
Received: Added at production Revised: Added at production Accepted: Added at production

DOI: xxx/xxxx

RESEARCH ARTICLE

Non-Intrusive Reduced-Order Modeling Using Convolutional
Autoencoders

Rakesh Halder1 | Krzysztof J. Fidkowski1 | Kevin J. Maki2

1Department of Aerospace Engineering,
University of Michigan, Michigan, United
States of America

2Department of Naval Architecture and
Marine Engineering, University of Michigan,
Michigan, United States of America

Correspondence
Rakesh Halder, 1320 Beal Avenue, Ann
Arbor, MI, 48108. Email: rhalder@umich.edu

Abstract

The use of reduced-order models (ROMs) in physics-based modeling and simulation
almost always involves the use of linear reduced basis (RB) methods such as the
proper orthogonal decomposition (POD). For some nonlinear problems, linear RB
methods perform poorly, failing to provide an efficient subspace for the solution space.
The use of nonlinear manifolds for ROMs has gained traction in recent years, showing
increased performance for certain nonlinear problems over linear methods. Deep
learning has been popular to this end through the use of autoencoders for providing
a nonlinear trial manifold for the solution space. In this work, we present a non-
intrusive ROM framework for steady-state parameterized partial differential equations
(PDEs) that uses convolutional autoencoders (CAEs) to provide a nonlinear solution
manifold and is augmented by Gaussian process regression (GPR) to approximate the
expansion coefficients of the reduced model. When applied to a numerical example
involving the steady incompressible Navier-Stokes equations solving a lid-driven
cavity problem, it is shown that the proposed ROM offers greater performance in
prediction of full-order states when compared to a popular method employing POD
and GPR over a number of ROM dimensions.

KEYWORDS:
model reduction; autoencoders; deep learning; non-intrusive; machine learning; proper orthogonal decom-
position

1 INTRODUCTION

Physics-based modeling and simulation has become an essential tool in many engineering and science applications, allowing for
highly accurate representations of physical systems which may be otherwise difficult to evaluate. Physics-based models consist of
a set of governing equations, which are often found in the form of parametrized partial differential equations (PDEs) discretized
over a computational domain, where a set of design parameters 𝝁 controls properties such as the boundary conditions, geometry
of the computational domain, or physical properties. In industrial processes such as design optimization, a large number of
designs needs to be evaluated and the accuracy, or fidelity of these models must be high. High-fidelity simulations of large scale
models are very computationally intensive, requiring large amounts of memory and computational time. This large computational
cost can render many-query processes such as design optimization infeasible.

The use of reduced-order models (ROMs) is a common approach for drastically lowering this computational cost. ROMs
create a surrogate model using training data from a set of computed simulations of the high-fidelity full-order model that allows
for accurate, rapid, real-time evaluation of simulations at unseen design parameters. ROMs seek to reduce the dimensionality of

This is the author manuscript accepted for publication and has undergone full peer review but has not
been through the copyediting, typesetting, pagination and proofreading process, which may lead to
differences between this version and the Version of Record. Please cite this article as doi:
10.1002/nme.7072

This article is protected by copyright. All rights reserved.

http://dx.doi.org/10.1002/nme.7072
http://dx.doi.org/10.1002/nme.7072

2 HALDER, FIDKOWSKI, AND MAKI

full-order models, which contain a large number of degrees of freedom. This involves a compression phase in which a reduced
basis (RB) of the solution space is obtained, from which accurate approximations of full-order solutions can be obtained through
a set of expansion coefficients. ROMs consist of two stages: a computationally intensive offline stage where high-fidelity solutions
are evaluated to obtain data snapshots and a low-dimensional surrogate model is trained, and an online stage where the surrogate
model can be rapidly evaluated to approximate solutions at unseen design parameters.

A commonly used method for obtaining the reduced basis is the proper orthogonal decomposition (POD)1,2, which utilizes the
singular value decomposition (SVD) to obtain a low-rank trial subspace composed of a number of linearly independent basis
vectors, a linear combination of which is used to approximate unrealized solutions. Projection-based RB methods3,4 project the
physics of the governing equations onto the low-rank trial subspace and solve a low-dimensional version of the full-order model.
Although projection-based RB methods have been shown to offer robust performance, their computational cost remains large for
certain nonlinear problems that have a non-affine dependence on the inputs for quantities such as residuals in computational fluid
dynamics (CFD) models5. Methods such as the discrete empirical interpolation method (DEIM)6 allow for an affine representation
of operators to avoid full-order evaluations, although realizing this is often difficult and intractable for some nonlinear problems.

In non-intrusive ROMs, an alternative to projection-based ROMs, the governing physics are only used to generate solution
snapshots of the high-fidelity model in the offline stage and are not projected onto a lower dimension in the online stage. A
regression model is required to interpolate over the expansion coefficients of the training data to approximate them for unseen
design parameters. Some popular interpolation methods include Gaussian process regression (GPR)7,8 and neural networks 9,10.
Although RB methods using POD are widely used and generally offer good performance, they often produce inaccurate results
for certain nonlinear problems, such as those dominated by advection, and require ROMs of large dimension to produce results
with acceptable accuracy11. For nonlinear problems characterized by different physical regimes, localized POD subspaces12 are
often employed to mitigate this issue.

Whereas POD produces a trial subspace that is linear, recent methods have attempted to compute low-dimensional nonlinear
trial manifolds that are more adept at handling nonlinear problems. Many recent advances have utilized machine learning and
artificial intelligence (AI) methods to this end, which have been at the forefront of massive recent breakthroughs in numerous
fields such as computer vision, natural language processing, and recommender systems13,14,15. The use of machine learning
methods has become ubiquitous in many domains, significantly improving and even beating the performance of existing methods.

There are many machine learning methods for producing low-dimensional representations of high-dimensional data, many of
which do so non-linearly as opposed to POD. Deep learning16 approaches have been utilized to develop ROMs that provide
efficient nonlinear trial manifolds of physical systems. Convolutional autoencoders (CAEs), a type of neural network, have been
used in ROMs and have been shown to outperform POD-based methods17,18. Convolutional autoencoders are adept at learning
data that are spatially distributed, including the solutions to PDEs discretized over a computational domain. Autoencoder neural
networks consist of two parts: an encoder, which maps high-dimensional inputs to a low-dimensional code, and a decoder,
which maps the low-dimensional code to an approximation of the high-dimensional input. In the context of ROMs, the code is
analogous to the expansion coefficients that map back to the full-order solution space. When using autoencoders for ROMs, the
entire network is trained in the offline stage, while only the decoder is used in the online stage for rapid evaluation of unseen
solutions. To the best of our knowledge, there have been two attempts at using convolutional autoencoders for non-intrusive
ROMs; one utilizing them for vehicle aerodynamic simulation19 and another for natural convection in porous media20. The first
found that using autoencoders only offers a very slight improvement over POD-based methods. The second involves unsteady
problems with a limited number of design variables and does not elaborate on the projection errors provided by autoencoders and
their relation to interpolation accuracy, nor does it involve a cross-validation analysis of the results. In this work, we propose
a non-intrusive ROM framework consisting of a nonlinear trial manifold produced by a CAE that is augmented by Gaussian
process regression to handle the interpolation of expansion coefficients in the design parameter space. This ROM framework
is referred to as CAE-GPR and its performance is compared to that of POD-GPR when applied to a problem which solves the
incompressible Navier-Stokes equations over a number of ROM dimensions.

2 FULL-ORDER MODEL

The full-order model (FOM) in this work is considered to be the solution 𝒙(𝝁) ∈ ℝ𝑁 of a state variable in a system governed by
a set of steady-state parameterized partial differential equations (PDEs) discretized over a computational domain Ω ∈ ℝ𝑑 . We
consider design parameters 𝝁 ∈ that define both the computational domain and parameters of the governing equations. Here

HALDER, FIDKOWSKI, AND MAKI 3

 ⊆ ℝ𝑝 denotes the parameter space such that 𝒙: → ℝ𝑁 . The set of PDEs governing the FOM is solved numerically over Ω
to generate a solution 𝒙(𝝁). The computational cost of numerically solving the system increases with its dimension 𝑁 , which is
in proportion with the fineness of Ω. Accurate or useful solutions of systems often require large values of 𝑁 , resulting in large
computational costs for a single solution. In processes such as design optimization, the need to evaluate the solutions for many
different designs in real-time becomes infeasible if numerous FOMs have to be solved. This large computational cost motivates
the use of reduced-order models, where a small number of FOMs are solved and used to create a computationally inexpensive
surrogate model that can deliver accurate approximations in real time.

3 LINEAR REDUCED BASIS METHOD

This section gives an overview of the proper orthogonal decomposition (POD), a popular method for constructing a linear reduced
basis, which allows for the construction of full-order solutions as a linear combination of independent basis vectors. The basis
vectors are formed from a collection of training solutions over the parameter space. A snapshot matrix is assembled from these
training solutions, from which the underlying structure of the solution space can be extracted1. Reduced-order models essentially
obtain low-dimensional representations of any solution lying on the solution manifold for which there exists a mapping back to
the solution space. In classification, a popular choice for linear dimensionality reduction is principal component analysis (PCA),
to which the proper orthogonal decomposition is closely related.

3.1 Proper orthogonal decomposition
Linear RB reduced-order models rely on training data obtained from a set of 𝑛 solution snapshots calculated at chosen design
points in the parameter space. A snapshot matrix, 𝑺 ∈ ℝ𝑁×𝑛, is assembled

𝑺 ∈ ℝ𝑁×𝑛 = [𝒙1,𝒙2,⋯ ,𝒙𝑛] = [𝒙(𝝁1),𝒙(𝝁2),⋯ ,𝒙(𝝁𝑛)]. (1)

Denote by a subspace of the column space of 𝑺. We assume that provides a good approximation of the solution manifold
for 𝝁 ∈ if there are a sufficient number of solution snapshots in 𝑺 which correspond to a judiciously chosen subset of design
parameters in . is the span of 𝑘 orthonormal basis vectors, [𝝍1,𝝍2,⋯ ,𝝍𝑘] ∈ ℝ𝑁 , where 𝑘 ≪ 𝑁 . The basis is chosen such
that each solution snapshot 𝒙𝑖 in 𝑺 can be well-approximated as a linear combination of the basis vectors

𝒙𝑖 ≈ 𝑎𝑖1𝝍
1 + 𝑎𝑖2𝝍

2 ⋯ + 𝑎𝑖𝑘𝝍
𝑘. (2)

Where 𝒂𝑖 is the set of basis coefficients, or expansion coefficients, for a given solution snapshot. The truncated singular value
decomposition of 𝑺, contains two orthonormal matrices 𝑼 ∈ ℝ𝑁×𝑛 and 𝑽 ∈ ℝ𝑛×𝑛, as well as a diagonal matrix 𝚺 ∈ ℝ𝑛×𝑛

𝑺 = 𝑼𝚺𝑽 𝑻 . (3)

Here, 𝑼 contains a set of 𝑛 left singular vectors that form an orthonormal basis for the column space of 𝑺, 𝑽 contains a set of 𝑛
right singular vectors that form an orthonormal basis for the row space of 𝑺, and diag(𝚺) ∈ ℝ𝑛 = [𝜎1, 𝜎2,⋯ , 𝜎𝑛] contains the
singular values corresponding to the singular vectors in descending order, 𝜎1 ≥ ⋯ ≥ 𝜎𝑛 ≥ 0. The first 𝑘 left singular vectors of 𝑼
are chosen to be the basis vectors forming the POD basis, 𝚿 ∈ ℝ𝑁×𝑘 = [𝝍1,𝝍2,⋯ ,𝝍𝑘]. Often, the singular values associated
with the basis vectors decay very quickly and only the first 𝑘 singular vectors are chosen to form the POD basis to preserve only
the most dominant basis vectors. To determine the value of 𝑘, the relative information content of the subspace is evaluated

𝐸(𝑘) =

∑𝑘
𝑗=1 𝜎

2
𝑗

∑𝑛
𝑗=1 𝜎

2
𝑗

, (4)

and 𝑘 is chosen such that 𝐸(𝑘) ≥ 𝛾 , where 𝛾 ∈ [0,1) is chosen somewhat arbitrarily, usually to a value 𝛾 ≥ 0.9521. Using the
POD basis, full-order solutions at unseen design parameters 𝒙(𝝁∗) can be approximated

𝒙(𝝁∗) ≈ 𝚿𝒂∗ = 𝑎∗1𝝍
1 + 𝑎∗2𝝍

2 ⋯ + 𝑎∗𝑘𝝍
𝑘, (5)

where 𝒂∗ can be estimated through a computational model that takes 𝝁∗ as an input.

4 HALDER, FIDKOWSKI, AND MAKI

FIGURE 1 Schematic of the proper orthogonal decomposition (POD), where the snapshot matrix 𝑺 is decomposed using the
singular value decomposition (SVD) and the POD basis 𝚿 is obtained from 𝑼 .

3.2 Projection error
A measure of quality of the POD basis is its ability to reconstruct solution snapshots 𝒙𝑖 in 𝑺 with a high degree of accuracy. We
first calculate the projection of 𝒙𝑖 onto 𝚿

�̂�𝑖 = 𝚿𝚿𝑇𝒙𝑖. (6)
A measure of the relative error over all of the solution snapshots in 𝑺 is measured through the quantity

𝜖POD =
𝑛
∑

𝑖=1

‖

‖

‖

𝒙𝑖 − �̂�𝑖‖‖
‖

2

‖𝒙𝑖‖2
. (7)

The Schmidt-Eckart-Young theorem22 states that the POD basis consisting of the first 𝑘 left singular vectors found from the SVD
of 𝑺 minimizes this error amongst all orthonormal bases of rank 𝑘.

4 NONLINEAR MANIFOLD CONSTRUCTION USING CONVOLUTIONAL AUTOENCODERS

This section describes the use of deep convolutional autoencoders in constructing a nonlinear trial manifold of simulation data.
Unlike a linear reduced basis, which constructs solutions as a linear combination of known and calculated basis vectors, nonlinear
manifolds use a mapping function 𝑔(𝒂), which may not be known explicitly, to approximate a mapping between the expansion
coefficients and the full-order solution

𝑔(𝒂) ∶ ℝ𝑘 → ℝ𝑁 . (8)
There are many popular methods for nonlinear dimensionality reduction such as Isomap23 that provide a low-dimensional
embedding of high-dimensional data. Nonlinear methods have been shown to offer better performance in classification tasks when
compared to linear methods such as PCA24, highlighting the advantage of using nonlinear methods to create low-dimensional
representations of data. However, most nonlinear dimensionality reduction methods do not provide a mapping back to the
high-dimensional solution space which restricts their use in ROMs. Deep convolutional autoencoders, which do provide an

HALDER, FIDKOWSKI, AND MAKI 5

approximate mapping 𝑔(𝒂), have been utilized in projection-based ROMs where they have been shown to outperform POD-based
methods17. Non-intrusive methods have also used deep CAEs to construct nonlinear manifolds that efficiently learn the dynamics
of physical systems25.

4.1 Artifical Neural Networks
An artificial neural network (ANN) is a computational model that is able to learn from a training data set = {𝑿, 𝒀 }, where 𝑿
and 𝒀 refer to the inputs and outputs respectively. ANNs are inspired by biological neural networks existing in animal brains26.
ANNs are widely used and versatile models for regression and classification problems. Feedforward neural networks are a type
of ANN in which information always propagates in only one direction, creating a direct mapping between inputs and outputs.
Feedforward neural networks are composed of an input layer, a number of hidden layers, and an output layer. Neurons comprising
these layers are associated with weights and biases, trainable parameters which are optimized during the model training stages.
Figure 2 shows the architecture of a simple feedforward neural network with an input layer, two hidden layers, and an output layer.
There are connections between each possible pair of neurons between layers, with each connection carrying a weight term and
each neuron carrying a bias term with the exception of those in the input layer. Such a network is referred to as fully connected, or
a multilayer perceptron (MLP). Hidden layers in MLPs are also referred to as fully connected layers. Each hidden layer state 𝒉𝑗 is
computed from the state in the previous layer, 𝒉𝑗−1, along with its weights𝑾 𝑗 and biases 𝒃𝑗 as well as an activation function 𝜙(𝑥)

𝒉𝑗 = 𝜙
(

𝑾 𝑗𝒉𝑗−1 + 𝒃𝑗
)

. (9)
The role of activation functions is to introduce nonlinearities into the model, allowing for complex functional relationships to
arise. In addition to being able to learn the training data well, neural networks should provide reasonable accuracy for unknown
data of the same class, a property referred to as generalization26. A commonly used activation function is the rectified linear
unit (ReLU)27, which has been shown to offer better performance and ability to generalize when compared to other common
activation functions28,29

𝜙(𝑥) = max(0, 𝑥) =

{

𝑥, if 𝑥 ≥ 0
0, if 𝑥 < 0

. (10)

For inputs less than 0, the ReLU activation function returns a valuation and gradient of zero, effectively rendering certain
neurons inactive. This can be problematic for network training if a large percentage of neurons exhibit this behavior and is
commonly referred to as the dying ReLU problem. The leaky ReLU30 activation function mitigates this issue, by incorporating a
small positive constant 𝛼 for negative inputs.

𝜙(𝑥) =

{

𝑥, if 𝑥 ≥ 0
𝛼𝑥, if 𝑥 < 0

. (11)

4.2 Training neural networks
4.2.1 Backpropagation
Feedforward networks are trained using a differentiable loss function,

(

 , (𝑾 , 𝒃)
)

, which calculates a measure of error
between the state found in the output layer and the correct output values from the training data. The loss function serves as an
objective function in an optimization problem, where its gradients with respect to the weights and biases are calculated through
backpropagation31, an algorithm utilizing automatic differentiation. Common optimizers used in training neural networks include
stochastic gradient descent (SGD) and Adam32. Optimizers perform a number of training epochs over in an attempt to minimize
the loss function. The weights and biases update at the end of epoch 𝑛 according to

(

𝑾 𝑛+1, 𝒃𝑛+1
)

= (𝑾 𝑛, 𝒃𝑛) − 𝜂

(

𝜕
(

 , (𝑾 𝑛, 𝒃𝑛)
)

𝜕 (𝑾 𝑛, 𝒃𝑛)

)

, (12)

where 𝜂 is the learning rate, a hyperparameter controlling the optimizer’s step size and is a function of the loss function’s
gradient dependent upon the chosen optimizer. The gradient of the loss function can be calculated using a single training sample
as it is when using SGD, using the average gradient of the entire training set, or by using averages of a number of randomly
selected mini-batches from . Using mini-batches when training neural networks has been shown to improve the ability to

6 HALDER, FIDKOWSKI, AND MAKI

FIGURE 2 Architecture of a multilayer perceptron with a 3-dimensional input, six neurons in two fully connected layers, and
four neurons in the output layer.

generalize in addition to providing stable convergence33. The mini-batch size 𝑏 is chosen based on the size of to strike a
balance between performance and computational cost.

The predictive performance of a neural network initially increases with the number of training epochs but starts to stall and
then decrease as the network parameters become overly tuned towards the training data and fail to generalize, a problem referred
to as overfitting . Regularization methods34 exist to prevent overfitting. One method is to use early stopping, where the loss on a
validation data set is monitored during training. If (, (𝒘, 𝒃)) fails to drop for a prescribed number of epochs, training is
stopped.

The initial set of weights and biases that are used can also effect the final performance of a neural network. A commonly used
weight initialization scheme for layers using ReLU activation functions is the He normal35 initializer, which samples weights from
a normal distribution centered around 0. It is a common practice to initialize the biases in each layer to 0. There is no standard
and accepted approach to choosing the number of hidden layers and the number of nodes in each layer when designing multilayer
perceptrons. An optimal choice depends upon a number of factors, including the number of training samples, the dimensionality
of the inputs and outputs, the choice of activation functions, and the complexity of the function which is being approximated. The
number of hidden layers and nodes to use is often found through a trial and error approach involving model validation techniques
such as cross-validation. In general, the total number of trainable parameters in a network is directly related to its capacity to
learn functions. Neural networks become deeper as more hidden layers are added. However, network configurations with a large
number of trainable parameters tend to overfit to the training data and fail to generalize unless regularization techniques are used.
In addition, large networks are computationally expensive to train. In spite of these downfalls, deeper network architectures have
become increasingly popular for complex learning tasks in multiple domains as they offer better performance16. Although more
than two hidden layers are not required for many learning tasks, some functions are not adequately approximated by networks
containing two hidden layers and using deeper networks can drastically improve performance36,37.

4.2.2 Data Normalization
Similar to many other machine learning algorithms, neural networks often require that the training data be normalized in order to
ensure adequate performance38. Data normalization allows the optimizer to learn the optimal network parameters at a much
faster rate. One way to normalize the training data is to apply min-max scaling to each feature in the data matrix 𝑫 containing
either the inputs or outputs

𝑑′ =
𝑑 − min(𝒅𝑗)

max(𝒅𝑗) − min(𝒅𝑗)
, (13)

where 𝑗 is the feature index. Min-max scaling results in the data being transformed into the range [0,1]. After training, new input
data are also normalized while an inverse transformation is applied to predicted outputs.

HALDER, FIDKOWSKI, AND MAKI 7

FIGURE 3 Architecture of a symmetric MLP autoencoder with two fully connected layers between the input/output and code.

4.3 Autoencoders
Autoencoders are a type of feedforward neural network that aim to learn to reconstruct inputs in the output layer, 𝑔 ∶ 𝒙→ �̂� where
𝒙 ≈ �̂�. Autoencoders use an architecture composed of two individual feedforward neural networks. The encoder 𝑔enc ∶ ℝ𝑁 → ℝ𝑘

where 𝑘 ≪ 𝑁 maps a high-dimensional input 𝒙 into the low-dimensional code 𝒂. The decoder 𝑔dec ∶ ℝ𝑘 → ℝ𝑁 maps the code
back to an approximation of the high-dimensional input �̂�. The combination of the two results in

𝑔 ∶ �̂� = 𝑔dec◦𝑔enc(𝒙). (14)

Autoencoders have been shown to provide robust low-dimensional representations of high dimensional data39. In general, higher
dimensional codes are able to produce more efficient representations of data, but continuously increasing the size of the code will
provide diminishing or even negative returns. Once an autoencoder is sufficiently trained and 𝑔(𝒙) ≈ 𝒙 for all inputs over , the
corresponding low-dimensional codes can be passed to the decoder 𝑔dec(𝒂) to obtain accurate approximations �̂� for all data in
 . States existing outside of the training set 𝒙∗ can also be well-approximated if a good approximation of the low-dimensional
code 𝒂∗ can be found. In the context of ROMs, the code is equivalent to the set of expansion coefficients that map from a low-
dimensional representation to the high-dimensional full-order solution. Similarly, the projection of a full-order solution onto
the nonlinear manifold provided by the autoencoder is given by �̂�. Training is conducted on the combination of the encoder
and decoder, while after training the encoder is often no longer useful and only the decoder is used. Figure 3 shows a sample
architecture of a symmetric MLP autoencoder with two hidden layers between the input/output layers and code. Since MLP
autoencoders are fully connected, the total number of trainable parameters in the network can grow very large when the dimension
of the input, 𝑁 , is high. As the number of trainable parameters increases, the amount of training data required to sufficiently train
the network to make reasonably accurate predictions also grows large. This is contrary to the objective of model reduction, which
aims to make predictions using a limited amount of training data.

4.3.1 Convolutional autoencoders
There exist neural network architectures that make use of parameter sharing, where rather than weight combinations existing for
each pair of neurons between layers, multiple neurons share a single weight. Convolutional autoencoders effectively implement

8 HALDER, FIDKOWSKI, AND MAKI

FIGURE 4 Architecture of the encoder of a convolutional autoencoder (CAE) consisting of convolutional, pooling, and fully
connected layers.

parameter sharing to limit the total number of trainable parameters in the network. This is done through the use of convolutional
layers, which provide feature maps of input data that are spatially arranged40. Convolutional layers use a number of filters
to convolve over spatially distributed input data, with each filter having its own set of weights. Pooling layers are also used
in convolutional networks to summarize the features in input data through operations including averaging and maximization.
Convolutional layers are widely used in the field of computer vision, dealing with spatially distributed data such as images41,13.
CAEs can also be a useful tool for states that arise from numerically solving discretized PDEs as they tend to be spatially
distributed. Data with multiple states, i.e. components of velocity or levels of red, green, and blue in images, can also be handled
well by CAEs through the use of a number of input channels. More details on convolutional layers can be found in a work by
Dumoulin and Visin42. A combination of convolutional, pooling, and fully connected layers is used to construct CAEs, as shown
in a schematic of an encoder section of a CAE in Figure 4. Spatially distributed data arising from the solutions of discretized
PDEs often vary smoothly through the computational domain. CAEs are highly adept at handling data that are naturally spatially
distributed by learning spatially invariant features, allowing them to outperform other neural network architectures43,44.

The input and output layers of CAEs usually consist of 2-dimensional (2D) states in each channel. Training data must be
reshaped before being input into the network through the use of a reshape operator

𝑹 ∶ ℝ𝑁×𝑛𝑐 → ℝ𝑛𝑦×𝑛𝑥×𝑛𝑐 , (15)

where 𝑛𝑦 refers to the number of data points in the vertical direction and 𝑛𝑥 the number of data points in the horizontal direction.
For solutions to physical problems, the number of points in each direction can be chosen based on the required resolution of the
full-order state. The reshape operator is applied to each separate state that occupies the 𝑛𝑐 input channels. An inverse reshape
operator is used to reshape state output data in each output channel into the original vector format

𝑹−1 ∶ ℝ𝑛𝑦×𝑛𝑥×𝑛𝑐 → ℝ𝑁×𝑛𝑐 . (16)

5 EXPANSION COEFFICIENT PREDICTION USING GAUSSIAN PROCESS REGRESSION

Non-intrusive ROMs require a regression model that can accurately predict the expansion coefficients 𝒂 of unrealized solutions
given their design parameters 𝝁. The regression model is created in the offline stage utilizing the training data. In particular, we
use a regression model to approximate a mapping 𝑓 (𝝁) that outputs the expansion coefficients. A commonly used regression
model in non-intrusive ROMs is Gaussian process regression (GPR), a supervised learning method used for predictions of
continuous outputs. GPR is also referred to as Kriging, and had one of its first uses in the field of geostatistics45. The regression
model is constructed using training data composed of inputs �̄� = [𝒛1, 𝒛2 ⋯ 𝒛𝑛] and outputs �̄� = [𝑦1, 𝑦2 ⋯ 𝑦𝑛], where each input
𝒛𝑖 ∈ ⊂ ℝ𝑝 belonging to an input domain corresponds to a single output 𝑦𝑖 ∈ ℝ. GPR infers a probability distribution over
functions conditioned on the training data which is used for predictions at new inputs. A brief introduction to GPR is given in
Section 5.1, and the work of Rasmussen et al.46 can be referred to for a more complete overview.

In ROMs, an individual regression model is used for each coefficient in 𝒂, leading to 𝑘 different regression models,

𝑓𝑖(𝝁) ∶ ℝ𝑝 → ℝ, 𝑖 ∈ [1, 2,⋯ 𝑘]. (17)

As a result, ROMs using GPR tend to allow the number of expansion coefficients to be large as long as it does not degrade the
quality of the trial manifold. GPR provides reasonable accuracy, is computationally inexpensive, does not require many training

HALDER, FIDKOWSKI, AND MAKI 9

samples, and is easy to implement, making it a popular choice in non-intrusive ROMs. While the use of neural networks in
non-intrusive ROMs has become more widespread9,10, finding a sufficient neural network architecture to use for regression is
a non-trivial task. Even though using neural networks may offer better performance, in this work our goal is to highlight the
advantages of using a nonlinear trial manifold compared to a linear reduced basis. As GPR offers more flexibility, we choose to
use it as our regression model.

5.1 Gaussian process regression
A Gaussian process (GP) is a set of random variables, of which any finite number follow a joint Gaussian distribution. In GPR, it
is assumed that data are generated according to a GP with mean function 𝑚 and covariance function 𝜅,

𝑓 (𝒛) ∼ GP (𝑚(𝒛), 𝜅(𝒛, 𝒛∗)) , (18)

with some added Gaussian noise 𝛿 ∼ (0, 𝜉2𝑦),
𝑦 = 𝑓 (𝒛) + 𝛿. (19)

Using a finite amount of training data {�̄�, �̄�}, a prior joint Gaussian on the the data and predictions at points 𝒛∗ are given by
[

�̄�
𝑓 (𝒛∗)

]

∼
([

𝑚(�̄�)
𝑚(�̄�)

]

,
[

𝜅(�̄�, �̄�) + 𝜉2𝑦𝐼 𝜅(�̄�, 𝒛∗)
𝜅(𝒛∗, �̄�) 𝜅(𝒛∗, 𝒛∗)

])

. (20)

Using the properties of conditional Gaussian distributions, the conditional expectation of 𝑓 (𝒛∗) is given as

𝔼(𝑓 (𝒛∗)|�̄�) = 𝜅(𝒛∗, �̄�)(𝜅(�̄�, �̄�) + 𝜉2𝑦𝐼)
−1 (�̄� − 𝑚(�̄�)) , (21)

Where 𝐼 is the identity matrix. In practice, the mean function 𝑚 is set to the mean of the training outputs,

𝑚(�̄�) =
∑𝑛

𝑖=1 𝑦
𝑖

𝑛
(22)

and the inputs are scaled before training to obtain their standard score

𝑖
𝑗 =

𝑧𝑖𝑗 − 𝑚(𝒛𝑗)
𝑠𝑗

, (23)

where 𝑖 and 𝑗 refer to indices of the observation and input entry, respectively, and 𝑠 is the sample standard deviation. There are
many kernels that can be chosen for the covariance function. A very common one is the radial basis function (RBF) kernel

𝜅(𝒛, 𝒛∗) = exp
(

−
𝑑(𝒛, 𝒛∗)2

2𝑙2

)

. (24)

Another choice of kernel, and the one that will be used in this work, is the Matern kernel,

𝜅(𝒛, 𝒛∗) = 1
Γ(𝜈)2𝜈−1

(
√

2𝜈
𝑙

𝑑(𝒛, 𝒛′)

)𝜈

𝐾𝜈 (25)

where 𝑑 is the Euclidean distance function, Γ is the gamma function, and 𝐾𝜈 is the modified Bessel function of the second kind.
The set of hyperparameters 𝜃 of the Matern kernel are 𝑙 and 𝜈, which control the length scale and smoothness respectively. The
predictive performance of the regression model is sensitive to the values of the hyperparameters. Gradient-based optimizers are
often used to maximize the marginal log-likelihood of the training data to obtain an optimal set of hyperparameters 𝜃opt

𝜃opt = argmax
𝜃

log 𝑝(�̄�|�̄�, 𝜃) = −1
2
�̄�𝑇 (𝜅(�̄�, �̄�) + 𝜉2𝑦𝐼)

−1 − 1
2

log |𝜅(�̄�, �̄�) + 𝜉2𝑦𝐼| −
𝑛
2

log 2𝜋. (26)

6 OFFLINE AND ONLINE STAGES

This section describes the offline training and online evaluation stages of both the POD and CAE based ROMs with GPR as a
regression model. The combined models consisting of both the offline and online stages are referred to respectively as POD-GPR
and CAE-GPR. The offline stage is run first and is computationally expensive, while the online stage allows for rapid prediction of
full-order models. Both models share a step of obtaining full-order snapshots of solutions evaluated at a set of design parameters
 train and assembling them into a snapshot matrix 𝑺. The offline stage of the POD-GPR method involves calculating a truncated

10 HALDER, FIDKOWSKI, AND MAKI

SVD of the snapshot matrix to find the POD basis 𝚿. The set of expansion coefficients 𝑨train is obtained for the training set using
the POD basis and 𝑘 GPR models 𝑭 = [𝑓1(𝝁), 𝑓2(𝝁),⋯ 𝑓𝑘(𝝁)] trained on = { train,𝑨train}. After training, the GPR models
are saved for use in the online stage, where unseen parameters 𝝁∗ are evaluated to approximate the expansion coefficients �̃�∗.
Matrix-vector multiplication of the POD-basis and expansion coefficients is then used to obtain an approximate solution �̃�. The
POD-GPR method is outlined in Algorithm 1.

Algorithm 1 Offline and online stages of POD-GPR method
1: function PODGPR_ OFFLINE(train)
2: Compute high-fidelity solutions for 𝝁 ∈ train by solving FOM and assemble into 𝑺
3: Calculate truncated SVD of snapshot matrix to obtain POD basis 𝚿
4: Calculate expansion coefficients for training data 𝑨train =

(

𝚿𝑇𝑺
)𝑇

5: Train 𝑘 GPR models 𝑭 = [𝑓1(𝝁), 𝑓2(𝝁),⋯ 𝑓𝑘(𝝁)] for each expansion coefficient in { train,𝑨train}
6: return (𝚿,)
7: end function

1: function PODGPR_ ONLINE(𝝁∗,𝚿,)
2: Evaluate expansion coefficients �̃�∗ = (𝝁∗)
3: Predict full-order solution �̃�∗ = 𝚿�̃�∗
4: return �̃�∗
5: end function

Algorithm 2 Offline and online stages of CAE-GPR method
1: function CAEGPR_ OFFLINE(train, val,,𝑹)
2: Compute high-fidelity solutions for 𝝁 ∈ train, val by solving FOM and assemble into 𝑺 train,𝑺val
3: Apply reshape operator 𝑹 to 𝑺 train,𝑺val to obtain 𝑿 train,𝑿val
4: Train convolutional autoencoder with architecture on {𝑿 train,𝑿 train} while monitoring loss on {𝑿val,𝑿val}
5: Calculate expansion coefficients for training data 𝑨train = 𝑔enc

(

𝑿 train
)

6: Train 𝑘 GPR models 𝑭 = [𝑓1(𝝁), 𝑓2(𝝁),⋯ 𝑓𝑘(𝝁)] for each expansion coefficient in { train,𝑨train}
7: return

(

𝑔dec,
)

8: end function

1: function CAEGPR_ ONLINE(𝝁∗, 𝑔dec, ,𝑹−1)
2: Evaluate expansion coefficients �̃�∗ = (𝝁∗)
3: Predict full-order solution �̃�∗ = 𝑔dec (�̃�∗)
4: Apply inverse reshape operator 𝑹−1 to �̃�∗ to obtain �̃�∗
5: return �̃�∗
6: end function

The CAE-GPR method also involves evaluating additional full-order solutions at a set of validation design parameters val
which are used to monitor the validation loss during training so early stopping can be implemented as a regularization method. A
convolutional autoencoder architecture is also required and the decoder 𝑔dec is saved for use in the online stage. Approximate
expansion coefficients �̃� are passed to the decoder to obtain approximate solutions �̃�. The reshape operator 𝑹 is also required to
make the training and validation data compatible with the architecture of the CAE in the offline stage, while the inverse reshape
operator 𝑹−1 is needed in the online stage to reshape approximated solutions to their original format. The CAE-GPR method
is outlined in Algorithm 2. Training the convolutional autoencoder makes the offline stage of CAE-GPR more expensive than
POD-GPR, while the online costs for both models are similar.

HALDER, FIDKOWSKI, AND MAKI 11

7 NUMERICAL RESULTS

This section compares the performance of the POD-GPR and CAE-GPR methods on a geometrically and physically parame-
terized lid-driven cavity problem which simulates laminar flow using the steady incompressible Navier-Stokes equations with
OpenFOAM47, an open-source toolbox for multiphysics simulation. The FOM quantities of interest are 𝑢 and 𝑣, the components
of the velocity in the horizontal and vertical directions respectively. The autoencoder is constructed using TensorFlow48, and
scikit-learn49 is used to implement GPR. 500 design parameters are generated using Latin hypercube sampling50, a statistical
method that aims to maximize the distance and minimize the correlation amongst produced samples. The metric of performance
used to compare the ROMs is the relative 𝑙2 error 𝜖ROM between the FOM state 𝒙 and the ROM approximated state �̃�

𝜖ROM =
‖

‖

𝒙𝑖 − �̃�𝑖‖
‖

2

‖𝒙𝑖‖2
. (27)

Similarly, the relative projection error 𝜖Proj for both methods is also reported between the FOM state and the projected state �̂� to
assess how accurately the expansion coefficients are interpolated as well as to provide a lower bound for the ROM prediction errors.

𝜖Proj =
‖

‖

‖

𝒙𝑖 − �̂�𝑖‖‖
‖

2

‖𝒙𝑖‖2
. (28)

A five-fold cross-validation approach is used to assess the performance of the ROM over the entire dataset, creating five folds
of the dataset containing 400 training samples and 100 testing/validation samples. These 100 samples are split evenly into 50
testing and 50 validation samples, which are used to monitor the autoencoder loss during training. While every sample in the
dataset is used for training, only half are used for prediction. An average cross-validation error is reported for both the ROM
prediction and projection errors over all of the prediction points. The validation samples are not used for the POD-GPR ROM,
which uses an individual ROM for both 𝑢 and 𝑣.

The CAE that is used has two input channels, one for each of the velocity components. The expansion coefficients are used
to approximate both 𝑢 and 𝑣. The encoder conists of a combination of convolutional, pooling, and fully connected layers. The
decoder consists of fully connected and transpose-convolutional layers. The full details of the network architecture can be found
in the appendix. Min-max scaling is used independently on 𝑢 and 𝑣 before training and the CAE outputs are then scaled back to
their original range after prediction. A maximum number of 7500 training epochs are used, and early stopping is enforced if the
validation loss fails to decrease over 500 epochs. A mini-batch size of 𝑏 = 8 is used for training and the mean squared error loss
function is used. The Adam optimizer is used with an initial learning rate of of 𝜂 = 3× 10−4. Each layer has its weights initialized
with the He normal initializer. All of the layers with the exception of the output use a leaky ReLU activation function with 𝛼 = 0.25.
A performance comparison with other activation functions is given in the appendix. The output layer uses the sigmoid activation
function, which scales into the range [0,1], ensuring that the outputs can be scaled back to their original range for prediction

𝜙(𝑥) = 1
1 + 𝑒−𝑥

. (29)

As the FOM is inexpensive to solve, offline computational costs related to simulation and POD-GPR are not reported as well
as all online costs. Training and validation losses against the number of epochs at selected folds of the data for different values of
𝑘 are presented in the appendix in addition to computational costs.

7.1 Steady incompressible Navier-Stokes equations
Steady incompressible laminar flow is simulated using simpleFoam, a standard OpenFOAM solver, by solving the Navier-Stokes
equations,

∫
𝑆

⃖⃖⃗𝑈 ⋅ d⃖⃖⃗𝑆 = 0, (30)

∫
𝑆

⃖⃖⃗𝑈 ⃖⃖⃗𝑈 ⋅ d⃖⃖⃗𝑆 + ∫
𝑉

∇𝑝 d𝑉 − 𝜈 ∫
𝑆

(∇ ⃖⃖⃗𝑈 + ∇ ⃖⃖⃗𝑈𝑇) ⋅ d⃖⃖⃗𝑆 = 0, (31)

where ⃖⃖⃗𝑈 = [𝑢, 𝑣] is the velocity vector and 𝑢 and 𝑣 are the velocity components in the 𝑥 and 𝑦 directions respectively, ⃖⃖⃗𝑆 is the
face-area vector, 𝑉 is the volume; 𝜈 is the kinematic viscosity, and 𝑝 is the pressure. The continuity and momentum equations are
discretized over the computational domain by using the finite-volume method (FVM). Both equations are coupled through the

12 HALDER, FIDKOWSKI, AND MAKI

(a) Lid-driven cavity boundary conditions. (b) Lid-driven cavity design parameters.

FIGURE 5 Schematics describing the lid-driven cavity problem.

semi-implicit method for pressure-linked equations (SIMPLE) algorithm51 along with Rhie–Chow interpolation52. The SIMPLE
algorithm is iteratively repeated until a residual tolerance of 1 × 10−6 is reached for both ⃖⃖⃗𝑈 and 𝑝.

7.2 Lid-driven cavity problem
The numerical example used in this work is a physically and geometrically parameterized lid-driven cavity flow, a popular
benchmark problem for CFD solvers. Three parameters control the computational domain Ω and one parameter controls the
kinematic viscosity through the Reynolds number. A version of this problem has previously appeared in a work by Hesthaven
and Ubbiali9. Figure 5 shows the boundary conditions on each edge Γ𝑖, 𝑖 ∈ [1, 2, 3, 4] of the domain; 𝑢, 𝑣 = 0 on all of the edges
except Γ1, where 𝑢 = 1, 𝑣 = 0. The pressure gradient, ∇𝑝, is set to 0 on all of the edges. The reference pressure is set to 0 on the
bottom left corner of the domain. The parameterization of the geometry is also shown, involving three parameters which change
the length of the horizontal (𝜇1) and slanting edges (𝜇2) as well as the slanting angle (𝜇3). The Reynolds number, 𝑅𝑒 (𝜇4), is the
fourth parameter, and is related to the kinematic viscosity 𝜈 as

𝑅𝑒 =
max(𝜇1, 𝜇2)

𝜈(𝝁)
. (32)

The design parameter combinations are generated using Latin hypercube sampling with the following bounds for each parameter

𝜇1 ∈ [1, 2],
𝜇2 ∈ [1, 2],

𝜇3 ∈ [−𝜋
4
, 𝜋
4
],

𝜇4 ∈ [100, 600].

The computational mesh consists of 64 × 64 cells uniformly distributed in the 𝑥 and 𝑦 directions and one cell spanning the 𝑧
direction, resulting in 𝑁 = 4096 and a reshape operator 𝑹 with 𝑛𝑦, 𝑛𝑥 = 64 and 𝑛𝑐 = 2. The full-order states of 𝑢 and 𝑣 are used
to compare the performance of the POD-GPR and CAE-GPR methods, contours of which are shown in Figure 6 at three different
sets of design parameters. A sharp gradient in 𝑢 exists at the top of the domain, and a vortex moves throughout the cavity as the
design parameters change. This vortex is also shown moving throughout the cavity shown in the contours of 𝑣, varying in shape
and size with the design parameters. The relationship between both 𝑢 and 𝑣 and 𝝁 is shown to be highly nonlinear, making this a
difficult prediction problem in the context of ROMs.

HALDER, FIDKOWSKI, AND MAKI 13

(a) 𝝁 = (1.5, 3
√

3
,− 𝜋

6
, 200) (b) 𝝁 = (1.5, 1.5, 0, 300) (c) 𝝁 = (1.5, 3

√

3
, 𝜋
6
, 400)

(d) 𝝁 = (1.5, 3
√

3
,− 𝜋

6
, 200) (e) 𝝁 = (1.5, 1.5, 0, 300) (f) 𝝁 = (1.5, 3

√

3
, 𝜋
6
, 400)

FIGURE 6 Contours of 𝑢 (top) and 𝑣 (bottom) for the lid-driven cavity problem at three different sets of design parameters.

23 5 10 15 20 25 30 35
ROM Dimension, k

10 2

10 1

Av
er

ag
e

Re
la

tiv
e

Er
ro

r

Cross-Validation Error in u
POD Projection Error
POD-GPR Error
CAE Projection Error
CAE-GPR Error

23 5 10 15 20 25 30 35
ROM Dimension, k

10 2

10 1

Av
er

ag
e

Re
la

tiv
e

Er
ro

r

Cross-Validation Error in v
POD Projection Error
POD-GPR Error
CAE Projection Error
CAE-GPR Error

FIGURE 7 Plots of the cross-validation prediction and projection errors in 𝑢 and 𝑣 for both ROMs at different values of 𝑘.

The POD-GPR ROM is evaluated for both projection and prediction errors at ROM dimensions 𝑘 ∈ [1, 2,⋯ 35] while the
CAE-GPR ROM is similarly evaluated at 𝑘 ∈ [2, 3, 5, 10,⋯ 35]. Figure 7 shows the cross-validation relative errors for 𝑢 and
𝑣; for evaluated ROM dimensions 𝑘 > 2, the CAE-GPR ROM exhibits higher predictive performance over the data set. The
projection error provided by the CAE is high at 𝑘 = 2 and comparable to that of POD, and it decays rapidly until 𝑘 = 5, after

14 HALDER, FIDKOWSKI, AND MAKI

which it does not vary much. Similar results are presented in a work by Lee and Carlberg17. Very low values of 𝑘 decrease the
capacity of the network to learn meaningful low-dimensional representations of the training data. As 𝑘 increases, the relative
difference in the projection and prediction errors grows. This is an expected result since prediction errors in the individual
expansion coefficients will have a cascading effect. The cross-validation projection error from POD continues to decay after
𝑘 = 35, while the POD-GPR prediction error flattens out at around 𝑘 = 20. The cross-validation projection error produced by
the CAE for both 𝑢 and 𝑣 is lower than that of POD until around 𝑘 = 25; even with a higher projection error, the predictive
performance offered by CAE-GPR exceeds that of POD-GPR for 𝑘 ≥ 25. The CAE offers a set of expansion coefficients that
are more easily interpolated when using GPR compared to POD, which sees its predictive performance stall after 𝑘 reaches a
certain value, a commonly found result for POD-GPR based ROMs21. In addition to giving better performance in terms of both
projection and prediction for low values of 𝑘, the use of a nonlinear trial manifold for ROM construction offers a more robust
relationship between the design parameters and expansion coefficients. The difference in projection and prediction errors from
POD-GPR is almost 0 at low values of 𝑘, but rapidly increases as 𝑘 grows, suggesting that the individual expansion coefficients
become harder to interpolate as the corresponding singular values decay.

Figure 8 shows the relative error plot for both ROMs at 𝑘 ∈ [5, 10,⋯ 35] for a single design parameter 𝝁1 =
(1.167, 1.997,−0.4665, 555.5), while Figure 9 shows the contour plots of the FOM as well as the absolute error plots for CAE-
GPR at 𝑘 = 5 and POD-GPR at 𝑘 = 35. Results at another design parameter instance at 𝝁2 = (1.963, 1.789, 0.5890, 308.5) are
shown in Figures 10 and 11. The generalized results from the cross-validation also hold here; for a greater projection error,
CAE-GPR provides a lower prediction error. It is also shown at these design parameters that the prediction error curve of POD-
GPR flattens out. There is more volatility in both the projection and prediction errors for CAE-GPR, although POD-GPR still
never outperforms it in predicting 𝑢 and 𝑣. For 𝑘 = 10 at both design parameters, the difference in the projection and prediction
errors is very small, and almost 0 for 𝑢 at 𝝁1 and 𝑣 at 𝝁2. This is similar to the behavior exhibited by POD-GPR for low values
of 𝑘, showing that CAE-GPR is also capable of producing highly accurate estimates of the expansion coefficients. The error
contours at these design parameters highlight the increased predictive performance given by CAE-GPR over POD-GPR. While
the error contours given by POD-GPR exhibit distinct bands of high error, the contours produced by CAE-GPR are generally
more uniform and dispersed throughout the domain. At the chosen design parameters, there is a significant decrease in relative
error; at 𝝁1, the percent decreases in relative error of 𝑢 and 𝑣 from POD-GPR to CAE-GPR are 42.4% and 49.8% respectively,
while at 𝝁2 they are 48.3% and 75.6% respectively.

0 5 10 15 20 25 30 35
ROM Dimension, k

10 1

Re
la

tiv
e

Er
ro

r

Relative Error in u
POD Projection Error
POD-GPR Error
CAE Projection Error
CAE-GPR Error

0 5 10 15 20 25 30 35
ROM Dimension, k

10 1

Re
la

tiv
e

Er
ro

r

Relative Error in v
POD Projection Error
POD-GPR Error
CAE Projection Error
CAE-GPR Error

FIGURE 8 Plots of the prediction and projection errors in 𝑢 and 𝑣 for both ROMs at 𝝁 = (1.167, 1.997,−0.4665, 555.5) at
different values of 𝑘.

HALDER, FIDKOWSKI, AND MAKI 15

(a) 𝒖,Ground Truth (b) 𝒖,POD-GPR Difference (c) 𝒖,CAE-GPR Difference

(d) 𝒗,Ground Truth (e) 𝒗,POD-GPR Difference (f) 𝒗,CAE-GPR Difference

FIGURE 9 ROM comparison of 𝑢 and 𝑣 at 𝝁 = (1.167, 1.997,−0.4665, 555.5), with 𝑘 = 5 for CAE-GPR and 𝑘 = 35 for
POD-GPR.

0 5 10 15 20 25 30 35
ROM Dimension, k

10 2

10 1

Re
la

tiv
e

Er
ro

r

Relative Error in u
POD Projection Error
POD-GPR Error
CAE Projection Error
CAE-GPR Error

0 5 10 15 20 25 30 35
ROM Dimension, k

10 2

10 1

Re
la

tiv
e

Er
ro

r

Relative Error in v
POD Projection Error
POD-GPR Error
CAE Projection Error
CAE-GPR Error

FIGURE 10 Plots of the prediction and projection errors in 𝑢 and 𝑣 for both ROMs at 𝝁 = (1.963, 1.789, 0.5890, 308.5) at
different values of 𝑘.

16 HALDER, FIDKOWSKI, AND MAKI

(a) 𝒖,Ground Truth (b) 𝒖,POD-GPR Difference (c) 𝒖,CAE-GPR Difference

(d) 𝒗,Ground Truth (e) 𝒗,POD-GPR Difference (f) 𝒗,CAE-GPR Difference

FIGURE 11 ROM comparison of 𝑢 and 𝑣 at 𝝁 = (1.963, 1.789, 0.5890, 308.5), with 𝑘 = 5 for CAE-GPR and 𝑘 = 35 for POD-
GPR.

8 CONCLUSION

This work presents a non-intrusive reduced-order model framework utilizing nonlinear trial manifolds through the use of
convolutional autoencoders. A deep learning approach, CAEs learn efficient low-dimensional representations of data through an
encoder and decoder connected by a code. CAEs provide a set of expansion coefficients through the low-dimensional code, similar
to the basis coefficients provided by POD-based methods. A nonlinear relationship exists between the expansion coefficients and
full-order states when using autoencoders, in contrast with the linear relationship when using POD. Given steady-state solutions
of PDEs parameterized by a set of design parameters, Gaussian process regression can be used to approximate the expansion
coefficients at unseen points in the design space for both approaches (referred to as CAE-GPR and POD-GPR). CAE-GPR
involves a more expensive offline stage due to the high computational cost associated with training deep neural networks and
requires that solutions have appropriate spatial arrangement.

When applied to a geometrically and physically parameterized lid-driven cavity problem solved using the steady incompressible
Navier-Stokes equations, it is shown that CAE-GPR offers higher performance in predicting the components of the velocity field
when compared to POD-GPR over a range of ROM dimension. The low-dimensional code provided by CAEs is shown to be more
easily interpolated than the basis coefficients obtained from POD. For a greater manifold projection error, CAE-GPR provides
lower error in predictions of full-order states. It is also shown that CAE-GPR has the ability to provide highly accurate estimates
of the expansion coefficients, providing prediction errors that are very close to projection errors. Although other works17,53,54 have
shown that CAEs outperform POD for some ROMs, the analyses presented compare performance at only a small number of unseen
parameter instances or only show improvement for low-dimensional ROMs. In this work, we have provided a comprehensive
cross-validation analysis over a large number of ROM dimensions which shows that using CAEs can offer significantly better
performance than POD for non-intrusive ROMs. A similar work19 using CAEs for non-intrusive ROMs applied to external
vehicle aerodynamics has shown only a very small improvement in performance compared to POD; problems that are not highly
non-linear like the one presented in this work may not benefit from using deep learning for ROMs. Future work will extend
this ROM framework to larger problems where unstructured meshes are required and investigate constructing nonlinear trial
manifolds using variational autoencoders (VAEs), which have been shown to provide a more interpretable low-dimensional code.

HALDER, FIDKOWSKI, AND MAKI 17

References

1. Berkooz G, Holmes P, Lumley J. The Proper Orthogonal Decomposition in the Analysis of Turbulent Flows. Annual Review
of Fluid Mechanics 2003; 25: 539-575. doi: 10.1146/annurev.fl.25.010193.002543

2. Holmes P, Lumley JL, Berkooz G, Mattingly JC, Wittenberg RW. Low-dimensional models of coherent structures in
turbulence. Physics Reports 1997; 287: 337-384.

3. Carlberg K, Bou-Mosleh C, Farhat C. Efficient non-linear model reduction via a least-squares Petrov–Galerkin projection
and compressive tensor approximations. International Journal for Numerical Methods in Engineering 2011; 86(2): 155–181.

4. Carlberg K, Barone M, Antil H. Galerkin v. least-squares Petrov–Galerkin projection in nonlinear model reduction. Journal
of Computational Physics 2017; 330: 693-734. doi: https://doi.org/10.1016/j.jcp.2016.10.033

5. Carlberg K. Adaptive h-refinement for reduced-order models. International Journal for Numerical Methods in Engineering
2015; 102(5): 1192–1210.

6. Chaturantabut S, Sorensen DC. Nonlinear model reduction via discrete empirical interpolation. SIAM Journal on Scientific
Computing 2010; 32(5): 2737–2764.

7. Guo M, Hesthaven JS. Reduced order modeling for nonlinear structural analysis using Gaussian process regression. Computer
methods in applied mechanics and engineering 2018; 341: 807–826.

8. Dupuis R, Jouhaud JC, Sagaut P. Surrogate Modeling of Aerodynamic Simulations for Multiple Operating Conditions Using
Machine Learning. AIAA Journal 2018; 56(9): 3622-3635. doi: 10.2514/1.J056405

9. Hesthaven J, Ubbiali S. Non-intrusive reduced order modeling of nonlinear problems using neural networks. Journal of
Computational Physics 2018; 363: 55-78. doi: https://doi.org/10.1016/j.jcp.2018.02.037

10. Jacquier P, Abdedou A, Delmas V, Soulaimani A. Non-intrusive reduced-order modeling using uncertainty-aware Deep
Neural Networks and Proper Orthogonal Decomposition: Application to flood modeling. Journal of Computational Physics
2021; 424: 109854. doi: 10.1016/j.jcp.2020.109854

11. Ohlberger M, Rave S. Reduced Basis Methods: Success, Limitations and Future Challenges. Proceedings of the Conference
Algoritmy 2016.

12. Amsallem D, Zahr MJ, Farhat C. Nonlinear model order reduction based on local reduced-order bases. International Journal
for Numerical Methods in Engineering 2012; 92(10): 891–916.

13. Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep convolutional neural networks. Advances in neural
information processing systems 2012; 25: 1097–1105.

14. Hirschberg J, Manning CD. Advances in natural language processing. Science 2015; 349(6245): 261–266.

15. Zhang S, Yao L, Sun A, Tay Y. Deep learning based recommender system: A survey and new perspectives. ACM Computing
Surveys (CSUR) 2019; 52(1): 1–38.

16. LeCun Y, Bengio Y, Hinton G. Deep Learning. Nature 2015; 521(7553): 436–444. doi: 10.1038/nature14539

17. Lee K, Carlberg K. Model reduction of dynamical systems on nonlinear manifolds using deep convolutional autoencoders. J.
Comput. Phys. 2020; 404.

18. Fresca S, Dede’ L, Manzoni A. A comprehensive deep learning-based approach to reduced order modeling of nonlinear
time-dependent parametrized PDEs. J. Sci. Comput. 2021; 87: 61.

19. Mrosek M, Othmer C, Radespiel R. Variational Autoencoders for Model Order Reduction in Vehicle Aerodynamics. In:
AIAA AVIATION 2021 FORUM. ; 2021: 3049.

http://dx.doi.org/10.1146/annurev.fl.25.010193.002543
http://dx.doi.org/https://doi.org/10.1016/j.jcp.2016.10.033
http://dx.doi.org/10.2514/1.J056405
http://dx.doi.org/https://doi.org/10.1016/j.jcp.2018.02.037
http://dx.doi.org/10.1016/j.jcp.2020.109854
http://dx.doi.org/10.1038/nature14539

18 HALDER, FIDKOWSKI, AND MAKI

20. Kadeethum T, Ballarin F, Choi Y, O’Malley D, Yoon H, Bouklas N. Non-intrusive reduced order modeling of natural
convection in porous media using convolutional autoencoders: comparison with linear subspace techniques. Advances in
Water Resources 2022: 104098.

21. Mrosek M, Othmer C, Radespiel R. Reduced-Order Modeling of Vehicle Aerodynamics via Proper Orthogonal Decomposition.
SAE International Journal of Passenger Cars - Mechanical Systems 2019; 12(3): 225–236. doi: https://doi.org/10.4271/06-
12-03-0016

22. Eckart C, Young G. The approximation of one matrix by another of lower rank. Psychometrika 1936; 1: 211-218.

23. Tenenbaum JB, De Silva V, Langford JC. A global geometric framework for nonlinear dimensionality reduction. science
2000; 290(5500): 2319–2323.

24. Lee G, Rodriguez C, Madabhushi A. Investigating the efficacy of nonlinear dimensionality reduction schemes in classifying
gene and protein expression studies. IEEE/ACM Transactions on Computational Biology and Bioinformatics 2008; 5(3):
368–384.

25. Gonzalez FJ, Balajewicz M. Deep convolutional recurrent autoencoders for learning low-dimensional feature dynamics of
fluid systems. arXiv preprint arXiv:1808.01346 2018.

26. Kriesel D. A Brief Introduction to Neural Networks . 2007.

27. Nair V, Hinton GE. Rectified linear units improve restricted Boltzmann machines. In: Icml. ; 2010.

28. Dahl GE, Sainath TN, Hinton GE. Improving deep neural networks for LVCSR using rectified linear units and dropout. In:
2013 IEEE International Conference on Acoustics, Speech and Signal Processing. ; 2013: 8609-8613

29. Zeiler MD, Ranzato M, Monga R, et al. On rectified linear units for speech processing. 2013 IEEE International Conference
on Acoustics, Speech and Signal Processing 2013: 3517-3521.

30. Xu B, Wang N, Chen T, Li M. Empirical evaluation of rectified activations in convolutional network. arXiv preprint
arXiv:1505.00853 2015.

31. Rumelhart DE, Hinton GE, Williams RJ. Learning Representations by Back-propagating Errors. Nature 1986; 323(6088):
533–536. doi: 10.1038/323533a0

32. Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. 2014. cite arxiv:1412.6980 Comment: Published as a
conference paper at the 3rd International Conference for Learning Representations, San Diego, 2015.

33. Masters D, Luschi C. Revisiting small batch training for deep neural networks. arXiv preprint arXiv:1804.07612 2018.

34. Ying X. An Overview of Overfitting and its Solutions. Journal of Physics: Conference Series 2019; 1168: 022022. doi:
10.1088/1742-6596/1168/2/022022

35. He K, Zhang X, Ren S, Sun J. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification.
In: Proceedings of the IEEE international conference on computer vision. ; 2015: 1026–1034.

36. Telgarsky M. Benefits of depth in neural networks. In: Conference on learning theory. PMLR. ; 2016: 1517–1539.

37. Eldan R, Shamir O. The Power of Depth for Feedforward Neural Networks. In: Feldman V, Rakhlin A, Shamir O., eds.
29th Annual Conference on Learning Theory. . 49 of Proceedings of Machine Learning Research. PMLR; 2016; Columbia
University, New York, New York, USA: 907–940.

38. Sola J, Sevilla J. Importance of input data normalization for the application of neural networks to complex industrial problems.
IEEE Transactions on Nuclear Science 1997; 44: 1464-1468.

39. Hinton GE, Salakhutdinov RR. Reducing the dimensionality of data with neural networks. Science 2006; 313(5786): 504-507.
doi: 10.1126/science.1127647

http://dx.doi.org/https://doi.org/10.4271/06-12-03-0016
http://dx.doi.org/https://doi.org/10.4271/06-12-03-0016
http://dx.doi.org/10.1038/323533a0
http://dx.doi.org/10.1088/1742-6596/1168/2/022022
http://dx.doi.org/10.1088/1742-6596/1168/2/022022
http://dx.doi.org/10.1126/science.1127647

HALDER, FIDKOWSKI, AND MAKI 19

40. LeCun Y, Haffner P, Bottou L, Bengio Y. Object recognition with gradient-based learning. In: Shape, contour and grouping
in computer vision. Springer. 1999 (pp. 319–345).

41. Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556 2014.

42. Dumoulin V, Visin F. A guide to convolution arithmetic for deep learning. arXiv preprint arXiv:1603.07285 2016.

43. Lecun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied to document recognition. Proceedings of the IEEE
1998; 86(11): 2278-2324. doi: 10.1109/5.726791

44. Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press . 2016. http://www.deeplearningbook.org.

45. Krige D. A statistical approach to some mine valuation and allied problems on the Witwatersrand. PhD thesis. University of
the Witwatersrand, 1951.

46. Rasmussen CE. Gaussian processes in machine learning. In: Summer school on machine learning. Springer. ; 2003: 63–71.

47. Weller HG, Tabor G, Jasak H, Fureby C. A tensorial approach to computational continuum mechanics using object-oriented
techniques. Computers in physics 1998; 12(6): 620–631.

48. Abadi M, Agarwal A, Barham P, et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. 2015.
Software available from tensorflow.org.

49. Pedregosa F, Varoquaux G, Gramfort A, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning
Research 2011; 12: 2825–2830.

50. Jin R, Chen W, Sudjianto A. An efficient algorithm for constructing optimal design of computer experiments. Journal of
Statistical Planning and Inference 2005; 134(1): 268–287. doi: 10.1016/j.jspi.2004.02.014

51. Patankar SV, Spalding DB. A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic
flows. International Journal of Heat and Mass Transfer 1972; 15(10): 1787–1806. doi: 10.1016/0017-9310(72)90054-3

52. Rhie C, Chow WL. Numerical study of the turbulent flow past an airfoil with trailing edge separation. AIAA Journal 1983;
21(11): 1525–1532. doi: 10.2514/3.8284

53. Xu J, Duraisamy K. Multi-level convolutional autoencoder networks for parametric prediction of spatio-temporal dynamics.
Computer Methods in Applied Mechanics and Engineering 2020; 372: 113379.

54. Maulik R, Lusch B, Balaprakash P. Reduced-order modeling of advection-dominated systems with recurrent neural networks
and convolutional autoencoders. Physics of Fluids 2021; 33(3): 037106.

http://dx.doi.org/10.1109/5.726791
http://www.deeplearningbook.org
http://dx.doi.org/10.1016/j.jspi.2004.02.014
http://dx.doi.org/10.1016/0017-9310(72)90054-3
http://dx.doi.org/10.2514/3.8284

20 HALDER, FIDKOWSKI, AND MAKI

How to cite this article: R. Halder, K. Fidkowski, and K. Maki (2022), Non-Intrusive Reduced-Order Modeling Using
Convolutional Autoencoders, Int J Numer Methods Eng.

APPENDIX

A CONVOLUTIONAL AUTOENCODER ARCHITECTURE

The CAE architecture used for the lid-driven cavity problem ROM is listed in Table A1. Zero padding is used for all convolutional
and max-pooling layers. All leaky ReLU activation functions use a value of 𝛼 = 0.25. There are a relatively small number of
convolutional and pooling layers in the network; we found that adding more of them did not improve the network performance,
although their absence (using an MLP) causes a large decrease in performance. Compared to images which can be very noisy,
the physical states in the presented problem vary smoothly, and fewer convolutional layers are required to learn features. We
also found that having a fully connected layer on either side of the code was important for network performance, although this
does drastically increase the number of network parameters. This makes the use of early stopping as a regularization method
important to ensure that the network does not overfit. The learning task at hand requires that reconstructions of data be highly
accurate, and networks with more parameters allow for more robust functional relationships to arise.

Layer Number of Filters Kernel Size Stride Value Activation Function Size of Output
Input 64 × 64 × 2
Convolutional 64 3 × 3 1 × 1 Leaky ReLU 64 × 64 × 64
Max-Pooling 2 × 2 2 × 2 32 × 32 × 64
Convolutional 32 3 × 3 1 × 1 Leaky ReLU 32 × 32 × 32
Max-Pooling 2 × 2 2 × 2 16 × 16 × 32
Reshape 8192
Fully Connected Leaky ReLU 128
Code Leaky ReLU 𝑘
Fully Connected Leaky ReLU 128
Fully Connected Leaky ReLU 8192
Reshape 16 × 16 × 32
Convolutional Transpose 32 3 × 3 2 × 2 Leaky ReLU 32 × 32 × 32
Convolutional Transpose 64 3 × 3 2 × 2 Leaky ReLU 64 × 64 × 64
Convolutional Transpose 2 3 × 3 1 × 1 Sigmoid 64 × 64 × 2

TABLE A1 Detailed convolutional autoencoder (CAE) architecture used for the lid-driven cavity problem ROM.

B CONVOLUTIONAL AUTOENCODER TRAINING

Figure B1 shows the training and validation losses against the number of epochs for selected folds of the training and validation
data for 𝑘 = 5, 10, 25, 30. Early stopping is used as a regularization method, and the validation loss fails to drop for 500 epochs
well before the maximum number of 7500 epochs at 𝑘 = 5, 10, 25. At 𝑘 = 30, training stops after 7491 epochs. While the training
loss continues to decline slowly in all of the plots, the validation loss shows asymptotic behavior. By monitoring the validation
loss and using early stopping, the network is prevented from overfitting the training data. Training is performed on an NVIDIA
TITAN RTX GPU. The average wall time and number of epochs for training the CAE over all of the data folds is shown in
Table B2; in general, increasing 𝑘 leads to higher computational costs. Both the number of trainable parameters and capacity of
the network to learn are affected by the size of the code.

HALDER, FIDKOWSKI, AND MAKI 21

0 500 1000 1500 2000 2500 3000
Epoch

10 4

10 3

10 2

Lo
ss

CAE Losses | k = 5
Training Loss
Validation Loss

0 1000 2000 3000 4000 5000
Epoch

10 5

10 4

10 3

10 2

Lo
ss

CAE Losses | k = 10
Training Loss
Validation Loss

0 500 1000 1500 2000 2500 3000 3500 4000
Epoch

10 5

10 4

10 3

10 2

Lo
ss

CAE Losses | k = 25
Training Loss
Validation Loss

0 1000 2000 3000 4000 5000 6000 7000
Epoch

10 5

10 4

10 3

10 2
Lo

ss

CAE Losses | k = 30
Training Loss
Validation Loss

FIGURE B1 Plots of the training and validation losses at different ROM dimensions 𝑘 for a selected fold of the training and
validation data.

ROM Dimension, 𝑘 Average Wall Time (s) Average Number of Epochs
5 884 3533
10 883 3564
15 867 3441
20 1123 4465
25 971 3865
30 1283 4675
35 1301 4519

TABLE B2 Average computational costs over all data folds for training the CAE.

22 HALDER, FIDKOWSKI, AND MAKI

C ACTIVATION FUNCTION PERFORMANCE

In addition to the leaky ReLU activation function, we also present the projection errors obtained when using the ReLU activation
function as well as the tanh activation function, another popular choice for neural networks which is given as

𝜙(𝑥) = 𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
. (C1)

This is done by replacing all of the leaky ReLU activation functions (𝛼 = 0.25) in the network in Table A1 with either ReLU
or tanh and following the same network training procedure. Figure C2 shows the cross-validation projection errors obtained
using networks with the three different activation functions for ROM dimensions 𝑘 ∈ [5, 10,⋯ 35] and POD. It is shown that the
network using the ReLU activation function is outperformed by POD for the chosen values of 𝑘, and that leaky ReLU offers
slightly improved performance over tanh in reconstructing 𝑢 and 𝑣. Using the leaky ReLU activation function overcomes the
dying ReLU problem, which is shown to lead to networks with very poor predictive performance. The initial randomization
of the network weights and biases may lead to poor performance when using the ReLU activation function; for 𝑘 = 15, the
maximum value of 𝜖Proj for 𝑢 at a single test fold is 4.228 × 10−1, while the second highest value is 2.372 × 10−2, which is similar
to the errors provided by using leaky ReLU or tanh. The poor performance given by using ReLU is not restricted to single folds
of the data either; for a specific fold over the selected 𝑘, 𝜖Proj for 𝑢 has a maximum of 4.233 × 10−1 at 𝑘 = 5 and minimum of
2.1028 × 10−2 at 𝑘 = 25. This implies that using the ReLU activation function leads to network performance being sensitive to
the initialization of the weights and biases, in contrast to using tanh or leaky ReLU which offer more consistent performance.

0 5 10 15 20 25 30 35
ROM Dimension, k

10 2

10 1

Av
er

ag
e

Re
la

tiv
e

Er
ro

r

Cross-Validation Error in u

POD Projection Error
Projection Error (Leaky ReLU)
Projection Error (tanh)
Projection Error (ReLU)

0 5 10 15 20 25 30 35
ROM Dimension, k

10 2

10 1

Av
er

ag
e

Re
la

tiv
e

Er
ro

r

Cross-Validation Error in v

POD Projection Error
Projection Error (Leaky ReLU)
Projection Error (tanh)
Projection Error (ReLU)

FIGURE C2 Plots of the cross-validation projection errors in 𝑢 and 𝑣 for POD using different activation functions.

	Non-Intrusive Reduced-Order Modeling Using Convolutional Autoencoders
	Abstract
	Introduction
	Full-order model
	Linear reduced basis method
	Proper orthogonal decomposition
	Projection error

	Nonlinear manifold construction using convolutional autoencoders
	Artifical Neural Networks
	Training neural networks
	Backpropagation
	Data Normalization

	Autoencoders
	Convolutional autoencoders

	Expansion coefficient prediction using Gaussian process regression
	Gaussian process regression

	Offline and online stages
	Numerical results
	Steady incompressible Navier-Stokes equations
	Lid-driven cavity problem

	Conclusion
	References
	Appendix
	Convolutional autoencoder architecture
	Convolutional autoencoder training
	Activation function performance

