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1. Introduction

In the field of artificial intelligence, neural networks are widely
used as a means to apply learning techniques for solving many
types of practical, and often high-dimensional, problems. The
neural networks partially mimic several properties of biological
neural networks, such as their hierarchical, cyclic nature. They
have been successfully applied to various domains such as
function approximation, image analysis, speech recognition,
adaptive control, etc.[1–7] Biological neurons differ significantly
from artificial neurons, with a simplified depiction shown in
Figure 1. A stereotypically discrete signal is propagated through
a synapse from one neuron to another, where the connections
linking a presynaptic neuron’s axon to the postsynaptic dendritic

branch of a downstream neuron are the
synapses. The signal is thought to propa-
gate only in one direction, from the presyn-
aptic neuron to the postsynaptic neuron,
which can be represented in an acyclic
manner. The levels of signal propagation
intensity are modeled as network weights
in the neural networks. During the learn-
ing process of neural networks, the values
of interconnecting weights between
neurons are iteratively adjusted.

The neural networks consist of
multilayered structures of neurons
and interconnections. Each connection
between neurons of consecutive layers pro-
vides the output of one neuron (presynaptic
neuron) to the input of the next neuron
(postsynaptic neuron). One neuron may
have more than one postsynaptic neuron
and in practice, may exceed 10s of 1000s

of postsynaptic connections. Each neuron receives the weighted
sum of the outputs of all presynaptic neurons as their input. An
output is calculated using an activation function. Some examples
of the activation functions are the ReLU function, sigmoidal
function, and tanh function. Although the neural networks are
brain inspired and have been remarkably successful in many
applications, there are essential differences in the structure
and computational methods when compared with the
biological brain. The most fundamental difference is how infor-
mation is encoded and propagated between nodes. With this
observation, significant focus has shifted to investigating spiking
neural networks (SNNs), referred to as the third-generation neu-
ral networks. In SNNs, communication takes place via action
potentials that are millivolt-scale fluctuations that last several
milliseconds and are referred to as spikes. Multiple spikes are
often used to relay sensory input, referred to as spike trains,
where it is thought that processing and computation take place
using spike timing, which broadly encompasses latencies and
spike rates. The use of spikes offers an engineering advantage
by constraining interlayer data communication to a single-bit
event, and input-weight multiplication is simply traded for
memory read-outs, which has been shown to significantly reduce
both power consumption and latency.[8,9]

The retina is a light-sensitive layer of nerve cells lining the
back wall inside the eye. It converts the light into neural signals
and sends the signals to the brain to see objects. The biological
structure of the retina is illustrated in Figure 2. As shown in the
figure, the retina consists of photoreceptors, bipolar and ganglion
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The human retina sends visual signals to the brain’s visual cortex from
photoreceptors (rod and cone cells) through various synaptic pathways and
performs crucial early vision processing before signals are passed to higher brain
regions. Herein, an artificial retina system implemented based on the leaky
integrate-and-fire spiking neuron model is presented. The architecture of the
proposed retina system consists of a multilayer convolutional neural network
(CNN), and the system uses spike timing-dependent plasticity (STDP) as a
feedforward learning rule. In addition, the system integrates a feedback plasticity
learning rule to expedite learning convergence. The system weights are imple-
mented using nanoscale memristor arrays, taking on a constrained (radix-X)
range of conductance states. The proposed system produces an output image of
25� 25 pixels, corresponding to the output retina ganglion cells that act as the
interface between the retina and the visual cortex, using an input image of
100� 100 pixels.
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cells, and amacrine and horizontal cells are connecting those
cells. The cells in the retina can be represented as a neural
network with synapses, as shown in Figure 1.

Although the retina is an essential component of the vision
and central nervous systems, there have not been many studies
to implement corresponding artificial systems, and the work in
this area remains in the early stage.[10,11] This paper presents the
implementation of an artificial retina neural system. The pro-
posed system is based on a nanoscale memristive retina neural
network, and it uses spike timing-dependent plasticity (STDP)
learning with synaptic connections that are constrained to a
Radix-X weight to assess performance in resource-constrained,
quantized systems. STDP is a biological process that modulates
the strength of connections between neurons, where potentiation
and depression of the synaptic strength can be induced by
precisely timed pairs of presynaptic and postsynaptic spikes.[12]

2. Memristor Devices as Synapses in a Spiking
Neural Network

A memristor device is a nonvolatile electronic memory device
that has two terminals. The memristor was categorized as the
fourth fundamental element following the resistor, the capacitor,
and the inductor.[13] The original postulation of the memristor
demonstrated how to program a resistance state via charge or
flux, which enabled the resistance to be stored in a nonvolatile
manner. In practice, a variety of physical mechanisms are used
to modulate resistance states, such as filamentary formation in a
device or mobile ion transport. Significant research has shown
the capacity of a memristor to be used as the synapses of a spik-
ing neural network, even with the STDP models.[14–18] Scientists
have successfully shown that various materials such as carbon,
chalcogenides, metal oxides, amorphous silicon, and polymer–
nanoparticle composite materials exhibit memristive properties.

In addition, it has already been shown that memristor synapses
can support important functions such as STDP when integrated
with metal–oxide–semiconductor neurons.[18]

The notion of memristors was first postulated by Leon Chua in
1971, based on the possible symmetry in the relationship
between charge and flux. In May 2008, the HP research team
of Stanley Williams published the experimental fabrication of
the memristor.[19] Since then, researchers have been actively
investigating resistive memories and exploring their possible
applications, including memristive synapses in neuromorphic
computing architectures.[20,21] The device structure of a memris-
tor is illustrated in Figure 3a. The semiconductor thin film has a
region with a high concentration of dopants (positive ions), and
this corresponds to low resistance Ron. The remaining region has
a low dopant concentration, and this corresponds to a much
higher resistance Roff. We model the resistance of the device
using the two variable resistors that are connected in series.
We fabricated a memristor whose structure is the TiO2�x/
TiO2 heterojunction layer, illustrated in Figure 3b. The bottom
electrode is ITO, and the top electrode is Ag. The upper
TiO2�x layer has a 5% oxygen deficiency. The atomic layer depo-
sition (ALD) was used to deposit the TiO2�x layer using titanium
tetraisopropoxide and O2 as a precursor and an oxygen source,
respectively. The upper TiO2�x layer is 20nm thick, and the lower
TiO2 layer is 2nm thick. Figure 3b,c shows the chip micrograph,
cross-sectional view, and the fabricated memristor’s I–V charac-
teristic curve, respectively.

Figure 4 shows a typical memristor crossbar used as synapses
with CMOS neurons in a neural network. In the figure, the
crosspoints of the two layers are synapses, made of memristors,
and their conductance values represent the connection weights
between presynaptic and postsynaptic neurons.

3. Artificial Retina CNN Architecture

3.1. Proposed CNN Architecture

The biological retina can be abstracted into three layers from pho-
toreceptors to ganglion cells, and the number of cells are reduced
by a factor of �100:1 on the path to the visual cortex. The pro-
posed retina system is implemented using a convolutional neural
network (CNN) architecture and memristor arrays. The architec-
ture has two CNN layers and one fully connected layer, encoding
the input image resolution from 100� 100 to 25� 25, which is a
shrunk-down structure corresponding to the biological retina.
The benefit of this step is the reduction of computational

Figure 1. The neuron of the biological neural network.

Figure 2. The biological structure of the retina.
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complexity in the following processing stages. Figure 5 illustrates
the proposed architecture.

The architecture uses three convolutional filters in the first
layer, generating three feature maps from an input image.
Then, a pooling layer downsamples the feature maps, summariz-
ing the presence of features. For this, average pooling is per-
formed. In the second layer, another convolution is performed
using three 2� 2 convolution filters. Finally, a fully connected
layer is used for the output spike read-out. We verified the pattern
recognition performance of the proposed architecture on the
Tensorflow platform with character patterns generated similarly
to MNIST. Figure 6a shows the examples of the 4� 4-sized 360

test input patterns used in the experiments. They were made
from a set of alphabetic characters. Figure 6b illustrates the
recognition accuracy of three number systems, real number,
radix-11 number, and binary number systems. As shown in
the figure, the proposed Radix-11 CNN achieved the classification
accuracy of 100%, although it converged more slowly when
compared with the real-number weight-based CNN. In the
experiment, the binary number system did not get convergence
to 100% accuracy.

3.2. Input PWM Circuit for SNN

The proposed system implements a spike neural model and uses
unsupervised learning with STDP. In the neural network adapt-
ing the spiking neural model, the input activity level is controlled
by adjusting the input current, that is, the current magnitude and
supply time. For example, rate coding or pulse width modulation
(PWM) coding can be used with fixed current magnitude. In the
case of an input driving a memristor, a voltage source in series
with memristive devices can be used to adjust the input current
magnitude in addition to the supplying time. In the proposed
system, the PWM coding is used to represent the gray (interme-
diary) levels of monochromatic input images. Figure 7 illustrates
the rate coding and PWM coding representations of data. For
other layers, the proposed system uses the memristor scheme
to represent the input level.

Figure 3. Fabricated memristor: a) device structure and b) cross-sectional view (the memristor thickness is 10.5 nm). c) I–V characteristic curve.

Figure 4. A memristor crossbar is used as synapses in a spiking neural
network.
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The circuit for PWM coding can be implemented using
logic gates and a MOSFET switch, as illustrated in Figure 8.
We allocate a dedicated time slot for each input bit, where the
length of the time slot depends on the weight of each bit.
While the proposed system uses 8-bit input signals, a PWM
coding circuit for the 4-bit input is shown in the figure. The
circuit is for the input of 1001. In the circuit, the total time length
to turn the current switch is 9ΔT.

3.3. The Leaky Integrate-and-Fire (LIF) Circuit

Among the most common neuron models to model spiking
dynamics include the conductance-based Hodgkin–Huxley
model family, although the integrate-and-fire class of models

is more broadly adopted in neural network training due to their
simpler dynamics, without compromising on spike-based encod-
ings. Our proposed system uses the leaky integrate-and-fire (LIF)
model, which contains a leak term in the membrane potential.[22]

In this model, the membrane voltage decays exponentially with
time. Thus, its behavior is usually represented by an RC circuit.
The functional circuit of the LIF model is illustrated in Figure 9.
In the circuit, resistor RM represents the leak term. An input cur-
rent Iinput is controlled by adjusting its magnitude or supplied
period time. If themembrane voltage Vm reaches the given thresh-
old voltage VTH, the circuit generates a spike δi at the output. This
spike is propagated to the next neural element, and it resets the
membrane voltage to the initial state by turning the membrane
switch on. The membrane voltage Vm is represented as follows
in the form of the first-order ordinary differential equation.

Figure 5. The proposed system architecture.

Figure 6. Performance evaluation of the proposed Radix-11 system. a) Examples of the 4� 4 test input patterns. b) Inference accuracy for three number
systems.

Figure 7. Rate coding and PWM coding techniques.
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Iinput tð Þ �
Vm tð Þ
Rm

¼ Cm
dVm tð Þ

dt
(1)

The spike neural network using the LIF model is illustrated in
Figure 10. As shown in the figure, a neuron accumulates the
membrane potential using the presynaptic spikes. With every

presynaptic spike, the membrane potential Vm increases and
then decreases with time. Once Vm reaches VTH, a neuron
generates a spike at the output, and it resets Vm to the
ground level.

3.4. Neural Network with Weighted Memristor Array

A memristor crossbar can parallelize many multiplication and
addition operations, corresponding to matrix dot product compu-
tation, which is fundamental for mapping to a neural network.
The mapping concept is shown in Figure 11. The input spike of
the neural network corresponds to the input voltage of the
crossbar, and the weight corresponds to the conductance of
the memristor. In the memristor crossbar, the current generated
by the input voltage and conductance is summed in one column
(or bit-line), which functionally corresponds to how input and
synaptic conductance are weighted and summer in an artificial
neuron model. Equation (2) expresses a column operation on a
crossbar network.

itotal ¼
Xn
i¼0

vi � gi (2)

The ideal I–V characteristics of a memristor are shown in
Figure 12. The slope of the ‘butterfly wings’ represents the
memristor conductance, which in the ideal case depends on
the energy applied to the memristor. We used an ideal memristor
curve instead of the one shown in Figure 3 to simulate the pro-
posed Radix-11 number system as highly advanced manufactur-
ing technology is required to use the fabricated memristors for
system implementation. In this article, we apply three types of
fixed energy values that result in three different resistances, as
shown in Equation (3). While the analog characteristics of
memristors and current-mode operation increase susceptibility
to variations of conductance states among memristors, spiking
dynamics enable a significant degree of noise to be absorbed into
the subthreshold dynamics of spiking neuron models.[21,23]

G0 ¼ 2 VtþVað Þ ¼ 2vt � 20 ¼ 1Gm
G1 ¼ 2 VtþVbð Þ ¼ 2vt � 21 ¼ 2Gm
G2 ¼ 2 VtþVcð Þ ¼ 2vt � 22 ¼ 4Gm

,whereVa ¼ 0V ,Vb ¼ 1V ,V c ¼ 2V

8<
: (3)

Figure 8. The circuit for PWM coding (Gray level for 1001).

Figure 9. The functional circuit of the LIF model.

Figure 10. The spike neural model to build the proposed retina system.
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The voltage Vt is the threshold voltage, which turns on the
memristor, and Va, Vb, and Vc are the additional voltages
that are added to Vt to obtain the conductance. For example,
an applied voltage of Vb ¼ 1V sets a resistance of
2Gm, whereGmis the ON conductance of the memristor.

In this paper, we propose a weighted memristance that
combines three resistances at a crosspoint. An example is given
in Figure 13. The equivalent resistance is obtained between the
vertical line and the horizontal line. Combining the three
weighted conductance of 1 Rm, 0.5 Rm, and 0.25 Rm, which
are in parallel, provides 11 different conductance values at a
crosspoint, which is mapped to Radix 11 numbers. For example,
the combination of 0.5 Rm and 0.25 Rm is equivalent to 0.75 Rm.

This represents a weight value in the proposed Radix-11
approach.

4. The Proposed STDP-Based Learning Method

The learning process of the proposed system consists of two
steps, the feedforward STDP learning followed by the feedback
plasticity learning process. For the feedback plasticity learning
process, it was shown that the output of the LIF neuron, to be
denoted as Si, can be used to regulate the network weights in
addition to spikes.[24] In the proposed system, we use the same
idea for the feedback learning process. The learning process of
the proposed system is illustrated in Figure 14. The learning
process is performed during each learning epoch.

In the proposed learning algorithm, the output of the LIF
neuron i, Si tþ 1ð Þ, is given as follows.

Si tþ 1ð Þ ¼
XN
j

wj,iSj tþ 1ð Þ þ τδi tþ 1ð Þ (4)

where wj,i is the weight between neuron j and i, δi is the spike at
neuron i, and τ is the coefficient to control the magnitude of the

Figure 11. Mapping of a memristor array: a) a neural network and b) a corresponding memristor array.

Figure 12. The I–V characteristic of the memristor.

Figure 13. Three weighted memristors on a crosspoint, equivalent resis-
tance, and radix_11 symbol mapped to it.
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output. Si’s are computed from the first layer to the last layer in
the forward direction, and STi ’s are computed backward using the
prediction error of Sifrom the last layer.

4.1. Feedforward Spike Timing-Dependent Plasticity (STDP)
Learning

4.1.1. Input Spike Train

We consider a feedforward network with N input xi tð Þas Dirac
delta spike trains connected to a single-output neuron through
the weights Wi tð Þ, giving rise to the postsynaptic spike train
y tð Þ.[25] The input spike trains exhibit average firing rates. We
considered a feedforward network. Let x(t)¼ [x1(t), …, xN(t)]

T

denote the vector of N inputs where x tð Þis given in Equation (5)
that is the Dirac delta spike train of neuron i at time t, where ti is
the spike timing.

Xi tð Þ ¼
X
ti

δ t� tið Þ (5)

4.1.2. Spike-Timing-Dependent Plasticity (STDP)

SNNs communicate via neurons that emit binary spikes. STDP is
a learning rule that modulates the strength of a synaptic
connection based on the temporal correlation of spikes between
connected neurons in the SNN. This section provides an
overview of STDP learning. Although there are symmetric and
asymmetric STDP rules for changing the strength of synapses,
only the asymmetric STDP rule is considered in this work.[26]

Pair-Based STDP: In general, STDP requires a lot of compu-
tation and delays in the updating process of synaptic weights
because the learning function has to be calculated for every pair
of presynaptic and postsynaptic spikes.[27] Here we assume that
neurons A and B are synaptically connected, and the spike signal
is transmitted from neuron A to neuron B. When neuron A fires
and then neuron B fires within a particular time window, the
synaptic connection is strengthened in the long-term potentia-
tion (LTP) mode.[28] Conversely, in spike signaling, if B fires
and then neuron A fires, long-term depression (LTD) is induced,

resulting in decreased synaptic connections between them. We
define the firing time of neuron A as tpre and the firing time of
neuron B as tpost. Then, the timing difference between the
presynaptic and postsynaptic spikes can be expressed as
Δt ¼ tpre�tpost. The amount of weight modification Δw between
two synapses can be written as follows.

Δw ¼ A�e�Δt1=τþΔt1 < 0
Aþe�Δt1=τþΔt1 > 0

�
(6)

where Aþ and A� are positive and negative constants,
respectively, which determine the maximum amount of synaptic
change, and τþ is the potentiation time constant, and τ- is the
depression time constant.

Triplet-Based STDP: It is known that triplet-based STDP is
more biologically plausible than pair-based STDP.[21] Triplet-
based STDP is a method of adjusting synaptic weights when
the triplet spikes occur in the sequence of presynaptic–
postsynaptic–presynaptic spikes or postsynaptic–presynaptic–
postsynaptic spikes. The synaptic coupling strength is depressed
when the activation of the postsynaptic neuron is low and
potentiated when the activation is high. This is a key property
of the Bienenstock–Cooper–Munro (BCM) synaptic learning
rule. The BCM synaptic rule has been shown to maximize the
selectivity of postsynaptic neurons, and it provides a possible
explanation for experience-dependent cortical plasticity, such
as directional selectivity.[29]

In the triplet model of STDP, learning depends on the
interactions of three precisely timed spikes. It has been shown
that this learning model describes plasticity experiments that the
classical pair-based STDP rule has failed to capture.[26,30]

Figure 15a shows the triplet spikes associated with LTD and
LTP. LTD traces the temporal relationship of two presynaptic
spikes and one postsynaptic spike, as shown in the figure. If
the postsynaptic spike occurs first and the presynaptic spike
occurs, the presynaptic spike does not affect the next neuron.
Conversely, in the case of LTP, if the presynaptic spike stimulates
the postsynaptic neuron, and the presynaptic neuron potentiates
the membrane potential of the postsynaptic neuron. Figure 15b
shows the synaptic weight variation by the temporal difference of
these spikes.

The weight variation is given as Equation (7).

ΔW� ¼ n� 1þ Aþe�Δt1=τ�
� �

e�Δt3=τx if Δt1 < 0
ΔWþ ¼ nþ 1þ A�e�Δt1=τþ

� �
e�Δt2=τy if Δt1 > 0

(7)

where the synaptic weight is potentiated at times when a post-
synaptic spike occurs or depressed at the time when a presynap-
tic spike occurs. The depression and potentiation amplitude
parameters are A�, n�, Aþ, and nþ, while Δt1¼ Tpost� Tpre,
Δt3¼ Tpost� T ’

pre, and, Δt2¼ Tpre� T ’
post, are the time differen-

ces between pre(t) and pos(t), post(t) and pre(t-1), and pos(t) and
pos(t�1), respectively. Here, τ� and τx and τþ, τy time constants
determine the windows in which depression and potentiation
take place.[27,31,32] In addition, it is needed to distinguish between
the current spike and the previous spike of the same type. The
weight change is described with the STDP learning rate η, as
shown in Equation (8). We can train the system by applying this
unsupervised learning rule.

Figure 14. Overall learning process during each learning epoch.
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Wt ¼ Wt�1 þ ηΔW (8)

4.2. Feedback Plasticity Learning

STDP is a model of the biological process. Although STDP works
well for adjusting the connection strengths of the spike neural
network, it takes a long time to transfer the information to
the deep network layers. As this makes learning convergence
challenging, several alternative approaches have been adopted
to use any available information other than the spike information
to expedite the convergence of the network.[23,33–35] The second
step of the proposed learning algorithm is to update synaptic
weight backward from the last synaptic weights using the output
of neuron Si.

[22] Let STi denote the target S at layer i. Then, the
prediction error ei is defined as follows.

ei ¼
Xn
i¼1

jSi � STi j (9)

where n is the number of sample nodes at layer i. Let L denote the
number of total layers. With supervised learning, STL is given,
and, thus, eL is given. The target S of the penultimate layer,
STL�1, is given as follows.[22]

STL�1 ¼ SL�1 � ηtΔS ¼ SL�1 � ηtWT
L�1 � e (10)

where ηt represents the learning rate of the target. For
i ¼ 1, 2, : : : , L� 2, the target output STi can be computed as
follows[10]

STi ¼ Si � Gi eð Þ ¼ Si � Bi � eþ bi (11)

In the above equation, Bi denotes the random feedback weight
of the ith layer, and bi represents the random feedback bias. After
computing Si’s and STi ’s, the proposed algorithm makes the final
weight adjustmentΔw in the forward direction, whereΔw andW
are given as follows.[22]

ΔwSj Si � STi
� �

W ¼ W � ηwΔw
(12)

where Sj and Si indicate the presynaptic and postsynaptic output,
and ηw is the learning rate of the weight.

5. CNN Implementation and Simulation

In this work, we develop a training methodology for the convolu-
tional layers that consist of an input layer followed by intermedi-
ate hidden layers and a final classification layer. The hidden
layers consist of multiple convolutional and pooling layers, which
are often arranged in an alternating manner. These convolutional
and pooling layers represent the intermediate stages of the
feature extractor. The spikes from the feature extractor are com-
bined to generate a 1D vector input for the fully connected layers
to produce the final classification. The convolutional and fully
connected layers contain trainable parameters (i.e., synaptic
weights).

Figure 16 illustrates the convolution process for making down
the resolution of retina output image at ganglion cell, which uses
three of the 2� 2 2D filters. Figure 16d shows the output of the
convolution process. The implementation of the convolution
circuit used for the input is illustrated in Figure 17. The image
signal is modulated into a PWM signal and input to the LIF
circuit, as shown in Figure 17a. The LIF circuit accumulates
the signal energy and fires when the membrane voltage goes over
the threshold voltage. It, then, returns to the initial state, as
shown in Figure 17b. In Figure 17c, the pulses obtained from
the LIF stimulate the convolution circuit as the input spikes.
The convolution circuit uses a weighted memristor array, and
it incorporates a compensation column. The compensation is
carried out with OP amplifiers at the output stage that allows
the use of the negative value of the weight. In Figure 16,
kernel_1, kernel_2, and kernel_3 implement the first, the
second, and the third 2�2 2D filter of Figure 16c. The three sets

of four input spike trains
0 1
0 1

� �
,

1 0
1 1

� �
, and

0 1
1 0

� �
came

from the first two rows of the input spikes of Figure 16b. Their

Figure 15. STDP learning rule: a) Triplet spike train for LTD and LTP and b) synaptic depression and potentiation are induced by Δt1¼ tpost – tpre using
the triplets of spikes.
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expected outputs are illustrated in the first row of each 3� 3 table
of Figure 16d. The circuit of Figure 17 was simulated by using
Hspice.[34] The simulation results are shown in Figure 18. In
Figure 18, V(23), V(24), and V(25) represent these output values.
These outputs are the membrane potential of a neuron and
become the input signal to the next neuron. Therefore, it is for-
malized into spikes through the LIF stage and becomes the spike
train of the next stage. We find that the magnitudes of the three
pulses of V(23) are in good agreement with the first row of the
output spikes of Figure 16e, which is highlighted with a white box.

6. Conclusion

Artificial intelligence seeks to draw inspiration from the capabil-
ities of human intelligence processes in solving problems or
making decisions with computer systems. Over the past few dec-
ades, there has been tremendous progress in the field of artificial
intelligence. The areas that have made such great strides include
speech recognition and computer vision. This article proposes an
artificial retina network implemented in a multilayer convolu-
tional neural network, popularly used in speech recognition

Figure 16. The signal in a CNN: a) image, b) input spike train, c) three 2� 2 convolution filters, d) convolution results, and e) output spikes.

Figure 17. The convolution circuit for the three 2� 2 convolution filters of Figure 16 (the final output is connected to the input of the next stage in the
form of a pulse.).
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and computer vision. The retina is a light-perceptive organ and
an essential component of the central nervous system as well.
This means that the retina can process visual information,
and this local processing reduces the cost of transmitting the
visual signal from photoreceptors to the visual cortex.

The implemented artificial retina network consists of an input
layer, an output layer, one fully connected layer, and two hidden
layers. For each hidden layer, three of 2� 2 convolution filters
are used. The proposed system, based on the STDP, is trained
using the feedforward plasticity learning and the feedback plas-
ticity learning algorithms. For realizing the synapse weights, the
proposed system uses nanoscale memristor arrays with Radix-X-
constrained weights. The proposed system approximates the
given input image of 100� 100 pixels and produces an output
image of 25� 25 pixels, corresponding to the output of retina gan-
glion cells connecting to the visual cortex, from an input image of
100� 100 pixels mimicking the image-processing process of the
biological retina system. The behavior of the convolutional circuit
in the system was simulated using a circuit simulator, HSpice.[36]

The simulation results are in good agreement with the high-level
convolution results. The simulation results suggest that the pro-
posed artificial retina system has a high probability of working
if implemented as a microchip.
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