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Abstract

Problem: Pregnancy represents a state of systemic immune activation that is pri-

marily driven by alterations in circulating innate immune cells. Recent studies have

suggested that cellular adaptive immune components, T cells and B cells, also undergo

changes throughout gestation. However, the phenotypes and functions of such adap-

tive immune cells are poorly understood. Herein, we utilized high-dimensional flow

cytometry and functional assays to characterizeT-cell andB-cell responses in pregnant

and non-pregnant women.

Methods: Peripheral blood mononuclear cells from pregnant (n = 20) and non-

pregnant (n = 25) women were used for phenotyping of T-cell and B-cell subsets.

T-cell proliferation andB-cell activationwere assessed by flow cytometry after in vitro

stimulation, and lymphocyte cytotoxicity was evaluated by using a cell-based assay.

Statistical comparisons were performedwith linear mixed-effects models.

Results:Pregnancywas associatedwithmodestly enhanced basal activation of periph-

eral CD4+ T cells. Both CD4+ and CD8+ T cells from pregnant women showed

increased activation-induced proliferation; yet, a reduced proportion of these cells

expressed activation markers compared to non-pregnant women. There were no

differences in peripheral lymphocyte cytotoxicity between study groups. A greater
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proportion of B cells from pregnant women displayed memory-like and activated

phenotypes, and such cells exhibited higher activation following stimulation.

Conclusion: Maternal circulating T cells and B cells display distinct responses dur-

ing pregnancy. The former may reflect the unique capacity of T cells to respond to

potential threatswithout undergoing aberrant activation, therebypreventing systemic

inflammatory responses that can lead to adverse perinatal consequences.
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1 INTRODUCTION

Pregnancy represents a state of mild intravascular inflammation that

can be broadly characterized by enhanced innate immune responses

to defend against pathogenic threats.1–3 Specifically, prior studies have

indicated that the maternal circulation contains increased numbers or

frequencies of activated and functional myeloid cells (i.e., monocytes

and granulocytes)4–11 as well as elevated concentrations of humoral

innate immune components such as complement.12–16 More recently,

the application of omics platforms to thematernal circulation provided

further evidence of innate immune activation and demonstrated a cor-

relation between alterations in innate immune-related processes and

advancing gestational age.17-22 Yet, these comprehensive studies also

hinted at systemic alterations in adaptive immune signatures, primar-

ily T cells, during pregnancy and, in particular, prior to the onset of

physiologic or pathologic labor.18–21,23,24 Such observations may have

clinical implications for themonitoring andpredictionof thepremature

onset of labor leading to preterm birth. Indeed, the aberrant activa-

tion of maternal T cells has also been associated with the pathogenesis

of preeclampsia.25–29 Furthermore, changes in B-cell phenotypes have

been reported in the periphery30 and at the maternal-fetal interface31

throughout gestation and in the pathology of preterm labor, respec-

tively. Therefore, the cellular responses driven by the adaptive limb of

immunity during pregnancy warrant further investigation.

The conventional belief is that circulating T cells are skewed

toward a Th2-like phenotype throughout gestation.32–37 Accordingly,

a number of clinical investigations noted that some autoimmune

disorders (e.g., multiple sclerosis and rheumatoid arthritis) are tem-

porarily alleviated during pregnancy.38–46 This suppression also seems

to extend to the maternal-fetal interface where multiple protective

mechanisms exist to prevent T-cell activation, such as exhaustion

or senescence,47–49 local silencing of T-cell chemotactic signals and

trafficking,50–52 and expansion of regulatory T cells.53–63 Impor-

tantly, single-cell RNA signatures derived from T cells infiltrating the

maternal-fetal interface can be tracked in the maternal circulation and

may serve as biomarkers for obstetrical disease.21,23,64 Hence, inves-

tigating the functional status of circulating T cells during pregnancy

may provide a window on the events taking place at the maternal-fetal

interface. Although a large body of research has focused on examin-

ing the phenotypes and functions of T cells and B cells throughout

gestation,3,31,65–68 little is known of the potential pregnancy-specific

functional differences in such adaptive immune cells. In the current

study, we utilized high-dimensional flow cytometry togetherwith func-

tional assays to characterize T-cell and B-cell cellular responses in the

periphery of pregnant and non-pregnant women.

2 METHODS

2.1 Human subjects and clinical specimens

Peripheral blood samples were collected from healthy pregnant and

non-pregnant women enrolled under research protocols at the Perina-

tology Research Branch, an intramural program of the Eunice Kennedy

Shriver National Institute of Child Health and Human Development

(NICHD), National Institutes of Health (NIH), U. S. Department of

Health and Human Services (DHHS), Wayne State University (Detroit,

MI, USA), and the Detroit Medical Center (Detroit, MI, USA). The

collection and use of biological specimens for research purposes

were approved by the Institutional Review Boards of Wayne State

University and the Detroit Medical Center. All patients provided writ-

ten informed consent prior to sample collection. The present study

included pregnant women (n = 20), predominantly African-American,

whose peripheral blood was collected in the third trimester prior

to the administration of any medication, with a median gestational

age of 39.1 weeks at sampling, prior to the onset of labor. The con-

trol study group comprised healthy non-pregnant women (n = 27) of

reproductive age from the same community.

2.2 Stimulation of T-cell proliferation

Peripheral blood was obtained by venipuncture and collected in Vacu-

tainer K3 EDTA tubes (BD Biosciences, San Jose, CA, USA). Periph-

eral blood mononuclear cells (PBMCs) were isolated by Lymphoprep

density gradient (Axis Shield, Oslo, Norway), permanufacturer instruc-

tions. Isolated PBMCs were centrifuged at 300 x g for 5 min and

resuspended in phosphate-buffered saline (PBS) at a density of 1×106

cells/mL. Next, PBMCs were stained with 1 μL/mL CellTrace Violet

dye (ThermoFisher Scientific, Life TechnologiesCorporation, Carlsbad,
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CA, USA) for 20 min at 37◦C. The staining reaction was quenched by

adding complete RPMI 1640 medium (Thermo Fisher Scientific, Life

Technologies Limited, Paisley, UK) [enriched with 5% human serum

(Sigma-Aldrich, St Louis, MO, USA) and 1% Penicillin-Streptomycin

(Thermo Fisher Scientific)] and by allowing the suspension to incubate

at room temperature (RT) for 2min. The PBMCswere then centrifuged

at 300 x g for 5 min, resuspended in complete RPMI 1640 medium,

and counted, using ViaStain AOPI Staining Solution (Nexcelom Bio-

science, Lawrence, MA, USA) and a Nexcelom Bioscience Cellometer

Auto 2000. An aliquot containing 1×106 cells was set aside for basal

(day 0) immunophenotyping. The remaining cell suspension volume

was divided into control and stimulated samples. Control suspensions

were treated with 55 μM 2-mercaptoethanol (Life Technologies Cor-

poration, Grand Island, NY, USA); stimulated solutions were treated

with 55 μM 2-mercaptoethanol, Dynabeads™ Human T-activator

CD3/CD28 (Thermo Fisher Scientific) at a ratio of 1:1 cells:beads and

with 2000 U/mL recombinant human IL-2 (BD Biosciences). Each sam-

ple was seeded in triplicate, for control and stimulated cells, at a

density of 1×105 cells per well in a 96-well U bottom plate. The plate

was incubated at 37◦Cwith 5%CO2 for six days.

2.3 T-cell phenotyping for basal and proliferated
samples

Following six days of incubation, PBMCs were collected, washed,

and resuspended in PBS. For basal immunophenotyping, 1×106 cells

were resuspended in PBS. Cell suspensions were incubated with

0.5 μL/mL Fixable Viability Stain 575 V (BD Biosciences) for 15 min

in the dark at RT. Next, PBMCs were washed and incubated with

extracellular fluorochrome-conjugated anti-humanmAbs (Supplemen-

tal Table 1) for 30 min in the dark at 4◦C. Cells were washed in

stain buffer (BD Biosciences), then fixed and permeabilized by using

the Foxp3/Transcription Factor Staining Buffer Set (Thermo Fisher

Scientific), per manufacturer instructions. Intranuclear staining was

performed with fluorochrome-conjugated anti-human mAbs (Supple-

mental Table 1), which were added to cell suspensions and then incu-

bated for 30min in the dark at 4◦C. Finally, cells were washed in Foxp3

Permeabilization Buffer (Thermo Fisher Scientific) and resuspended in

0.5mL of stain buffer for analysis by flow cytometry.

CountBright absolute counting beads (Thermo Fisher Scientific)

were added prior to analysis. Flow cytometry acquisition was per-

formed on aBDLSRFortessa flow cytometer, using FACSDiva software

version 6.0. The analysis was performed and the figures were created

by using FlowJo software version 10 (FlowJo, Ashland, OR, USA). T-

cell subsets were identified based on the gating strategy presented in

Supplemental Figure 1.

2.4 Peripheral lymphocyte cytotoxicity assay

TargetK-562 cells (ATCC,Manassas, VA,USA) –myelogenous leukemia

cells that lack MHC class I and II expression69–71 – were cultured in

complete RPMI 1640 medium [enriched with 10% fetal bovine serum

and 1% Penicillin-Streptomycin], collected, centrifuged at 300 x g for

5min, and resuspended inPBS.Next, cellswere incubatedwith1μL/mL

carboxyfluorescein diacetate succinimidyl ester (CFSE; Thermo Fisher

Scientific) at 37◦C with 5% CO2 for 20 min. To stop the reaction,

complete RPMI 1640mediumwas added and the suspensionwas incu-

bated at RT for 2 min. The cells were resuspended in complete RPMI

1640 medium and counted, using ViaStain AOPI Staining Solution and

a Nexcelom Bioscience Cellometer Auto 2000.

Peripheral blood was obtained by venipuncture and collected

in Vacutainer K3 EDTA tubes. PBMCs were isolated by Lympho-

prep density gradient, per manufacturer instructions. Target (K-562)

cells and PBMCs were mixed in sterile FACS tubes in the follow-

ing ratios (PBMCs:target cells): 0:1 6:1, 12:1, 25:1, and 50:1. The

resulting cell suspensions were centrifuged at 300 x g for 5 min,

resuspended in complete RPMI 1640 culture medium, and trans-

ferred to a 96-well U-bottom plate. The plate was centrifuged at

100 x g for 2 min and then incubated at 37◦C with 5% CO2 for

4 h. Following incubation, cell suspensions were transferred to FACS

tubes, diluted with PBS, and centrifuged at 300 x g for 5 min. Cell

pellets were resuspended in PBS and incubated with 1 μL/mL 7-

aminoactinomycin D (7-AAD; Thermo Fisher Scientific) in the dark

at 4◦C for 15 min. Cell suspensions were centrifuged at 300 x g for

5 min and resuspended in 0.5 mL of stain buffer for analysis by flow

cytometry.

CountBright absolute counting beads (Thermo Fisher Scientific)

were added prior to analysis. Flow cytometry acquisition was per-

formed on a BD LSRFortessa flow cytometer, using FACSDiva soft-

ware version 6.0. Viable target cells were classified as CFSE+7AAD–,

while killed target cells were classified as CFSE+7AAD+. Viable and

dead lymphocytes were classified as CFSE–7AAD– and CFSE–7AAD+,

respectively. The percentage of killed target cells was calculated as

follows: # of CFSE+7AAD+ cells / (# of CFSE+7AAD+ cells + # of

CFSE+7AAD– cells). The analysis was performed and the figures were

created by using FlowJo software version 10.

2.5 B-cell phenotyping

PBMCs were isolated and counted as described above. An aliquot of

1×106 cells was used for phenotyping. The cells were incubated with

1.0 μL/mL Fixable Viability Stain 510(BDBiosciences) for 15min in the

dark at RT.Next, PBMCswerewashed and incubatedwith extracellular

fluorochrome-conjugated anti-humanmAbs (Supplemental Table 2) for

30 min in the dark at 4◦C. The cells were then washed once with stain

buffer and resuspended in 0.5 mL of stain buffer for analysis by flow

cytometry.

CountBright absolute counting beads were added prior to analy-

sis. Flow cytometry acquisition was performed on a BD LSRFortessa

flow cytometer, using FACSDiva software version 6.0. The analysis was

performed and the figures were created by using FlowJo software ver-

sion 10. B-cell subsets were identified based on the gating strategy

presented in Supplemental Figure 2.
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2.6 B-cell activation assay

PBMCs were isolated and counted as described above. For the control

and stimulated arms of theB-cell activation assay, PBMCswere seeded

in sterile FACS tubes with 2.5×105 cells. The control suspension

received no treatment; the stimulated suspension was treated with

10 μg/mL F (ab’) 2-goat anti-human IgG, IgM (H+L) (Functional grade,

Life TechnologiesCorporation,Carlsbad,CA,USA). The cellswere incu-

bated at 37◦C for 30 min. Next, an equivalent volume of Phosflow

Fix Buffer I (BD Biosciences) was added and the cells were incubated

at 37◦C for 10 min. Cells were washed twice with Permeabiliza-

tion Solution I (BD Biosciences), per manufacturer instructions. After

resuspension in Permeabilization Solution I, anti-human fluorophore-

conjugated mAb Phospho-BKT (Supplemental Table 1) was added and

incubated in the dark at 4◦C for 30min. After 15min, the fluorophore-

conjugated anti-human CD19 mAb (Supplemental Table 1) was added,

and the incubation was resumed under the same conditions. Next, the

cells were washed twice with Permeabilization Solution I. Finally, the

cell pelletswere resuspended in0.5mL stain buffer for analysis via flow

cytometry.

CountBright absolute counting beads were added prior to analysis.

Flow cytometry acquisition was performed on a BD LSRFortessa flow

cytometer, using FACSDiva software version 6.0. The analysis was per-

formed and the figures were created by using FlowJo software version

10. Fold change in B-cell activation was calculated as follows: [Stim-

ulated (MFImAb – MFIIsotype)] / [Control (MFImAb – MFIIsotype)]. Any

fold changes < 1 were considered to be “no change” and assigned a

value of 1.0, which did not impact the significance of the results. B-cell

activation was determined based on the gating strategy presented in

Supplemental Figure 3.

2.7 Statistical analysis

Statistical analyses for baseline T-cell phenotyping, stimulated and

control proliferated T-cell phenotyping, and B-cell phenotyping were

performed by using the R statistical programming language. Linear

mixed-effects models72 were fit for the comparison of stimulated

and control T-cell flow cytometry data and between study groups

to account for repeated measurements. The data obtained by flow

cytometry were modeled as proportions. For T-cell baseline (day 0)

phenotyping and B-cell phenotyping, the proportion of cells with a

given phenotype was compared between pregnant and non-pregnant

study groups, and a p-value < .05 was considered statistically signifi-

cant. For T-cell proliferated (day 6) phenotyping, involving interactions

between control and stimulated samples within both study groups, a

false discovery rate-adjusted p-value73 (q-value) < .05 was considered

statistically significant. For heatmap representations of immunophe-

notyping results, flow cytometry data were transformed into Z-scores

by subtracting the mean and dividing by the standard deviation. Of

note, the heatmaps were generated to display the proportion of cells

with a given phenotype in pregnant vs. non-pregnant women, which

included control and stimulated samples for the T-cell proliferation

analyses. Phenotypes listed in the heatmap were thus not statistically

compared to one another. Statistical analyses for PBMC cytotoxicity

and B-cell activation were performed by using the Shapiro-Wilk test

for normality followed by the Mann-Whitney U-test and GraphPad

Prism software version 9.0.0 for Windows (GraphPad Software, San

Diego, CA, USA, www.graphpad.com). A p-value < .05 was considered

statistically significant.

3 RESULTS

3.1 Pregnancy is associated with a modest
increase in activated CD4+ T cells

Pregnancy includes the selective modulation of the adaptive immune

system at the maternal-fetal interface19,48,49,52,62,74–78 and in the

periphery.18,20,21,23,79 Therefore, we first sought to uncover differ-

ences in the systemic baseline (day 0) T-cell subset composition as

a function of pregnancy. PBMCs were isolated from non-pregnant

and pregnant women for phenotyping via flow cytometry (Figure 1A),

using the gating strategy presented in Supplemental Figure 1. The rel-

ative proportions of CD4+ and CD8+ T cells with the characterized

phenotypes in each patient are presented in Figure 1B. While there

were no pregnancy-specific differences in the proportions of total

CD4+ or CD8+ T cells, pregnancy was associated with a significantly

higher basal proportion of CD4+ T cells expressing the early activation

marker, CD69 (Figure 1C),80,81 although the effect size was small. In

addition, a significantly higher proportion of cells co-expressed CD69

and the co-inhibitory receptor PD-182–84 among CD4+ T cells isolated

from pregnant compared to non-pregnant women (Figure 1D). The co-

expression of CD69 and PD-1 is likely to be indicative of prolonged

T-cell activation.85,86 These data suggest that pregnancy is associated

with a modest enhancement in the baseline activation of peripheral

CD4+ T cells.

3.2 Circulating T cells display a
pregnancy-specific increase in proliferative capacity
with diminished susceptibility to activation

Given the baseline differences in peripheral T-cell activation between

non-pregnant and pregnantwomen,wenext consideredwhether preg-

nancy was associated with altered function, including proliferative

capacity, of such cells. Accordingly, PBMCs isolated from pregnant and

non-pregnant women were stimulated with anti-CD3/anti-CD28 and

rhIL-2 to assess pregnancy-specific differences in CD4+ (Figure 2A)

and CD8+ (Figure 3A) T-cell proliferation. As expected, significant

changes in subset proportions (Figure 2B&3B) and absolute numbers

(Figure 2C&3C) were observed in T cells derived from non-pregnant

and pregnantwomen following stimulation (ExtendedDataset 1); here,

we focused on the phenotypic and functional differences between

study groups. Both CD4+ (Figure 2C) and CD8+ T cells (Figure 3C)

had a significantly higher proliferative capacity, as determined by

http://www.graphpad.com
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F IGURE 1 Comparison of basal T-cell subset composition between non-pregnant and pregnant women. (A) Peripheral blood samples were
collected from non-pregnant (n= 25, indicated in blue) and pregnant (n= 18, indicated in red) women to isolate peripheral bloodmononuclear
cells (PBMCs) for T-cell phenotyping at baseline (day 0). (B) Heatmap representation showing the basal proportion of T cells with various
immunophenotypes from non-pregnant (indicated in blue) and pregnant (indicated in red) women. The color key indicates the relative proportion
of T cells with the various immunophenotypes considered, which were not compared among each other. (C) Proportion of CD4+ T cells expressing
CD69 and (D) co-expressing CD69 and PD-1 at baseline from non-pregnant (blue circles) and pregnant (red circles) women. Data are presented as
box-and-whisker plots wheremidlines indicatemedians, boxes indicate interquartile ranges, andwhiskers indicateminimum/maximum ranges.
*p< .05
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F IGURE 2 Comparison of CD4+ T-cell proliferation between non-pregnant and pregnant women. (A) Peripheral blood samples were collected
from non-pregnant (n= 25, indicated in blue) and pregnant (n= 20, indicated in red) women to isolate peripheral bloodmononuclear cells (PBMCs)
for in vitro stimulation with anti-CD3/anti-CD28 and recombinant human IL-2. Cells were cultured for 6 days prior to phenotyping. Controls were
cultured in parallel without stimulation. (B) Heatmap representation showing the proportion of CD4+ T cells with various immunophenotypes
from non-pregnant (indicated in blue) and pregnant (indicated in red) womenwith (stimulated) or without (control) stimulation. The color key
indicates the relative proportion of T cells with the various immunophenotypes considered, which were not compared among each other. (C)
Absolute number of CD4+ T cells in control and proliferated samples from non-pregnant (blue symbols) and pregnant (red symbols) women. (D-F)
Proportion of proliferated CD4+ T cells with the phenotype of (D) CD4+CD69+, (E) CD4+PD-1+, and (F) CD4+CD69+PD-1+. Data are presented
as box-and-whisker plots wheremidlines indicatemedians, boxes indicate interquartile ranges, and whiskers indicateminimum/maximum ranges.
Each dot represents themean of three biological replicates per sample. Grey lines and asterisks represent within-group differences between
control and stimulated samples (i.e., pregnant control vs. pregnant stimulated), while black lines and asterisks represent significant differences
between groups after stimulation (i.e., pregnant stimulated vs. non-pregnant stimulated). *p< .05; ***p< .001
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F IGURE 3 Comparison of CD8+ T-cell proliferation between non-pregnant and pregnant women. (A) Peripheral blood samples were collected
from non-pregnant (n= 25, indicated in blue) and pregnant (n= 20, indicated in red) women to isolate peripheral bloodmononuclear cells (PBMCs)
for in vitro stimulation with anti-CD3/anti-CD28 and recombinant human IL-2. Cells were cultured for 6 days prior to phenotyping. Controls were
cultured in parallel without stimulation. (B) Heatmap representation showing the proportion of CD8+ T cells with various immunophenotypes
from non-pregnant (indicated in blue) and pregnant (indicated in red) womenwith (stimulated) or without (control) stimulation. The color key
indicates the relative proportion of T cells with the various immunophenotypes considered, which were not compared among each other. (C)
Absolute number of CD8+ T cells in control and proliferated samples from non-pregnant (blue symbols) and pregnant (red symbols) women. (D-G)
Proportion of proliferated CD8+ T cells with the phenotype of (D) CD8+CD69+, (E) CD8+PD-1+, (F) CD4+CD69+PD-1+, and (G)
CD8+CD45RA+CCR7– (terminal effector memory). Data are presented as box-and-whisker plots wheremidlines indicatemedians, boxes indicate
interquartile ranges, andwhiskers indicateminimum/maximum ranges. Each dot represents themean of three biological replicates per sample.
Grey lines and asterisks represent within-group differences between control and stimulated samples (i.e., pregnant control vs. pregnant
stimulated), while black lines and asterisks represent significant differences between groups after stimulation (i.e., pregnant stimulated vs.
non-pregnant stimulated). *p< .05; **p< .01; ***p< .001
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absolute cell counts, in pregnant compared to non-pregnant women.

Next, we analyzed the proliferated CD4+ (Figure 2B) and CD8+

(Figure 3B) T-cell subset composition of the two study groups relative

to controls that were cultured under identical conditionswithout stim-

ulation. Strikingly, we found that the proportion of T cells expressing

the activation marker CD69 was significantly reduced in stimulated

CD4+ (Figure 2D) and CD8+ (Figure 3D) T cells from pregnant com-

pared to non-pregnant women. Furthermore, a significantly decreased

proportion of CD4+ (Figure 2E) andCD8+ (Figure 3E) T cells expressed

PD-1 in pregnant compared to non-pregnant women following stim-

ulation. The proportion of cells co-expressing CD69 and PD-1 was

also found to be significantly lower in CD4+ (Figure 2F) and CD8+

(Figure 3F) T cells from pregnant women. Finally, a significantly

lower proportion of CD8+ terminally differentiated effector memory

T cells (CD45RA+CCR7–), characterized by low proliferative capacity

and rapid effector function,87,88 was observed in pregnant compared

to non-pregnant women (Figure 3G). Taken together, these results

demonstrate that CD4+ and CD8+ T cells isolated from pregnant

women have an increased capacity for proliferation; however, when

proliferated, pregnancy-derived T cells show a reduced proportion of

cells expressing CD69 and PD-1, suggesting that pregnancymodulates

T-cell responses.

3.3 Pregnancy does not alter peripheral
lymphocyte cytotoxicity

Having observed pregnancy-specific differences in lymphocyte acti-

vation status, we wondered whether the cytotoxicity of circulating

lymphocytes would differ based on pregnancy status. Cytotoxic lym-

phocytes directly kill target cells through the release of granules, which

represents an important mechanism of defense against viruses and

intracellular bacteria.89,90 Hence, we isolated PBMCs from pregnant

and non-pregnant women and incubated them with CFSE-labeled tar-

get cells (Figure 4A). Flow cytometry was used to quantify the number

of killed target cells (Figure 4B). No significant differences were found

between the pregnant and non-pregnant study groups among the var-

ious ratios of PBMCs:target cells evaluated (Figure 4C), indicating that

peripheral lymphocytes from both study groups were able to display

comparable cytotoxic activity.

3.4 B-cell activation following IgM/IgG
stimulation is increased in pregnancy

After evaluating functional differences in peripheral T cells in the con-

text of pregnancy, we next focused on the second cellular component

of adaptive immunity, B cells.65 During gestation, B cells are neces-

sary for immune regulation and the promotion of humoral immunity,65

including the production of protective antibodies specific for pater-

nal antigens.91,92 However, the pregnancy-specific cellular responses

exhibited by circulating B cells require further investigation. Hence,

PBMCswere isolated frompregnant and non-pregnantwomen to eval-

uate differences in B-cell phenotypes as well as B-cell functionality

(Figure 5A). First, flow cytometry was used to evaluate differences in

B-cell phenotypes following the gating strategy presented in Supple-

mental Figure 2. Several B-cell subsets displayed distinct modulation

in pregnant compared to non-pregnant women (Figure 5B). The pro-

portion of memory-like CD27+IgG+ B cells (Figure 5C) was found

to be elevated during pregnancy, as was the proportion of B cells

with an activated CD38+CD24– phenotype (Figure 5D). By contrast,

the proportion of B cells displaying a CD40+CD138– phenotype was

increased in non-pregnant women compared to the pregnant study

group (Figure 5E). Next, PBMCs were stimulated with anti-human IgM

and anti-human IgG, and then flow cytometry was utilized to quan-

tify downstreamB-cell receptor activation (Figure 5F). Consistentwith

the increased proportion of B cells displaying a CD38+ activated phe-

notype, we found that there was a significantly higher fold-change in

activation following anti-human IgM/IgG stimulation byB cells isolated

from pregnant compared to non-pregnant women (Figure 5G). This

finding suggests that pregnancy enhances circulating B-cell responses.

4 DISCUSSION

Herein, we evaluated the phenotypes and functions of peripheral T

and B cells in pregnant compared to non-pregnant women, as these

adaptive immune cells play a critical role in maintaining maternal-fetal

tolerance.62,93–98 First, we showed that pregnancy is associated with

modestly enhanced basal activation of peripheral CD4+ T cells. Inter-

estingly, both CD4+ and CD8+ T cells derived from pregnant women

showed increased activation-induced proliferation; yet, a reduced pro-

portion of these cells expressed markers of activation compared to

T cells from non-pregnant women. No differences were observed in

peripheral lymphocyte cytotoxicity between the study groups. Finally,

a greater proportion of B cells from pregnant women displayed

memory-like and activated phenotypes, and such cells exhibited higher

activation following stimulation. Taken together, these data indicate

generalized T- and B-cell activation in pregnancy, with a restricted T-

cell response to stimulation that may foster systemic maternal-fetal

tolerance.

We observed a pregnancy-specific increase in the basal proportion

of activated peripheral CD4+ T cells, as indicated by the expres-

sion of the early activation marker CD69. In line with this finding, a

higher baseline proportion of CD4+CD69+, but not CD8+CD69+, T

cells has been reported in C57BL/6 mice in late pregnancy relative

to non-pregnant mice.99 We also detected a modest pregnancy-

specific increase in the proportion of peripheral CD4+ T cells co-

expressing CD69 and PD-1, of which the latter is typically regarded

as a co-inhibitory receptor.82,100,101 Yet, PD-1 expression is upreg-

ulated within 24 - 48 hours of T-cell activation,85 potentially as a

mechanism to limit excessive responses and tissue damage.86 Thus,

the co-expression of CD69 and PD-1 likely indicates prolonged

T-cell activation, as would be expected following chronic antigen

exposure. Considering the presence of fetal antigens in the mater-

nal circulation,53,102,103 it is tempting to suggest that the increased



DEMERY-POULOS ET AL. 9 of 16

F IGURE 4 Comparison of lymphocyte cytotoxicity between non-pregnant and pregnant women. (A) Peripheral blood samples were collected
from non-pregnant (n= 21, indicated in blue) and pregnant (n= 17–20, indicated in red) women to isolate peripheral bloodmononuclear cells
(PBMCs) for in vitro culturing with CFSE-labeled target cells. (B) Flow cytometry gating strategy used to identify killed target cells (CFSE+7AAD+),
live target cells (CFSE+7AAD–), and live PBMCs (CFSE–7AAD–). (C) Percentage of target cells killed (calculated as [CFSE+7AAD+ / (CFSE+7AAD+

+CFSE+7AAD–) * 100]) among ratios of PBMCs:target cells ranging from 0:1 to 50:1 in non-pregnant (blue circles) and pregnant (red circles)
women. Data are presented as box-and-whisker plots wheremidlines indicatemedians, boxes indicate interquartile ranges, andwhiskers indicate
minimum/maximum ranges. Trend lines for each study group are included.

proportion of CD4+CD69+PD-1+ T cells in pregnant women may

reflect repeated exposure to such fetal antigens.102–105 Indeed, prior

studies in mice have demonstrated that innate immune cells in the

periphery interact with fetal antigens throughout pregnancy, which

was replicated in vitro by using human innate immune cells from

the second and third trimesters.103 Furthermore, cell-free fetal DNA

(cffDNA) concentrations have been shown to increase in the maternal

circulation in late gestation, which coincides with a pro-inflammatory

shift in maternal immunity prior to parturition.106–109 Specifically,

cffDNA has been demonstrated to stimulate a monocyte response in

the third trimester capable of activating bystander T cells.109 More-

over, phenotyping and omics studies have provided evidence of T-cell

activation that occurs during labor,19,21,23,110 and T-cell responses in

late pregnancy have been associated with the increased expression

of activation markers.111–113 In support of these concepts, the sam-

ples herein were obtained from pregnant women in late gestation and

close to delivery. Of note, parity information was not available for the

control/non-pregnant study participants, so analyses accounting for

both pregnancy status and parity were not performed. Collectively,

these data suggest the possibility that the presence of or increases in

the circulating concentrations of fetal antigens and cffDNA may con-

tribute to themodest increase in basal activation of peripheral CD4+ T

cells observed in pregnancy.

Herein, we also found that CD4+ and CD8+ T cells from pregnant

women displayed greater proliferation in response to in vitro stimula-

tion than those from non-pregnant women. In support of this finding,
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F IGURE 5 Comparison of B-cell subset composition and activation between non-pregnant and pregnant women. (A) Peripheral blood samples
were collected from non-pregnant [n= 20 (phenotyping) - 25 (activation), indicated in blue] and pregnant (n= 19, indicated in red) women to
evaluate B-cell phenotypes and activation following anti-human IgM/IgG stimulation. (B) Heatmap representation showing the basal proportion of
B cells with various immunophenotypes from non-pregnant (indicated in blue) and pregnant (indicated in red) women. The color key indicates the
relative proportion of B cells with the various immunophenotypes considered, which were not compared among each other. (C-E) Proportion of B
cells with the phenotype (C) CD19+CD20+CD27+IgG+, (D) CD19+CD20+CD38+CD24–, and (E) CD19+CD20+CD40+CD138– from
non-pregnant (red circles) and pregnant (blue circles) women. (F) Representative flow cytometry gating strategy for B-cell activation assay: viable
B cells were identified as CD19+, and then B-cell activation in control (open histograms) and stimulated (filled histograms) samples from
non-pregnant (indicated in blue) and pregnant (indicated in red) womenwas determined as described in theMethods. (G) Fold change in B-cell
activation in non-pregnant (blue triangles) and pregnant (red triangles) samples after anti-human IgM/IgG stimulation, calculated as the adjusted
MFI of IgM/IgG-stimulated samples divided by the adjustedMFI of control samples. Fold changes< 1were considered as “no change” and assigned
a value of 1. Data are presented as box-and-whisker plots wheremidlines indicatemedians, boxes indicate interquartile ranges, and whiskers
indicateminimum/maximum ranges. *p< .05; **p< .01
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increased proliferation of CD4+ andCD8+ T cells as a function of preg-

nancy has also been reported in mice.114 One of the most prominent

findings in the current studywas that, by contrastwith the baseline dif-

ferences in T-cell subset composition, the proportions of proliferated

CD4+ and CD8+ T-cell populations expressing the activation mark-

ers CD69 and PD-1 were reduced in pregnant women. In mice, an

increase in the proliferation of CD4+ and CD8+ pregnancy-derived

T cells following the blockade of PD-1 has been reported114; there-

fore, the reduced proportion of peripheral T cells expressing PD-1

in pregnant women may have contributed to the higher prolifera-

tion of pregnancy-derived CD4+ and CD8+ T cells observed in this

study. PD-1 is well-studied for its role in cancer and the therapeu-

tic potential of inhibiting this pathway,115,116 and the co-expression

of PD-1 and CD69 has been reported in activated CD4+ and CD8+

T117 cells and in NK118 cells isolated from cancer patients. Of note,

CD69 has also been demonstrated to play a role in immune119,120 and

metabolic121,122 regulation, indicating it may be more than a marker

of activation.123 Yet, additional experiments are needed to define the

functional implications of this phenotype in the context of pregnancy.

In this regard, increased expression of CD69 by peripheral T cells

has been described in patients with a history of recurrent sponta-

neous abortion,124,125 and the basal and stimulated CD69 expression

was higher in women with miscarriage than in those with normal

pregnancy.125 Furthermore, increased CD69 expression by peripheral

CD8+ Tcells hasbeen reported inpatientswith cardiac126 and renal127

allograft rejection, and thus proposed as a biomarker for transplant

rejection. Together, these studies suggest that the strong upregula-

tion of this activation marker in response to a stimulus can indicate

adverse consequences for pregnancy. Indeed, the in vivo activation

of T cells with an anti-CD3ε antibody in late and mid pregnancy has

been shown to cause systemic inflammation and preterm labor and

birth19 as well as pregnancy loss (Gomez-Lopez et al., unpublished

data), respectively. In this murine model, the systemic inflammatory

response also extended to the amniotic cavity and resulted in fetal

growth restriction,19 indicating that the systemic over-activation of

maternal T cells in pregnancy can be detrimental to the fetus. Thus,

the lower proportion of pregnancy-derived CD69+PD-1+ peripheral

T cells following stimulation observed herein may indicate a higher

threshold for T-cell activation as a mechanism to preserve systemic

immune homeostasis.

In addition to the protectivemechanism proposed above, the dimin-

ished activation of circulating maternal T cells observed in the current

study may also allow them to retain memory and proliferative func-

tions for a longer duration.49,128 This concept is in line with our finding

that a lower proportion of terminally differentiated effector memory

cells was observed in proliferated T cells from pregnant compared to

non-pregnant women. Terminally differentiated CD8+ effector mem-

ory T cells display greater effector functions but lower memory and

proliferative capabilities and are considered to be short-lived.129–132

The reduced proportion of T cells expressing activation and terminal

effector memory phenotypes following stimulation may reflect a more

stringent use of effector functions by T cells during pregnancy. That is,

we observed fewer T cells to be activated or terminally differentiated

following stimulation in the context of pregnancy, which could reflect

a diminished tendency to display effector functions by this peripheral

T-cell population.

In line with the above concept, it is reasonable to propose that

maternal peripheral T-cell responses are controlled in an antigen-

specific manner,67 which could be a useful feature for avoiding unnec-

essary T-cell activation that could adversely affect pregnancy. Herein,

we utilized a form of T-cell stimulation that bypasses antigen recogni-

tion to directly stimulate the T-cell and costimulatory receptors. Yet,

prior in vitro studies evaluating the response to influenza A viral stimu-

lation in PBMCs have demonstrated a pregnancy-specific attenuation

of the release of pro-inflammatory cytokines such as IFNα133,134 and

IL-2.134 Futhermore, we have recently shown a reduction in the pro-

portions of pro-inflammatory T-cell subsets, such as Th1 and Tc17, in

pregnant women with asymptomatic SARS-CoV-2 infection relative to

healthy controls.135 On the other hand, in vitro stimulation of PBMCs

from pregnant women with SARS-CoV-2 proteins results in enhanced

T-cell activation 158. Taken together, these data suggest that stimula-

tion with antigens of differing nature/pathogenicity can elicit distinct

T-cell responses in thematernal circulation.

In this study, we observed comparable cytotoxic activity by PBMCs

from pregnant and non-pregnant women, as reported previously.136 In

the periphery, both T and NK cells are capable of cytotoxic activity,137

and T cells have been reported to be more prevalent in the maternal

periphery.138 However, the assay used herein relies on C-type lectin-

like receptor NKG2D-mediated cytotoxicity139; although the CD8+ T

and NK cells express this activation receptor,140 NKG2D signaling in

isolation is only sufficient to activate NK cells, as CD8+ T cells require

simultaneous stimulation of the T-cell receptor and by cytokines.139

Despite this limitation, the data indicate comparable peripheral lym-

phocyte cytotoxicity upon exposure to non-self-antigens between

pregnant and non-pregnant women.

While a largebodyofworkhas considered the roleofT cells in estab-

lishing and maintaining maternal-fetal tolerance, the second cellular

component of adaptive immunity – B cells – is also critical to estab-

lishing and maintaining tolerance throughout gestation.31,65,92,141,142

Prior studies have demonstrated that IgG immunoglobulins contained

in maternal serum prevent maternal lymphocytes from mounting a

cytotoxic response against cultured trophoblasts.91,143 Indeed, spon-

taneous recurrent abortions are characterized by a lack of protective

maternal antibodies directed toward paternal HLA antigens.144–147

Protective antibodies bind their antigens with high affinity but are

unable to initiate downstream immune responses such as comple-

ment activation and cytotoxicity.148 By contrast, natural autoanti-

bodies, produced by B1a cells,65,149,150 are associated with a range

of obstetrical complications that includesintrauterine fetal demise

and preeclampsia.151–154 Accordingly, the circulating proportion of

B1, but not B2, cells has been reported to decrease throughout

gestation,30 and B-cell subset composition at the maternal-fetal inter-

face is altered by the process of labor, preterm birth, or chronic

histologic chorioamnionitis.31 Herein, we considered alterations in

peripheral B-cell subset composition as a function of pregnancy itself

and reported increased frequencies of memory-like CD27+IgG+ B

cells and activated CD38+CD24– B cells in pregnant women. Notably,

the latter finding is consistent with the observed greater responses
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to in vitro IgM/IgG stimulation in pregnancy-derived B cells, given

that CD38 ligation has been linked to Bruton tyrosine kinase (BTK)

phosphorylation.155 Highermedian peripheral concentrations of B-cell

activating factor (BAFF) have been reported in pregnant compared to

non-pregnantwomen, suggesting thatBAFFmayprimeBcells and thus

contribute to thepregnancy-specific increase in activationdisplayedby

these cells.156 In this study, we showed that peripheral B cells display

a heightened response to stimulation during gestation, which could

provide amore efficient cellular immune response to insults.

Collectively, the results presented herein indicate thatmaternal cir-

culating T cells and B cells display specific responses during pregnancy.

Pregnancy-derived T cells show modestly higher basal activation and

greatly increased proliferative capacity; yet, such proliferated T cells

resist signs of prolonged activation displayed by their non-pregnant

counterparts. Furthermore, B cells isolated from pregnant women

display greater basal proportions of memory-like and activated phe-

notypes and exhibit higher activation following stimulation. These

findings show that maternal circulating T cells and B cells display dis-

tinct responses during pregnancy, suggesting that maternal peripheral

T cells are capable of responding to potential threats but are more

resistant to aberrant activation, thereby preventing a systemic inflam-

matory response that can lead to adverse perinatal consequences.
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