith et al., 2005, Titov et al., 2005).  Tsunami propagation has 

traditionally been simulated with shallow-water ocean models, which assume hydrostatic water pressure and 

a small depth-to-wavelength ratio. Such models cannot be used to simulate the complex first ten minutes of 

the Chicxulub impact tsunami when there was large-scale deformation of the crust and the formation of a 

crater (Morgan et al., 2016). The crater formation and post-impact ejecta splashing back into the ocean create 

highly non-linear and non-hydrostatic waves. Modeling the impact tsunami requires a multi-stage 

simulation, with hydrocode modeling of crater formation and post-impact non-hydrostatic water waves, 

before hand-off of the solution to global shallow-water models.  We pursue such a two-stage strategy in this 

paper. 

 

These linked models seek to depict a complex set of events associated with the asteroid impact and to predict 

the pathways of propagation as applied to a world with very different sea levels, ocean gateways, and 

continental positions and boundaries. The models do not incorporate a description of the chaotic near-field 
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tectonic disturbances (e.g., faulting and slope failures) and the generation of smaller tsunamis by these 

disturbances. Did these aspects of the impact event alter the strength or the propagation pathway of the 

impact tsunami, or was this tsunami so large and so powerful that these other effects were masked and 

overpowered? To verify the modeled strength and pathways taken by the impact tsunami we look at a global 

array of K-Pg boundary intervals in marine sections on land and in ocean drilling cores. In these sites we 

will look for documented evidence of erosion, sediment disturbance, and/or redeposition of sediments that 

can be reasonably associated with the impact tsunami. 

 

2 Impact Modeling 

2.1 Methods 

We use the axisymmetric iSALE-2D hydrocode (Collins et al., 2004; Wünnemann et al., 2006) to simulate 

the initial formation of the Chicxulub impact tsunami.  iSALE-2D has been used to simulate impact-induced 

tsunamis (e.g., Weiss et al., 2006; Weiss and Wünnemann, 2007; Wünnemann et al., 2010).  The results of 

our iSALE-2D simulations were used to create initial conditions for shallow-water models to trace the 

tsunami throughout the world’s ocean.  

 

Motivated by impact simulations that reproduce the seismically imaged structure of Chicxulub (Collins et 

al., 2008) as well as the peak shock pressures and composition of the basin’s peak-ring, as constrained by 

recent drilling (Morgan et al., 2016), we assume that the 14-km-diameter impactor had a density of 2650 

kg/m3 and struck Chicxulub at 12 km/s. Although the Chicxulub impact is thought to be oblique (45-60 

degrees from horizontal; Collins et al., 2020; Robertson et al., 2021) the axisymmetric nature of the code 

limits us to simulation of vertical impacts.  We expect this limitation to have a minor effect on our results as 

the formation of the outward propagating rim wave (more below) is dominated by emplacement of slow 

ejecta that tends to be symmetric (e.g., Anderson et al., 2003). Our simulations have the same setup as those 

in Collins et al. (2008), but with a finer grid spacing and a larger domain needed to track the formation and 

early evolution of the tsunami (see SI Table 1 and other material in Supporting Information; hereafter 

referred to as SI). We model the target as a granitic crust overlain by a 4-km-thick layer of sediments and an 

ocean with a constant depth of 1, 2, or 3 km (a 2-km ocean depth was used by Collins et al. (2008) for the 

northwestern sector of Chicxulub).  With a grid resolution of 100 m, the ocean depth is resolved by 10, 20, 

and 30 cells, respectively, depending on assumed ocean depths of 1, 2, and 3 km.  This number of grid cells 

is sufficient to resolve the rim wave (Bahlburg et al., 2010; SI). The atmosphere is not expected to 

significantly affect the early propagation of the tsunami. Thus, we do not include the atmosphere in our 



A
ut

ho
r 

M
an

us
cr

ip
t 

This article is protected by copyright. All rights reserved.  

 

 

 

 

 

 

 

simulations.  Further details of the iSALE simulations used in this paper, and their sensitivities to grid 

spacing, can be found in SI.   

 

2.2 Results 

The dimensions and formation of the crater are similar to previous work (Collins et al., 2008; Morgan et al., 

2016).  The results of our “fiducial” hydrocode impact simulation, with an assumed seafloor depth of 1 km 

and a run time of 10 minutes, are shown in Figure 1.  About 2.5 minutes after contact of the projectile, a 

curtain of ejecta pushing water outward from the impact produced a 4.5-km-high wave (Fig. 1a). After 5 

minutes, falling ejecta continued to impart momentum to the ocean (Fig. 1b).  At 10 minutes, after all the 

ejecta had fallen, a 1.5-km-high wave, known as a rim wave, located 220 km from the point of impact was 

left propagating throughout the deep ocean (Fig. 1c).  

 

 

Figure 1. Formation of Chicxulub crater and the associated tsunami.  Time series with material colored 

according to material type (crustal material is brown, sediments are yellow, and the ocean is blue).  The 

origin marks the point of impact.  Black curves mark material interfaces (e.g., sediment-crust interface). An 

animation of these results, from 0 to 10 minutes in steps of 5 seconds, is shown in SI Video 1. 

 



A
ut

ho
r 

M
an

us
cr

ip
t 

This article is protected by copyright. All rights reserved.  

 

 

 

 

 

 

 

The axisymmetric nature of our high-resolution hydrocode model requires an ocean layer with a constant 

water depth.  The ocean depth at the point of impact is estimated to be 100-200 m (Gulick et al. 2008) and 

becomes deeper toward the northwest.  Generation of the tsunami rim wave, however, is sensitive to the 

ocean depth at the crater rim, not at the point of impact.  Paleobathymetry estimates indicate that water depth 

was ~1 km where ejecta emplacement produces the initial rim-wave (50 km from basin center).  At ~150 

km from the point of impact the ocean was ~3 km deep (SI Fig. 1). To test for sensitivity of the rim wave 

and crater shape to pre-impact ocean depth we vary the thickness of the ocean layer from 1 to 3 km.  The 

waveforms after the first 10 minutes of the fiducial simulation, and after the first 10 minutes of iSALE 

simulations with different water depths, are displayed in Figure 2.  These waveforms are in good agreement 

with the waveforms found in Bahlburg et al. (2010).  SI Fig. 4 demonstrates that handoff to the MOM6 

“larger mesh” results at 600 s and 850 s give nearly identical globally integrated energies.  Surprisingly, the 

crater and rim wave structure at these early times do not depend strongly on assumed ocean depth within the 

range of 1-3 km (Figure 2).  We do not expect this moderate      dependence to hold over much deeper or 

shallower ocean depths.  Our two-dimensional axisymmetric model with a constant depth is clearly a 

simplification of the bathymetry in the Gulf of Mexico.  In the case of the 1 km ocean depth simulation, a 

sediment rim on the impact crater ten minutes into the run rose above the water column, creating a ring-

shaped island. As the rim was composed of loose sediment, it would likely have been quickly dispersed by 

wave action (Bell et al., 2004). Other authors however have argued that resurge of water into the crater 

occurred by penetration through the raised rim and erosion allowing flow at locations along the rim 

(Bahlburg et al. 2010). To test for sensitivity to this uncertainty, we model one initial condition with a 

sediment rim and one without.  We test for sensitivity between the two runs and found the tsunami energies 

to be comparable (not shown).  Therefore, the 1 km water depth iSALE simulation, with no sediment rim, 

is used for all subsequent runs.  

 

3 Tsunami Propagation Modeling 

3.1 Methods 

To simulate the global propagation of the impact tsunami, we use two different well-established shallow-

water models:  the Geophysical Fluid Dynamics Laboratory (GFDL) Modular Ocean Model Version 6 

(Adcroft, 2017; MOM6), and Methods Of Splitting Tsunamis (Titov et al, 2016; MOST).  The rim-wave 

has a wavelength of about 50-100 km, similar to the wavelengths seen in the 2004 Indian Ocean 

tsunami.  As this is much greater than average ocean depths of about 4 km, the shallow water assumption, 

which assumes hydrostatic balance and is based on a comparison of wavelengths vs. water depth, is well 

satisfied. The similarity of simulations from two different models using the same underlying shallow-water 
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approximation and run on the same 1/10th degree grid but differing in their respective numerical 

implementations (more below) ensures robustness of our results.  Neither of the models used here 

explicitly include dispersive effects.  Discussion of potential effects of dispersion is provided later, in the 

section on Future Work.   

 

Shallow-water models solve for perturbations to the resting sea surface elevations and for depth-averaged 

flow velocities.  Flow velocities are the velocities of particles in the water, in contrast to the phase 

velocities of the tsunami wave propagating throughout the ocean.  The hydrostatic approximation will 

modify the wave speed.  Errors due to this approximation are likely less than errors due to uncertainties in 

bathymetry. The large amplitudes of impact-generated waves lead to nonlinear dynamics during 

propagation, which is described only approximately by the shallow-water wave theory.  Nevertheless, the 

long wave approximations have been successfully applied for simulating the nonlinear tsunami dynamics 

of propagation in shallow coastal regions and runup.  Synolakis et al. (2008), for example, include an 

extensive discussion of verification and validation of shallow-water tsunami models with respect to field 

benchmarks.  Their study demonstrates that large-amplitude waves can be predicted accurately with the 

shallow-water wave theory, providing the long wave assumption is valid. The tsunami model benchmark 

efforts included a wide range of depth-integrated models (Pedersen, 2008) and initiated ongoing discussion 

about the proper use of the shallow-water and the Boussinesq-type models for tsunami simulations (Kirby, 

2016). We address the dispersive modeling issues in the “Future Work” section. 

 

 

Figure 2.  Waveform and crater shape for three different runs from the iSALE-2D hydrocode.  In the left-

most part of the plot, the crater depths are shown. The middle and right-parts of the plot follow the change 
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in sea level relative to the resting sea level. The crater depths are displaced by about one km from each 

other because of the differing ocean depths of the three runs.  

 

MOM6 has been used to model tsunamis in the deep ocean, although it has not been used to forecast 

tsunamis. The barotropic solver in MOM6 is based on the solver in the Hallberg Isopycnal Model 

(HIM)/Generalized Ocean Layered Model (GOLD), which were used in the tsunami studies of Smith et al. 

(2005) and Kunkel et al. (2006).  The results in Adcroft (2013) suggest that deep-ocean, large-scale motions 

are not overly sensitive to the horizontal resolution of the model. The "forecasting" accuracy of the tsunami 

calculation is not relevant for the application of the Chicxulub impact tsunami, but at 1/10th degree global 

resolution the arrival times are accurate to about 1%.   

 

MOST was developed specifically for tsunami simulations (Titov & Synolakis, 1995; Titov et al., 

2016).  MOST has been extensively tested for various tsunami modeling applications and has been used to 

simulate historical tsunamis of different origins, including modeling of global tsunami propagation and local 

tsunami inundation impacts.  MOST is now used operationally for tsunami forecasts at NOAA Tsunami 

Warning Centers.  While MOM6 is run for all of the cases shown in this paper, MOST is run only in the 

fiducial case described below.   

 

Both tsunami propagation models used the same global 1/10th degree bathymetric grid (SI Tables 2 and 3). 

To accurately simulate tsunami propagation, a global Maastrichtian (66Ma) paleobathymetry is combined 

with the initial condition from the hydrocode results.  The sources for the global paleobathymetry are Müller 

et al. (2008) and Scotese (1997). More information about the bathymetries that we used, and the manner in 

which we combined them, can be found in SI Text S1.  

 

To continue the simulation with the tsunami propagation codes we convert the axisymmetric, constant water 

depth hydrocode results (see SI Figure 2) to more realistic, non-axisymmetric conditions with horizontally 

varying resting water depths.  The hydrocode results at 600 seconds post-impact were used for the shallow-

water model initial condition. At this time there was no more resolved falling ejecta; less voluminous and 

potentially fine ejecta would continue to fall after 600 s, but we do not expect that this more distal ejecta 

would significantly affect the rim wave. At 600 s, there is a defined waveform of perturbation sea surface 

heights, in approximate hydrostatic balance because the wavelength is much greater than the water depth 

(see Fig. 2).  The waveform, crater shape and velocity are isolated from the density profile. Assuming radial 

symmetry, the waveform is converted into a ring-shaped outward propagating wave, dependent on resting 
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sea level, and inserted into the paleobathymetry described above.  In the bathymetry the crater extended onto 

land where water was not initially present before impact.  We test having a crater purely in water, without 

the portion of the crater that is formed over land (‘Half Crater’), as well as a more complete crater that 

extended a full 360° onto land, (‘Full Crater’), and compare energies, as discussed further below.  The 

fiducial model employs the ‘Half Crater’ bathymetry. More information on the blending of the hydrocode 

results into the paleobathymetry is given in SI.  

 

To test sensitivity to the horizontal grid spacing of the shallow-water model, we run a shallow-water 

simulation at 1/5° grid spacing and compare snapshots of two-dimensional sea surface height perturbation 

fields (SI Fig. 3) and energies (SI Fig. 4) between this run and the nominal 1/10° run. To test for the 

sensitivity of the transfer point (“hand-off”) between the hydrocode and ocean model, we run a hydrocode 

simulation, with a larger mesh, out to 850 seconds before emplacement of the hydrocode conditions in the 

MOM6 model.  More details can be found in SI. 

 

3.2 Results 

Both shallow-water propagation models are run using the same fiducial run initial conditions and 

bathymetry data.  Snapshots of the MOM6 and MOST sea surface amplitudes are compared at the same 

times to ensure consistency of the results.  The models display similar tsunami propagation patterns (Fig. 

3).  The main dissimilarities in the model behaviors are in the later-stage wave dynamics. The differences 

reflect different numerical implementation of the shallow-water wave equations used in the two models. 

MOST is using the Godonov-type method (a Riemann solver) with a directional splitting, which 

emphasizes wave characteristics, and a discretization of non-linear terms in Lagrangian form. MOM6 

employs vector invariant equations using an energy conserving discretization, with an emphasis on a well-

behaved spectra in a turbulent cascade (not resolved or relevant to this problem).  In addition, the bottom 

dissipation is parameterized differently in the two models.  MOM6 displays more short-wavelength 

features after the initial, highest amplitude wave passing.  Additional differences arise from different 

treatments of the north and south boundaries by MOM6 (reflecting boundaries) and MOST (absorbing 

boundaries without reflection).  These model differences do not affect the leading order wave 

dynamics.  The impact tsunami spread outside the Gulf into the Atlantic after about one hour from impact 

(Fig. 3a); after 4 hours, through the Central American seaway, the waves enter into the Pacific (Fig. 3b); 

after 24 hours of propagation, the waves cross most of the Pacific from the east and Atlantic from the west 

and entered the Indian Ocean from both sides (Fig. 3c).  The tsunami front propagates in excess of 200 m/s 

in deep water, in accordance with the shallow-water celerity.  By 48 hours post-handoff, e.g., 48 hours 
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after the handoff from the hydrocode to the shallow-water model, significant tsunami amplitudes have 

reached most of the world coastlines creating a complex amplitude pattern due to wave reflection and 

refraction (Fig. 3d). Due to wave shoaling the open ocean amplitudes can multiply many-fold near 

coastlines. The open-ocean amplitudes in most of the Gulf of Mexico are computed to be over 100 

m.  Along many North Atlantic coastal regions and some South America Pacific coastal regions the 

models show over 10 m offshore amplitudes. The simulations predict that most of the world ocean 

experiences maximum offshore amplitudes above 1 m, with the exception of some areas in the Indian 

Ocean and Mediterranean. Any historically documented tsunamis pale in comparison with such global 

impact. Depending on the geometries of the coast and the advancing waves, most coastal regions would be 

inundated and eroded to some extent.  The simulations used here do not include wave run-up onto land, as 

the model resolution of 1/10º is too low to resolve details of the inundation dynamics.  

 

The maximum wave amplitudes and flow velocities (current speeds) at each model grid cell, over the two-

day time period of the MOST simulation, are respectively shown in Figs. 4a and 4b.  The largest waves and 

current speeds are in the Gulf of Mexico, North Atlantic, and South Pacific.  Near the point of impact, the 

flow velocity exceeds 100 m/s. In other basins, flow velocities are up to a factor of 100 times smaller in the 

middle of the ocean than they are near the impact origin and along the coasts.  Flow velocities above 20 cm/s 

are expected to cause erosion of fine-grained pelagic sediments (Lonsdale and Southard, 1974; McCave, 

1984).  Velocities higher than 20 cm/s are predicted in offshore areas of the North Atlantic and the equatorial 

region of the South Atlantic, in the Central American seaway and in most of the southern and southwestern 

Pacific, more than 12,000 km from the impact area. Most coastal areas of the world experienced above-20-

cm/s velocities. As discussed in SI, tsunami propagation and flow velocities of simulations with slightly 

different input configurations (varying model resolution, friction coefficients, hand-off times between 

hydrocode and shallow-water models, crater size, etc.) are also tested for sensitivity.  The energy of the 

tsunami is not greatly changed in any of these sensitivity tests except for the case in which the rim wave is 

removed.  
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 Figure 3. Comparison of two tsunami propagation models: MOST model – left column, MOM6 – right 

column. Sea surface height perturbation in meters shown at 1 hour (a) and 4 hours (b) after impact around 

Gulf of Mexico, 24 hours (c) and 48 hours (d) post-handoff globally. Animations for both models are provided 

in SI Videos 3 and 4.  

 



A
ut

ho
r 

M
an

us
cr

ip
t 

This article is protected by copyright. All rights reserved.  

 

 

 

 

 

 

 

 
Figure 4. Maximum tsunami sea surface perturbation heights (a) and maximum flow velocity (b) at each 

grid cell. Contours are shown for every meter of amplitude (saturated at 1000 cm) and every 20 cm/s of 

speed. Contours of modern continents are shown for reference as gray lines. The results of the MOST model 

are shown here, because MOST saves values more frequently than MOM6.  
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4. Geologic Verification of the Models 

4.1 Methods  

 Identifying the K-Pg boundary in marine sections requires some form of stratigraphic information. This is 

usually provided by biostratigraphic or paleomagnetic investigations. Marine sections located above 

present-day sea level and exposed on land usually allow a broad view of boundaries in outcrop and 

extensive stratigraphic data can often be collected from the section. Based on these studies and the overall 

preservation and exposure of the interval, one section has been named the “type section”. The stratotype 

section for the K-Pg boundary is at El Kef, Tunisia (XXVIIIth International Geological Congress, 1989). 

The boundary itself has been linked to the anomalous abundance of Iridium that was derived from the 

impacting body.  

 

Close to the impact site reworked sedimentary deposits are mixed with ejecta from the impact. At 

intermediate distances the airborne ejecta may have arrived before the tsunami; thus, airborne ejecta with 

higher Iridium concentrations may lie below rip up clasts and redeposited older sediments. In distant 

regions, high concentrations of Iridium used to define the K-Pg boundary (Kiessling & Claeys, 2002) are 

thought to have arrived by settling from the stratosphere over a period up to several years (Claeys et al., 

2002; Toon et al, 1982). This is compared to the modeled tsunami reaching a global extent in just two 

days. To verify the strength and pathway of the modeled impact tsunami we pay particular attention to 

these more distal regions (Schulte et al. 2010). In these regions the effects of the tsunami should be found 

in the interval immediately below the K-Pg boundary itself in both marine sections on land (supplementary 

table ST-1) and in scientific ocean drilling cores (supplementary table ST-2). We take any sign of missing 

biostratigraphic or paleomagnetic intervals or depositional disturbance immediately below this level (e.g., 

erosional truncations of bedding or bioturbation features, sediment deformation, allochthonous clumps or 

clasts) as evidence of current activity or disturbance associated with the impact tsunami. 

   

 A few of the studied boundary sections have paleomagnetic stratigraphy. The K-Pg boundary has been 

found to be within the upper half of subchron C29r in Gubbio, Italy (Lowrie and Alvarez, 1977) and 

Agost, Spain (Canudo et al., 1991). The estimated duration of the Cretaceous part of subchron C29r is 300 

kyr (Husson et al. 2011).  Biostratigrapy often provides an important indication of missing section in 

deeper water, pelagic sections. The Abathomphalusmayaroensis Zone defines the uppermost Cretaceous 

foraminiferal zone in many of the older studies of the K-Pg boundary; however, Keller (1988) found that 
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A. mayaroensis disappeared below the K-Pg boundary in the type section at El Kef. To fill this gap, Pardo 

et al. (1996) defined a total range biozone (Plummerita hantkeninoides) that marks the top of the 

Maastrichtian and lies within the lower half of subchron C29r. The uppermost Cretaceous nannofossil 

zone is defined by the range of Micula prinsii (Sissingh, 1977). This Zone occupies most of the lower half 

of subchron C29r. Other fossil assemblages have been used to evaluate the ages within the Late 

Cretaceous, but they have not been well documented in more than one or two complete K-Pg boundary 

sections. Carbon and oxygen isotope stratigraphies have been generated for several of the K-Pg boundary 

sections (Supplementary Tables ST-1, ST-2). The records of the carbon isotopes show an abrupt break at 

the K-Pg boundary, with the isotopes becoming sharply negative (a drop of 2‰ at El Kef; Keller and 

Lindinger, 1989). However, the oxygen isotopes signal is more variable and may depend on what 

microfossils are being measured (c.f. El Kef, in Keller and Lindinger, 1989; MacLeod et al., 2018, and 

other sections in Caravaca, in Canudo et al., 1991; and in Zumaia, in Margolis et al., 1987). 

 

The advent of orbital tuning of geologic records has greatly advanced our ability to develop estimates of 

ages with comparable precision well back into the Cretaceous (e.g., Batenburg et al, 2012; Dinarés-Turrel 

et al., 2014; Husson et al., 2011 and references therein).These studies use calculated variations in the 

earth’s orbit as a template for matching variations in stable isotopes, color, iron content, or bed thickness; 

however, beyond 60 Ma only the 405 kyr eccentricity cycle is known with sufficient accuracy to be used 

in tuning the time scale (Laskar et al., 2011; Westerhold et al., 2012). From these tuning efforts we know 

that the K-Pg boundary lies at the top of the 405 kyr orbital cycle of eccentricity designated as Ma405 1 

(Batenburg et al., 2012). Any effort at tuning must take place within a stratigraphic framework defined by 

other tools, normally a paleomagnetic stratigraphy, which in turn usually relies on a biostratigraphic 

framework. 

 

For the drill sites reported in this study, we list those sites (Supplementary Table ST-2) in which the K-Pg 

boundary interval is recovered and is fossiliferous, with stratigraphies that define the location of that 

boundary. Based on stratigraphic evaluations for both drilled cores and outcrop sections, we class the K-Pg 

boundary sections as: 1) complete, 2) apparently complete, 3) having a detectable depositional disturbance, 

hiatus, or disconformity, or 4) having a long erosional hiatus or non-depositional surface (Fig. 5). If such 

long missing sections range from the Cretaceous well up into the Paleocene or even younger sections, we 

cannot claim that they are attributable to the impact tsunami (category 4, above), and we discount them 

from our analysis. If, however, the lower part of the Paleocene is present, while a part of the Upper 

Cretaceous is missing, we classify this as possibly caused by the impact tsunami (category 3, above). 
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4.2 Results 

The devastating effects of the asteroid impact in the Caribbean and Gulf of Mexico included earthquakes, 

slope failures, and debris flows, all of which could have contributed to tsunami formation, (e.g., Alegret 

and Thomas, 2005; Alvarez et al., 1992, 1995; Bourgeois et   al., 1988; Bralower et al., 1998; Campbell et 

al., 2008; Denne et al., 2013, Keller et al., 1997, 2007; Kinsland et al., 2021; Maurrasse et al., 1991; 

Montanari et al., 1994; Schulte et al., 2006,  2008; Smit et al., 1996; Sanford et al., 2016; Stinnesbeck et 

al., 1997). These ancillary effects are not accounted for in the impact tsunami models, but nevertheless 

disrupted the K-Pg boundary.  The modeled impact tsunami took principal radiation pathways directed to 

the east and northeast into the North Atlantic and to the southwest, through the Central American passage 

and into the southwestern Pacific (Fig. 4). At flow speeds greater than 20 cm/sec (Fig. 4b) the passing 

tsunami could have eroded fine-grained marine sediment even on the deep seafloor (Lonsdale and 

Southard, 1974; McCave, 1984).  

 

The Tethys region, the South Atlantic, the North Pacific, and the Indian Ocean basins were largely 

shielded from the stronger effects of the tsunami (Fig. 4). This is consistent with the location of the 

several complete sections described from the marine outcrops around the Mediterranean, including the 

type section at El Kef (Fig. 5). It is also consistent with the frequent recovery of complete sections at 

scientific ocean drilling sites in the South Atlantic Ocean and on Seymour Island in the Antarctic 

Peninsula, the several complete sections of the K-Pg boundary recovered in the North Pacific Ocean and 

on the island of Hokkaido, and the complete K-Pg boundary intervals drilled on bathymetric highs in the 

eastern Indian Ocean. 

 

Looking at K-Pg boundary intervals that lay in the modeled pathway of the tsunami, the results of the 

comparison are also largely consistent. The drilled sections in New Jersey show gaps, rip up clasts, or 

tempestites in the K-Pg boundary interval. Sections studied in western Europe (Germany, Denmark, 

France, Bulgaria, Austria; Supplementary Table ST-1) generally show biostratigraphic gaps, erosional 

truncations, or slumps and gravity flows in the uppermost part of the Maastrichtian section. In the North 

Atlantic Ocean only three sites in two areas contain what appear to be complete K-Pg boundary intervals 

(Fig. 5). Site U1403 is the deepest site drilled on the J-Anomaly Ridge off Newfoundland. The Upper 

Cretaceous section is relatively thick here, lying between two southeast trending basement highs 

(Expedition 342 Scientists, 2012) and may represent a depocenter for sediment eroded from the nearby 

locations. Sites 1259 and 1260 are located on the slope of the Demerara Rise off Suriname, South 
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America. During the Late Cretaceous their location was within a few degrees north of the equator and 

may have been partially shielded from the main force of the tsunami (MacLeod et al., 2007). However, 

farther south on the coast near Recife, Brazil, at Pernambuco, a neritic section contains a graded sandy 

bed, including ejecta from the asteroid impact, and is overlain by an iridium anomaly (Albertaõ and 

Martins, 1996). 

 

Almost all the drill sites in the South Pacific basin appear to have a missing uppermost Maastrichtian 

section. This is true even on the southern part of the Ongtong-Java Plateau, which lies near the northern 

edge of higher velocities associated with the impact tsunami’s modeled pathway, while two sites on the 

northern side of the Plateau (Sites 803 and 807) have the only complete K-Pg sections recovered in the 

South Pacific basin of 65 Ma (Figs. 4b, 5). 

 

 

Figure 5. Plate reconstruction and site locations at 65 Ma from ODSN website 

(http://www.odsn.de/odsn/services/paleomap/paleomap.html) using the magnetic reference 

frame. Continental blocks in gray with modern continental outlines in red. Green shaded 

ocean areas depict approximate regions where the models of the K-Pg impact tsunami 

showed flow velocities in excess 20 cm/sec (see Fig. 4b). Most coastal regions were 

indicated by the models to have experienced such high velocities, but are not shown here. 

Drill site locations indicated by circles; K-Pg land outcrop sites indicated by squares (see 

legend). Small filled circles indicate sites with hiatuses of a million years or more duration 

that span the K-Pg boundary and range well into the Paleogene. 
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Of particular interest are the outcrops of the K-Pg boundary interval on the southeast corner of North 

Island and northeast corner of South Island, New Zealand. Here the olistostromal deposits at the top of the 

Upper Cretaceous Whangi Formation were originally explained as the result of local tectonic activity 

(Laird et al., 2003) or mass flow deposit (Hines et al., 2013); but considering the stratigraphic position of 

this deposit and its location directly in line with the modeled pathway of the impact tsunami, we feel the 

olistostrome is recording the effects of the impact tsunami (Figs. 4, 5, 6). Hollis (2003) reviewed 16 

marine sections in New Zealand that ranged in paleo water depth from inner shelf to upper bathyal and 

found that at least 14 of them probably had a missing or disturbed K-Pg boundary interval. However, 

detailed biostratigraphic control of the uppermost Maastrichtian is lacking for the remaining two sections, 

which raises the possibility that these sections may also be incomplete. Paleomagnetic control on the 

sections has not been obtained due to pervasive demagnetization (Kodama et al., 2007). 

 

The tsunami models indicate that many coastal regions around the globe may have been affected by 

the impact tsunami; however, without a detailed knowledge of the bathymetry and coastal geometry at 

the end of the Cretaceous, and without a higher resolution model in these areas, we cannot evaluate 

how accurate the models might be in such shoreline areas. Our study shows that some distant near-

shore areas were strongly affected (e.g., New Jersey, New Zealand, Pernambuco), while others were 

not (e.g., Seymour Island, Hokkaido). Still, it is probably significant that the models show only minor 

coastal effects in the shielded Tethys basin (Fig. 5, 6) where all the neritic sections appear to be 

complete (Supplementary Table ST-1). 

 

In a similar manner, all the large, relatively shallow oceanic plateaus and rises show up in the higher 

velocity regions of the models (Fig. 4b); however, as in the coastal regions, the resolution of the models 

and that of the paleo bathymetry do not allow detailed comparison of the model results with the 

completeness of the recovered sections. We feel it is significant that only those prominent bathymetric 

highs that lie outside the main pathway of the impact tsunami show a preponderance of complete K-Pg 

sections (Figs 4b, 5). 
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Figure 6. The percent of apparently complete 

marine sections containing the K-Pg boundary 

interval listed by ocean basin, including both 

marine sections found on the surrounding land 

and in scientific ocean drilling cores. Data do 

not include sites with long hiatuses (see text). 

The number of sections studied is shown at 

the base of each column (see Supplementary 

Tables ST-1 and ST-2). No complete sections 

were found in the Caribbean (including the 

Gulf of Mexico). The South Atlantic and 

South Pacific categories include sites studied 

in the Southern Ocean sector of these basins. 

 

 

 

 

 

A summary of the studied marine sections on land and in drill cores is shown in Figure 6. As noted above, 

all marine sections on land around the Mediterranean lie outside the modeled >20 cm/sec flow velocity 

contour (Fig. 4b, 5) and are believed to have complete K-Pg boundary records. Also noted above, the 

Caribbean-Gulf of Mexico region lies within the area of very high flow velocities and have no complete, 

undisturbed sections. Similarly, the North Atlantic Basin is an area of high flow velocities and has only 

four sites (11% of sites studied) that are apparently complete (ST-1, ST-2). The South Pacific region with 

flow velocities > 20 cm/sec Figs. 4b, 5) have two sites (11% of sites studied) that appear to be complete. 

  

At least 65% of the studied sections in regions where modeled flow velocities are <20 cm/sec have 

complete sections. In regions with flow velocities >20 cm/sec, 91% of the studied sections have 

incomplete K-Pg boundary sections. The most telling confirmation of the global significance of the 

impact tsunami is the highly disturbed and incomplete sections on the eastern shores of North and South 

Islands of New Zealand. These sites lie directly in the path of the tsunami propagation, more than 12,000 

km distant from the impact location (Figs. 4, 5). 
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5 Discussion 

5.1 Tsunami Mechanisms 

Earlier theoretical and regional simulations (e.g., Ward, 2012; Matsui et al., 2002; Wünnemann and Weiss, 

2015) differ on whether the rim wave or collapse wave dominates with respect to energy.   The rim wave 

refers to the water displaced from the impact that is pushed away from the origin (Wünnemann and Weiss, 

2015).  The collapse wave is the secondary process arising from the cavity collapse in the crater and water 

rushing into the crater (Wünnemann and Weiss, 2015). To test the relative contributions of the collapse 

and rim waves to the total tsunami energy, we ran a simulation (‘Crater Only’) with no rim wave or 

velocity, such that the tsunami is solely due to the collapse wave filling in the crater.  Our results agree 

with the conclusion of Wünnemann and Weiss (2015), that the rim wave is the source of most of the 

energy for this impact tsunami. Four hours after impact, the ‘Crater Only’ case is about 13 times less 

energetic than the ‘Full Crater, With Rim Wave’ case.  The MOM and MOST model simulations of the 

Full Crater scenario showed similar energy numbers four hours post-handoff (3.90 x 1019 and 3.84 x 1019 J 

correspondingly), such that the model energy estimates appear to be robust and independent of the exact 

model used. 

The efficiency of tsunamis can be quantified by the ratio between tsunami energy and the source energy. 

The efficiency of tsunami generation by the Chicxulub impact is similar to that of large earthquakes. The 

energy ratio for earthquake-generating tsunamis averages around 0.1% (with large variations from 0.02% to 

0.8%, Tang et al., 2012), while we predict that the Chicxulub tsunami has an efficiency of 0.19% (SI Table 

4).  SI Figure 4 shows that the impact tsunami energy dissipates relatively quickly, relative to seismogenic 

tsunamis, consistent with the “Van Dorn effect” (Van Dorn et al., 1968) of faster wave energy attenuation 

due to large non-linearities near the source of explosion-generated tsunamis.  Near-field tectonic activity, 

triggered by passage of strong stress wave produced by the impact, was not included in our simulations.  It 

is likely that any earthquake generated slides and collapses would be minor relative to the primary rim wave. 

 

5.2 Hiatus Distribution 

The better preserved, thicker, carbonate-rich sections in the oceans are commonly found on bathymetric 

highs such as continental terraces, oceanic plateaus, rises, aseismic ridges, and seamounts. Drill sites in 

which the K-Pg boundary is clearly identified are usually found in such locations. These locations do have 

their own problems, however. Such regions of bathymetric prominence also give rise to enhanced turbulence 

in the waters surrounding them (Cacchione & Drake, 1986; Cacchione et al., 2002; Rudnick et al., 2003; 
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Wunsch & Ferrari, 2004); thus, they enhance the erosional power of tsunamis and tidal waves that pass over 

them. The preserved sedimentary sections atop bathymetric highs usually show clear evidence of erosion 

and the sculpting of pelagic deposits that sit upon them. The drilling strategy often employed by scientific 

ocean drilling expeditions takes advantage of the stratigraphic character of these deposits to sample relatively 

older intervals where overburden has been removed or was never deposited, the intention being to minimize 

the effects of diagenetic alteration on these older sediments. At other sites, full advantage was taken of the 

thicker, more complete sections to study the detailed paleoceanographic history. This duality of purpose 

means that many sites drilled on bathymetric highs contain significant gaps in the stratigraphic record, while 

on some highs there are close-by sites that have recovered complete sections. In regions with modeled flow 

velocities < 20 cm/sec, several sites locate the K-Pg boundary between recovered cores (ST-2); thus, the 

amount of missing section (if any) and the exact nature of the boundary is uncertain. 

 

In basins where almost all sites show incomplete uppermost Maastrichtian sections there are still a few deep-

sea sections that appear to be complete (e.g., Sites 1259, 1260, U1403 in the North Atlantic). These may 

represent local bathymetric shielding from erosion or local depocenters that receive sediment which has 

been eroded from nearby areas. The coincidence of regions having few if any complete K-Pg boundary 

sections and the pathway of relatively strong tsunami flow, combined with the more common occurrence of 

complete K-Pg boundary sections in regions that did not have strong tsunami flow, support the results of the 

tsunami models. The lack of complete K-Pg boundary sections in the southern South Pacific and on the 

eastern shores of New Zealand strongly suggest that this tsunami was of global significance, reaching at 

least 12,000 km across the deep ocean. It also suggests that except for some shallow coastal regions, areas 

such as the Tethyan region, the North Pacific, the South Atlantic and much of the Indian Ocean basin were 

largely geographically shielded from the effects of the tsunami 

 

5.3 Comparison with Large Historical Tsunamis 

To provide perspective on the size of the impact tsunami, we compare our impact tsunami model estimates 

with some representative large historical tsunamis. The 2004 Indian Ocean tsunami (Smith et al., 2005) is 

possibly the largest modern-era tsunami; it killed over 230,000 people around the Indian Ocean and was 

recorded around the globe (Titov et al., 2005). The 2011 Tohoku tsunami was generated by a similarly strong 

earthquake and has become the costliest natural disaster of all time. Offshore amplitudes of the 2004 Indian 

Ocean tsunami 2 hours after generation were measured to be about 0.6 m, and 2 meter waves were measured 

about 500 km away from the epicenter of the 2011 Tohoku tsunami, at a seafloor depth of 5700 m.  These 
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deep-ocean amplitudes led to runup at coastlines of up to 40 m (Sumatra Island) and 50 m (Honshu 

Island).  The 1883 Krakatau event generated another catastrophic tsunami with explosive-type initial 

conditions, potentially similar to the impact generation.  The Krakatau wave devastated local coastlines, 

killing over 30,000 (second most deadly record after the Indian Ocean tsunami) with waves that ran up to 

40 m and traveled distances of up to 5 km inland, but did not generate significant waves outside Sunda 

Strait. All these tsunamis, among the largest in recorded history, are dwarfed by the wave amplitudes and 

energy of the simulated Chicxulub tsunami. The Chicxulub tsunami produces offshore amplitudes over 1 m 

around most of the world oceans (Figure 4a).  When tsunamis reach the shallow waters of a coastline or 

bathymetric high, wave amplitude increases due to shoaling. Comparison of our tsunami simulations with 

observations and modeling of the strongest recent tsunamis of 2004 and 2011 implies that the coastal 

amplitudes for the Chicxulub tsunami would flood most coastlines, in a manner that would be catastrophic 

in modern times.  The total energy of our impact tsunami simulations is compared with the energy of these 

large historical tsunamis in SI Table 4 and SI Figure 4.  Energy values are calculated according to standard 

formulae for shallow-water energy (e.g., Arbic et al., 2004; their equation 14).  SI Figure 4 displays the 

ratios of energy in the impact tsunami simulations to the 2004 Indian Ocean tsunami, as a function of time 

into the ocean simulation.  The energy in the impact tsunami decays faster than the energy in the 2004 Indian 

Ocean tsunami – another manifestation of the “Van Dorn effect”.  The initial energy in the impact tsunami 

was up to 30,000 times larger than the energy of any historically documented tsunamis.  Wave energies in 

the ‘Half Crater’ simulation are about 5% less than those in the ‘Full Crater’ simulation.  The ‘Crater Only’ 

simulation, without the large rim wave, still has much more energy than any other historical tsunamis. For 

a wide variety of sources, the portion of the source energy that goes into tsunami generation is less than 1%, 

with large variations from about 0.01% to 0.3% (SI Table 4). An impact- and explosion-type of tsunami 

generation appears to have similar efficiency in transferring energy into long wave propagation.  However, 

impact- and explosion-generated tsunamis dissipate energy much faster during propagation. Nevertheless, 

the sheer amount of energy of the impactor is sufficient to generate a giant global tsunami, even if only 0.2% 

of the impact energy goes into the tsunami. 

 

5.4 Future work 

The first global simulation of the Chicxulub impact tsunami demonstrates that it was much larger than any 

recent earthquake-generated tsunami, and that it was likely large enough to leave a mark on marine sediment 

records.  Many uncertainties remain, and there is much room for improvement in future studies.  It is well 

known that most impacts are oblique with 45° impact angle being most likely (e.g., Robertson et al., 2021). 

With sufficient computer power, high-resolution, three-dimensional hydrocode simulations of the first ten 
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or so minutes could be performed, thus allowing for varying water depth, non-perpendicular impact angles, 

and other key uncertainties in the hydrocode simulation. Generally, we would expect a slightly larger rim 

wave in the downrange direction and a smaller wave up range. It may be instructive to vary initial conditions 

of the global simulation in a parameterized way to crudely account for impact angle. 

 

The January 15, 2022, Hunga Tonga-Hunga Ha'apai volcano explosion has demonstrated an additional 

mechanism of tsunami generation from large explosive events – the low frequency air pressure wave, e.g. 

Lamb wave (Duncombe, 2022). While the exact mechanism of the air pressure Lamb wave is not fully 

understood, it is clear that significant waves can be generated from such air pressure waves propagating over 

oceans. The full analysis of such tsunami generation is out of the scope of this paper and is a subject of 

future research. But based upon observations and initial modeling of the Tonga event, it is clear that the 

Lamb wave can be a source of significant secondary tsunamis around the world. These waves would reach 

world coastlines much earlier than the tsunami generated by the crater formation. The energy of the 

Chicxulub impact is at least 100,000 times larger than the Tonga explosion. The Lamb wave from the Tonga 

explosion generated tsunami waves of over a meter at some locations around the Pacific and up to half a 

meter at other oceans. Thus, the Lamb wave from the Chicxulub explosion can be a significant source of 

tsunamis in the far-field from the impact source, and will be a subject of future work. 

  

Dispersive effects may manifest themselves in the Chicxulub tsunami propagation simulations in two ways: 

(1) during the long-distance propagation as different wave frequencies separate from a single front; and (2) 

during the evolution of the initial steep wave front into an undular bore (Glimsdal et al., 2007). Tsunami 

amplitudes in shallow water wave approximation models may overpredict shorter dispersive waves or 

underpredict sharp frontal amplitudes experiencing fission and undular bore formation. In both cases the 

difference may be up to 50% of amplitudes in certain cases (see for example Son et al., 2011, Zhou et al., 

2014, 2012).  Addressing these effects is a topic for future research.Both of these processes generally lead 

to the decrease of amplitudes in comparison with the classic shallow-water wave theory estimates.  

Therefore, the non-linear shallow water approximation provides, in general, a conservative (upper-bound) 

estimate of potential tsunami amplitudes.  The use of Boussinesq-type models may provide a better 

resolution of the undular bore feature of the turbulent wave front.  However, tThese effects involve 

generation of much shorter (therefore much more dissipative) wavelengths that are     usually confined to a 

relatively small part of the wave      near the bore front (see for example Son et al., 2011, Matsuyama et al., 

2007), and therefore may have very limited effect on the global wave propagation pattern – the main goal 

of this study.  Also, the results of Glimsdal et al. (2007) show that the Boussinesq model appears to 
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overestimate the dispersive front effects in comparison with the full hydro code, which may be attributed to 

difference in resolution or to the inherent tendency of Boussinesq models to overestimate dispersion. The 

detailed modeling of the dispersive front of the leading tsunami with higher spatial resolution dispersive 

simulations would show more precise dynamics of the tsunami in the near-source area and may change the 

details of the maximum amplitude distribution near the source. Therefore, such studies with higher resolution 

dispersive models would be a natural extension of this work, especially for more precise estimates of tsunami 

impact within the Gulf of Mexico. However, we don’t expect these details to significantly change our far-

field estimates of the tsunami amplitudes and tsunami energy directionality (Zhou et al., 2012, 2014). 

  

In the case of our modeling, we expect the dispersive effects would be, at least partially, accounted for, since 

one of the models (MOST) includes the physical process of frequency dispersion approximated by numerical 

dispersion (Burwell et al., 2007).  MOST has been benchmarked against laboratory tests with highly 

dispersive and highly non-linear waves for wave breaking dynamics (Titov and Synolakis, 1995) and 

compared with dispersive models during the long-distance tsunami propagation (Zhou et al., 2012).  These 

comparisons showed that MOST provides results closely resembling the dispersive models estimates.  The 

consistency of MOST and MOM6 results provides confidence in the robustness of our results.  However, 

dispersive effects as well as uncertainties such as in the details and size of the impactor, and in the paleo-

bathymetry estimates should be investigated more fully in future work. 
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