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ABSTRACT 61 

Problem: Pregnancy represents a state of systemic immune activation that is primarily driven 62 

by alterations in circulating innate immune cells. Recent studies have suggested that cellular 63 

adaptive immune components, T cells and B cells, also undergo changes throughout 64 

gestation. However, the phenotypes and functions of such adaptive immune cells are poorly 65 

understood. Herein, we utilized high-dimensional flow cytometry and functional assays to 66 

characterize T-cell and B-cell responses in pregnant and non-pregnant women.  67 

Methods: PBMCs from pregnant (n = 20) and non-pregnant (n = 25) women were used for 68 

phenotyping of T-cell and B-cell subsets. T-cell proliferation and B-cell activation were 69 

assessed by flow cytometry after in vitro stimulation, and lymphocyte cytotoxicity was 70 

evaluated using a cell-based assay. Statistical comparisons were performed using linear 71 

mixed effects models. 72 

Results: Pregnancy was associated with modestly enhanced basal activation of peripheral 73 

CD4
+
 T cells. Both CD4

+
 and CD8

+
 T cells from pregnant women showed increased 74 

activation-induced proliferation; yet, a reduced proportion of these cells expressed activation 75 

markers compared to non-pregnant women. There were no differences in peripheral 76 

lymphocyte cytotoxicity between study groups. A greater proportion of B cells from pregnant 77 

women displayed memory-like and activated phenotypes, and such cells exhibited higher 78 

activation following stimulation.  79 

Conclusions: Maternal circulating T cells and B cells display distinct responses during 80 

pregnancy. The former may reflect the unique capacity of T cells to respond to potential 81 

threats without undergoing aberrant activation, thereby preventing systemic inflammatory 82 

responses that can lead to adverse perinatal consequences. 83 

 84 
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1. INTRODUCTION 87 

 Pregnancy represents a state of mild intravascular inflammation that can be broadly 88 

characterized by enhanced innate immune responses to defend against pathogenic threats
1-3

. 89 

Specifically, prior studies have indicated that the maternal circulation contains increased 90 

numbers or frequencies of activated and functional myeloid cells (i.e., monocytes and 91 

granulocytes)
4-11

 as well as elevated concentrations of humoral innate immune components 92 

such as complement
12-16

. More recently, the application of omics platforms to the maternal 93 

circulation provided further evidence of innate immune activation and demonstrated 94 

correlation between alterations in innate immune-related processes and advancing gestational 95 

age
17-22

. Yet, these comprehensive studies also hinted at systemic alterations in adaptive 96 

immune signatures, primarily T cells, during pregnancy and in particular prior to the onset of 97 

physiologic or pathologic labor
18-21,23,24

. Such observations may have clinical implications for 98 

the monitoring and prediction of the premature onset of labor leading to preterm birth. 99 

Indeed, the aberrant activation of maternal T cells has also been associated with the 100 

pathogenesis of preeclampsia
25-29

. Furthermore, changes in B-cell phenotypes have been 101 

reported in the periphery
30

 and at the maternal-fetal interface
31

 throughout gestation and in 102 

the pathology of preterm labor, respectively. Therefore, the cellular responses driven by the 103 

adaptive limb of immunity during pregnancy warrant further investigation.  104 

The conventional belief is that circulating T cells are skewed towards a Th2-like 105 

phenotype throughout gestation
32-37

. Accordingly, a number of clinical investigations noted 106 

that some autoimmune disorders (e.g., multiple sclerosis and rheumatoid arthritis) are 107 

temporarily alleviated during pregnancy
38-46

. This suppression also seems to extend to the 108 

maternal-fetal interface, where multiple protective mechanisms exist to prevent T-cell 109 

activation such as exhaustion or senescence
47-49

, local silencing of T-cell chemotactic signals 110 

and trafficking
50-52

, and expansion of regulatory T cells
53-64

. Importantly, single-cell RNA 111 
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signatures derived from T cells infiltrating the maternal-fetal interface can be tracked in the 112 

maternal circulation and may serve as biomarkers for obstetrical disease
21,23,65

. Hence, 113 

investigating the functional status of circulating T cells during pregnancy may provide a 114 

window in the events taking place at the maternal-fetal interface. Although a large body of 115 

research has focused on examining the phenotypes and function of T cells and B cells 116 

throughout gestation
3,31,66-69

, little is known of the potential pregnancy-specific functional 117 

differences in such adaptive immune cells. In the current study, we utilized high-dimensional 118 

flow cytometry together with functional assays to characterize T-cell and B-cell cellular 119 

responses in the periphery of pregnant and non-pregnant women.  120 
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2. METHODS 121 

2.1 Human subjects and clinical specimens 122 

Peripheral blood samples were collected from healthy pregnant and non-pregnant women 123 

under research protocols at the Perinatology Research Branch, an intramural program of the 124 

Eunice Kennedy Shriver National Institute of Child Health and Human Development 125 

(NICHD), National Institutes of Health (NIH), U. S. Department of Health and Human 126 

Services (DHHS), Wayne State University (Detroit, MI, USA), and the Detroit Medical 127 

Center (Detroit, MI, USA). The collection and use of biological specimens for research 128 

purposes were approved by the Institutional Review Boards of Wayne State University and 129 

the Detroit Medical Center. All patients provided written informed consent prior to sample 130 

collection. The present study included pregnant women (n = 20), predominantly African-131 

American, whose peripheral blood was collected in the third trimester prior to the 132 

administration of any medication, with a median gestational age of 39.1 weeks at sampling, 133 

prior to the onset of labor. The control study group was comprised of healthy non-pregnant 134 

women (n = 27) of reproductive age from the same community.  135 

 136 

2.2 Stimulation of T-cell proliferation 137 

Peripheral blood was obtained by venipuncture and collected in Vacutainer K3 EDTA 138 

tubes (BD Biosciences, San Jose, CA, USA). Peripheral blood mononuclear cells (PBMCs) 139 

were isolated by Lymphoprep density gradient (Axis Shield, Oslo, Norway), per 140 

manufacturer instructions. Isolated PBMCs were centrifuged at 300 x g for 5 min and 141 

resuspended in phosphate-buffered saline (PBS) at a density of 1x10
6
 cells/mL. Next, PBMCs 142 

were stained with 1 µL/mL CellTrace™ Violet dye (Thermo Fisher Scientific, Life 143 

Technologies Corporation, Carlsbad, CA, USA) for 20 min at 37°C. The staining reaction 144 

was quenched by adding complete RPMI 1640 medium (Thermo Fisher Scientific, Life 145 
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Technologies Limited, Paisley, UK) [enriched with 5% human serum (Sigma-Aldrich, St 146 

Louis, MO, USA) and 1% Penicillin-Streptomycin (Thermo Fisher Scientific)] and allowing 147 

the suspension to incubate at room temperature (RT) for 2 min. The PBMCs were then 148 

centrifuged at 300 x g for 5 min, resuspended in complete RPMI 1640 medium, and counted 149 

using ViaStain AOPI Staining Solution (Nexcelom Bioscience, Lawrence, MA, USA) and a 150 

Nexcelom Bioscience Cellometer Auto 2000. An aliquot containing 1 x 10
6
 cells was set 151 

aside for basal (day 0) immunophenotyping. The remaining cell suspension volume was 152 

divided into control and stimulated samples. Control suspensions were treated with 55µM 2-153 

mercaptoethanol (Life Technologies Corporation, Grand Island, NY, USA); stimulated 154 

solutions were treated with 55µM 2-mercaptoethanol, Dynabeads™ Human T-activator 155 

CD3/CD28 (Thermo Fisher Scientific) at a ratio of 1:1 cells:beads, and 2000 U/mL 156 

recombinant human IL-2 (BD Biosciences). Each sample was seeded in triplicate, for both 157 

control and stimulated cells, at a density of 1 x 10
5
 cells per well in a 96-well U bottom plate. 158 

The plate was incubated at 37°C with 5% CO2 for six days. 159 

2.3 T-cell phenotyping for basal and proliferated samples 160 

Following six days of incubation, PBMCs were collected, washed, and resuspended in 161 

PBS. For basal immunophenotyping, 1 x 10
6 

cells were resuspended in PBS. Cell suspensions 162 

were incubated with 0.5 µL/mL Fixable Viability Stain 575V (BD Biosciences) for 15 min in 163 

the dark at RT. Next, PBMCs were washed and incubated with extracellular fluorochrome-164 

conjugated anti-human mAbs (Supplemental Table 1) for 30 min in the dark at 4°C. Cells 165 

were washed in stain buffer (BD Biosciences), then fixed and permeabilized using the 166 

Foxp3/Transcription Factor Staining Buffer Set (Thermo Fisher Scientific), per manufacturer 167 

instructions. Intranuclear staining was performed with fluorochrome-conjugated anti-human 168 

mAbs (Supplemental Table 1), which were added to cell suspensions and then incubated for 169 

30 min in the dark at 4°C. Finally, cells were washed in Foxp3 Permeabilization Buffer 170 
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(Thermo Fisher Scientific) and resuspended in 0.5 mL of stain buffer for analysis by flow 171 

cytometry.  172 

CountBright absolute counting beads (Thermo Fisher Scientific) were added prior to 173 

analysis. Flow cytometry acquisition was performed on a BD LSRFortessa flow cytometer 174 

using FACSDiva software version 6.0. The analysis and figures were performed and created 175 

using FlowJo software version 10 (FlowJo, Ashland, OR, USA). T cell subsets were 176 

identified based on the gating strategy presented in Supplemental Fig. 1.  177 

 178 

2.4 Peripheral lymphocyte cytotoxicity assay 179 

 Target K-562 cells (ATCC, Manassas, VA, USA) – myelogenous leukemia cells that 180 

lack MHC class I and II expression
70-72

 – were cultured in complete RPMI 1640 medium 181 

[enriched with 10% fetal bovine serum and 1% Penicillin-Streptomycin], collected, 182 

centrifuged at 300 x g for 5 min, and resuspended in PBS. Next, cells were incubated with 1 183 

µL/mL carboxyfluorescein diacetate succinimidyl ester (CFSE; Thermo Fisher Scientific) at 184 

37°C with 5% CO2 for 20 min. To stop the reaction, complete RPMI 1640 medium was 185 

added and the suspension was incubated at RT for 2 min. The cells were resuspended in 186 

complete RPMI 1640 medium and counted using ViaStain AOPI Staining Solution and a 187 

Nexcelom Bioscience Cellometer Auto 2000. 188 

 Peripheral blood was obtained by venipuncture and collected in Vacutainer K3 EDTA 189 

tubes. PBMCs were isolated by Lymphoprep density gradient, per manufacturer instructions. 190 

Target (K-562) cells and PBMCs were mixed in sterile FACS tubes in the following ratios 191 

(PBMCs:target cells): 0:1 6:1, 12:1, 25:1, and 50:1. The resulting cell suspensions were 192 

centrifuged at 300 x g for 5 min, resuspended in complete RPMI 1640 culture medium, and 193 

transferred to a 96-well U-bottom plate. The plate was centrifuged at 100 x g for 2 min and 194 

then incubated at 37°C with 5% CO2 for 4 h. Following incubation, cell suspensions were 195 
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transferred to FACS tubes, diluted with PBS, and centrifuged at 300 x g for 5 min. Cell 196 

pellets were resuspended in PBS and incubated with 1 µL/mL 7-aminoactinomycin D (7-197 

AAD; Thermo Fisher Scientific) in the dark at 4°C for 15 min. Cell suspensions were 198 

centrifuged at 300 x g for 5 min and resuspended in 0.5 mL of stain buffer for analysis by 199 

flow cytometry. 200 

CountBright absolute counting beads (Thermo Fisher Scientific) were added prior to 201 

analysis. Flow cytometry acquisition was performed on a BD LSRFortessa flow cytometer 202 

using FACSDiva software version 6.0. Viable target cells were classified as CFSE
+
7AAD

-
, 203 

while killed target cells were CFSE
+
7AAD

+
. Viable and dead lymphocytes were classified as 204 

CFSE
-
7AAD

-
 and CFSE

-
7AAD

+
, respectively. The percentage of killed target cells was 205 

calculated as follows: # of CFSE
+
7AAD

+ 
cells / (# of CFSE

+
7AAD

+
 cells + # of 206 

CFSE
+
7AAD

- 
cells). The analysis and figures were performed and created using FlowJo 207 

software version 10.  208 

 209 

2.5 B-cell phenotyping 210 

PBMCs were isolated and counted as described above. An aliquot of 1 x 10
6
 cells was 211 

used for phenotyping. The cells were incubated with 1.0 µL/mL Fixable Viability Stain 510 212 

(BD Biosciences) for 15 min in the dark at RT. Next, PBMCs were washed and incubated 213 

with extracellular fluorochrome-conjugated anti-human mAbs (Supplemental Table 2) for 30 214 

min in the dark at 4°C. The cells were then washed once with stain buffer and resuspended in 215 

0.5 mL of stain buffer for analysis by flow cytometry. 216 

CountBright absolute counting beads were added prior to analysis. Flow cytometry 217 

acquisition was performed on a BD LSRFortessa flow cytometer using FACSDiva software 218 

version 6.0. The analysis and figures were performed and created using FlowJo software 219 
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version 10. B-cell subsets were identified based on the gating strategy presented in 220 

Supplemental Fig. 2.  221 

 222 

2.6 B-cell activation assay 223 

PBMCs were isolated and counted as described above. For both control and 224 

stimulated arms of the B-cell activation assay, PBMCs were seeded in sterile FACS tubes 225 

with 2.5 x 10
5 

cells. The control suspension received no treatment; the stimulated suspension 226 

was treated with 10 µg/mL F (ab’) 2-goat anti-human IgG, IgM (H
+
L) (Functional grade, Life 227 

Technologies Corporation, Carlsbad, CA, USA). The cells were incubated at 37°C for 30 228 

min. Next, an equivalent volume of Phosflow Fix Buffer I (BD Biosciences) was added and 229 

the cells were incubated at 37°C for 10 min. Cells were washed twice with Permeabilization 230 

Solution I (BD Biosciences), per manufacturer instructions. After resuspension in 231 

Permeabilization Solution I, anti-human fluorophore-conjugated mAb Phospho-BKT 232 

(Supplemental Table 1) was added and incubated in the dark at 4°C for 30 min. After 15 min, 233 

the fluorophore-conjugated anti-human CD19 mAb (Supplemental Table 1) was added, and 234 

the incubation was resumed under the same conditions. Next, the cells were washed twice 235 

with Permeabilization Solution I. Finally, the cell pellets were resuspended in 0.5 mL stain 236 

buffer for analysis via flow cytometry. 237 

 CountBright absolute counting beads were added prior to analysis. Flow cytometry 238 

acquisition was performed on a BD LSRFortessa flow cytometer using FACSDiva software 239 

version 6.0. The analysis and figures were performed and created using FlowJo software 240 

version 10. Fold change in B-cell activation was calculated as follows: [Stimulated (MFImAb – 241 

MFIIsotype)] / [Control (MFImAb – MFIIsotype)]. Any fold changes < 1 were considered to be “no 242 

change” and assigned a value of 1.0, which did not impact the significance of the results. B-243 

cell activation was determined based on the gating strategy presented in Supplemental Fig. 3. 244 
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 245 

2.7 Statistical analysis 246 

Statistical analyses for baseline T-cell phenotyping, stimulated and control 247 

proliferated T-cell phenotyping, and B-cell phenotyping were performed using the R 248 

statistical programming language. Linear mixed effects models
73

 were fit for the comparison 249 

of stimulated and control T-cell flow cytometry data and between study groups to account for 250 

repeated measurements. The data obtained by flow cytometry were modeled as proportions. 251 

For T-cell baseline (day 0) phenotyping and B-cell phenotyping, the proportion of cells with 252 

a given phenotype was compared between pregnant and non-pregnant study groups, and a p-253 

value <0.05 was considered statistically significant. For T-cell proliferated (day 6) 254 

phenotyping, involving interactions between control and stimulated samples within both 255 

study groups, a false discovery rate-adjusted p-value
74

 (q-value) <0.05 was considered 256 

statistically significant. For heatmap representations of immunophenotyping results, flow 257 

cytometry data were transformed into Z-scores by subtracting the mean and dividing by the 258 

standard deviation. Of note, the heatmaps were generated to display the proportion of cells 259 

with a given phenotype in pregnant vs. non-pregnant women, which included control and 260 

stimulated samples for the T-cell proliferation analyses. Phenotypes listed in the heatmap 261 

were thus not statistically compared among each other. Statistical analyses for PBMC 262 

cytotoxicity and B-cell activation were performed using the Shapiro-Wilk test for normality 263 

followed by the Mann-Whitney U-test and GraphPad Prism software version 9.0.0 for 264 

Windows (GraphPad Software, San Diego, CA, USA, www.graphpad.com). A p-value <0.05 265 

was considered statistically significant.  266 
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3. RESULTS 267 

3.1 Pregnancy is associated with a modest increase in activated CD4
+
 T cells 268 

Pregnancy includes the selective modulation of the adaptive immune system at the 269 

maternal-fetal interface
19,48,49,52,63,75-79

 and in the periphery
18,20,21,23,80

. Therefore, we first 270 

sought to uncover differences in systemic baseline (day 0) T-cell subset composition as a 271 

function of pregnancy. Peripheral blood mononuclear cells (PBMCs) were isolated from non-272 

pregnant and pregnant women for phenotyping via flow cytometry (Fig. 1A) using the gating 273 

strategy presented in Supplemental Fig. 1. The relative proportions of CD4
+
 and CD8

+
 T cells 274 

with the characterized phenotypes in each patient are presented in Fig. 1B. While there were 275 

no pregnancy-specific differences in the proportions of total CD4
+
 or CD8

+
 T cells, 276 

pregnancy was associated with a significantly higher basal proportion of CD4
+ 

T cells 277 

expressing the early activation marker, CD69 (Fig. 1C)
81,82

, although the effect size was 278 

small. In addition, a significantly higher proportion of cells co-expressed CD69 and the co-279 

inhibitory receptor, PD-1
83-85

, among CD4
+ 

T cells isolated from pregnant compared to non-280 

pregnant women (Fig. 1D). Importantly, the co-expression of CD69 and PD-1 is likely to be 281 

indicative of prolonged T-cell activation
86,87

. These data suggest that pregnancy is associated 282 

with a modest enhancement in the baseline activation of peripheral CD4
+
 T cells. 283 

 284 

3.2 Circulating T cells display a pregnancy-specific increase in proliferative capacity 285 

with diminished susceptibility to activation 286 

 Given the baseline differences in peripheral T-cell activation between non-pregnant 287 

and pregnant women, we next considered whether pregnancy was associated with altered 288 

function, including proliferative capacity, of such cells. Accordingly, PBMCs isolated from 289 

pregnant and non-pregnant women were stimulated with anti-CD3/anti-CD28 and rhIL-2 to 290 

assess pregnancy-specific differences in CD4
+
 (Fig. 2A) and CD8

+
 (Fig. 3A) T-cell 291 
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proliferation. As expected, significant changes in subset proportions (Fig. 2B&3B) and 292 

absolute numbers (Fig. 2C&3C) were observed in T cells derived from non-pregnant and 293 

pregnant women following stimulation (Extended Dataset 1); here, we focused on the 294 

phenotypic and functional differences between study groups. Both CD4
+
 (Fig. 2C) and CD8

+
 295 

T cells (Fig. 3C) had a significantly higher proliferative capacity, as determined by absolute 296 

cell counts, in pregnant compared to non-pregnant women. Next, we analyzed the 297 

proliferated CD4
+
 (Fig. 2B) and CD8

+
 (Fig. 3B) T-cell subset composition of the two study 298 

groups relative to controls that were cultured under identical conditions without stimulation. 299 

Strikingly, we found that the proportion of T cells expressing the activation marker CD69 300 

was significantly reduced in stimulated CD4
+
 (Fig. 2D) and CD8

+
 (Fig. 3D) T cells from 301 

pregnant compared to non-pregnant women. Furthermore, a significantly decreased 302 

proportion of CD4
+
 (Fig. 2E) and CD8

+
 (Fig. 3E) T cells expressed PD-1 in pregnant 303 

compared to non-pregnant women following stimulation. The proportion of cells co-304 

expressing CD69 and PD-1 was also found to be significantly lower in CD4
+
 (Fig. 2F) and 305 

CD8
+
 (Fig. 3F) T cells from pregnant women. Finally, a significantly lower proportion of 306 

CD8
+
 terminally differentiated effector memory T cells (CD45RA

+
CCR7

-
), which are 307 

characterized by low proliferative capacity and rapid effector function
88,89

, was observed in 308 

pregnant compared to non-pregnant women (Fig. 3G). Taken together, these results 309 

demonstrate that CD4
+
 and CD8

+
 T cells isolated from pregnant women have an increased 310 

capacity for proliferation; however, when proliferated, pregnancy-derived T cells show a 311 

reduced proportion of cells expressing CD69 and PD-1, suggesting that pregnancy modulates 312 

T-cell responses.  313 

 314 

3.3 Pregnancy does not alter peripheral lymphocyte cytotoxicity 315 
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Having observed pregnancy-specific differences in lymphocyte activation status, we 316 

wondered whether the cytotoxicity of circulating lymphocytes would differ based on 317 

pregnancy status. Cytotoxic lymphocytes directly kill target cells through the release of 318 

granules, which represents an important mechanism of defense against viruses and 319 

intracellular bacteria
90,91

. Hence, we isolated PBMCs from pregnant and non-pregnant 320 

women and incubated them with CFSE-labeled target cells (Fig. 4A). Flow cytometry was 321 

used to quantify the number of killed target cells (Fig. 4B). No significant differences were 322 

found between the pregnant and non-pregnant study groups among the various ratios of 323 

PBMCs:target cells evaluated (Fig. 4C), indicating that peripheral lymphocytes from both 324 

study groups were able to display comparable cytotoxic activity. 325 

 326 

3.4 B-cell activation following IgM/IgG stimulation is increased in pregnancy 327 

 After evaluating functional differences in peripheral T cells in the context of 328 

pregnancy, we next focused on the second cellular component of adaptive immunity, B 329 

cells
66

. During gestation, B cells are necessary for immune regulation and the promotion of 330 

humoral immunity
66

, including the production of protective antibodies against paternal 331 

antigens
92,93

. However, the pregnancy-specific cellular responses exhibited by circulating B 332 

cells require further investigation. Hence, PBMCs were isolated from pregnant and non-333 

pregnant women to evaluate differences in B-cell phenotypes as well as B-cell functionality 334 

(Fig. 5A). First, flow cytometry was used to evaluate differences in B-cell phenotypes 335 

following the gating strategy presented in Supplemental Fig. 2. Several B-cell subsets 336 

displayed distinct modulation in pregnant compared to non-pregnant women (Fig. 5B). The 337 

proportion of memory-like CD27
+
IgG

+
 B cells (Fig. 5C) was found to be elevated during 338 

pregnancy, as was the proportion of B cells with an activated CD38
+
CD24

-
 phenotype (Fig. 339 

5D). In contrast, the proportion of B cells displaying a CD40
+
CD138

-
 phenotype was found 340 
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to be increased in non-pregnant women compared to the pregnant study group (Fig. 5E). 341 

Next, PBMCs were stimulated with anti-human IgM and IgG, and then flow cytometry was 342 

utilized to quantify downstream B-cell receptor activation (Fig. 5F). Consistent with the 343 

increased proportion of B cells displaying a CD38
+
 activated phenotype, we found that there 344 

was a significantly higher fold-change in activation following anti-human IgM/IgG 345 

stimulation by B cells isolated from pregnant compared to non-pregnant women (Fig. 5G). 346 

This finding suggests that pregnancy enhances circulating B-cell responses.   347 
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4. DISCUSSION 348 

Herein, we evaluated the phenotypes and functions of peripheral T and B cells in 349 

pregnant compared to non-pregnant women, as these adaptive immune cells play a critical 350 

role in maintaining maternal-fetal tolerance
63,94-99

. First, we showed that pregnancy is 351 

associated with modestly enhanced basal activation of peripheral CD4
+
 T cells. Interestingly, 352 

both CD4
+
 and CD8

+
 T cells derived from pregnant women showed increased activation-353 

induced proliferation; yet, a reduced proportion of these cells expressed markers of activation 354 

compared to T cells from non-pregnant women. No differences were observed in peripheral 355 

lymphocyte cytotoxicity between the study groups. Finally, a greater proportion of B cells 356 

from pregnant women displayed memory-like and activated phenotypes, and such cells 357 

exhibited higher activation following stimulation. Taken together, these data may reflect 358 

generalized T- and B-cell activation in pregnancy, with a restricted T-cell responsiveness to 359 

stimulation that can foster systemic maternal-fetal tolerance.  360 

 We observed a pregnancy-specific increase in the basal proportion of activated 361 

peripheral CD4
+
 T cells, as indicated by expression of the early activation marker, CD69. In 362 

line with this finding, a higher baseline proportion of CD4
+
CD69

+
, but not CD8

+
CD69

+
, T 363 

cells has been reported in C57BL/6 mice in late pregnancy relative to non-pregnant mice
100

. 364 

We also detected a modest pregnancy-specific increase in the proportion of peripheral CD4
+
 365 

T cells co-expressing CD69 and PD-1, which is typically regarded as a co-inhibitory 366 

receptor
83,101,102

. Yet, PD-1 expression is upregulated within 24 - 48 hours of T-cell 367 

activation
86

, potentially as a mechanism to limit excessive responses and tissue damage
87

. 368 

Thus, the co-expression of CD69 and PD-1 likely indicates prolonged T-cell activation, as 369 

would be expected following chronic antigen exposure. Considering the presence of fetal 370 

antigens in the maternal circulation
53,103,104

, it is tempting to suggest that the increased 371 

proportion of CD4
+
CD69

+
PD-1

+
 T cells in pregnant women may reflect repeated exposure to 372 
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such fetal antigens
103-106

. Indeed, prior studies in mice have demonstrated that innate immune 373 

cells in the periphery interact with fetal antigens throughout pregnancy, which was replicated 374 

in vitro using human innate immune cells from the second and third trimester
104

. 375 

Furthermore, cell-free fetal DNA (cffDNA) concentrations have been shown to increase in 376 

the maternal circulation in late gestation, which coincides with a pro-inflammatory shift in 377 

maternal immunity prior to parturition
107-110

. Specifically, cffDNA has been demonstrated to 378 

stimulate a monocyte response in the third trimester that is capable of activating bystander T 379 

cells
110

. Moreover, phenotyping and omics studies have provided evidence of T-cell 380 

activation that occurs during labor
19,21,23,111

, and T-cell responses in late pregnancy have been 381 

associated with the increased expression of activation markers
112-114

. In support of these 382 

concepts, the samples herein were obtained from pregnant women in late gestation and close 383 

to delivery. Of note, parity information was not available for the control/non-pregnant study 384 

participants, so analyses accounting for both pregnancy status and parity were not performed. 385 

Collectively, these data suggest the possibility that the presence of or increases in the 386 

circulating concentrations of fetal antigens and cffDNA may contribute to the modest 387 

increase in basal activation of peripheral CD4
+
 T cells observed in pregnancy.  388 

 Herein, we also found that both CD4
+
 and CD8

+
 T cells from pregnant women 389 

displayed greater proliferation in response to in vitro stimulation than those from non-390 

pregnant women. In support of this finding, increased proliferation of CD4
+
 and CD8

+
 T cells 391 

as a function of pregnancy has also been reported in mice
115

. One of the most prominent 392 

findings in the current study was that, in contrast to the baseline differences in T-cell subset 393 

composition, the proportions of proliferated CD4
+
 and CD8

+
 T-cells expressing populations 394 

the activation markers CD69 and PD-1 were reduced in pregnant women. In mice, an 395 

increase in the proliferation of both CD4
+
 and CD8

+
 pregnancy-derived T cells following the 396 

blockade of PD-1 has been reported
115

; therefore, the reduced proportion of peripheral T cells 397 
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expressing PD-1 in pregnant women may have contributed to the higher proliferation of 398 

pregnancy-derived CD4
+
 and CD8

+
 T cells observed in this study. PD-1 is well-studied for its 399 

role in cancer and the therapeutic potential of inhibiting this pathway
116,117

, and the co-400 

expression of PD-1 and CD69 has been reported in activated CD4
+
 and CD8

+
 T

118
 and NK

119
 401 

cells isolated from cancer patients. Of note, CD69 has also been demonstrated to play a role 402 

in immune
120,121

 and metabolic
122,123

 regulation, indicating it may be more than just a marker 403 

of activation
124

. Yet, additional experiments are needed to define the functional implications 404 

of this phenotype in the context of pregnancy.  405 

In this regard, increased expression of CD69 by peripheral T cells has been described 406 

in patients with a history of recurrent spontaneous abortion
125,126

, and both basal and 407 

stimulated CD69 expression were higher in women with miscarriage than in those with 408 

normal pregnancy
126

. Furthermore, increased CD69 expression by peripheral CD8
+
 T cells 409 

has been reported in patients with cardiac
127

 and renal
128

 allograft rejection, and thus 410 

proposed as a biomarker for transplant rejection. Collectively, these studies suggest that the 411 

strong upregulation of this activation marker in response to a stimulus can indicate adverse 412 

consequences for pregnancy. Indeed, the in vivo activation of T cells using an anti-CD3ε 413 

antibody in late and mid pregnancy has been shown to cause systemic inflammation and 414 

preterm labor and birth
19

 as well as pregnancy loss (Gomez-Lopez et al., unpublished data), 415 

respectively. In this murine model, the systemic inflammatory response also extended to the 416 

amniotic cavity and resulted in fetal growth restriction
19

, indicating that the systemic over-417 

activation of maternal T cells in pregnancy can be detrimental to the fetus. Thus, the lower 418 

proportion of pregnancy-derived CD69
+
PD-1

+
 peripheral T cells following stimulation 419 

observed herein may indicate a higher threshold for T-cell activation as a mechanism to 420 

preserve systemic immune homeostasis. 421 



 

21 

 

 
This article is protected by copyright. All rights reserved. 
 

In addition to the protective mechanism proposed above, the diminished activation of 422 

circulating maternal T cells observed in the current study may also allow them to retain 423 

memory and proliferative functions for a longer duration
49,129

. This concept is in line with our 424 

finding that a lower proportion of terminally differentiated effector memory cells was 425 

observed in proliferated T cells from pregnant compared to non-pregnant women. Terminally 426 

differentiated CD8
+
 effector memory T cells display greater effector functions but lower 427 

memory and proliferative capabilities and are considered to be short-lived
130-133

. The reduced 428 

proportion of T cells expressing activation and terminal effector memory phenotypes 429 

following stimulation may reflect a more stringent use of effector functions by T cells during 430 

pregnancy. That is, we observed fewer T cells to be activated or terminally differentiated 431 

following stimulation in the context of pregnancy, which could reflect a diminished tendency 432 

to display effector functions by this peripheral T cell population.  433 

In line with the above concept, it is reasonable to propose that maternal peripheral T-434 

cell responses are controlled in an antigen-specific manner
68

, which could be a useful feature 435 

for avoiding unnecessary T-cell activation that could adversely affect pregnancy. Herein, we 436 

utilized a form of T-cell stimulation that bypasses antigen recognition to directly stimulate 437 

the T-cell and costimulatory receptors. Yet, prior in vitro studies evaluating the response to 438 

influenza A viral stimulation in PBMCs have demonstrated a pregnancy-specific attenuation 439 

of the release of pro-inflammatory cytokines such as IFNα
134,135

 and IL-2
135

. On the other 440 

hand, we have recently shown an increase in the proportions of pro-inflammatory T-cell 441 

subsets, such as Th1 and Tc17, in pregnant women with SARS-CoV-2 infection relative to 442 

healthy controls
136

. Together, these data suggest that stimulation with antigens of differing 443 

pathogenicity can elicit distinct T-cell responses in the maternal circulation. 444 

In this study, we observed comparable cytotoxic activity by PBMCs from pregnant 445 

and non-pregnant women, as has been reported previously
137

. In the periphery, both T and 446 
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NK cells are capable of cytotoxic activity
138

, and T cells have been reported to be more 447 

prevalent in the maternal periphery
139

. However, the assay used herein relies on C-type 448 

lectin-like receptor NKG2D-mediated cytotoxicity
140

; although both CD8
+
 T and NK cells 449 

express this activation receptor
141

, NKG2D signaling in isolation is only sufficient to activate 450 

NK cells, as CD8
+
 T cells require simultaneous stimulation of the T-cell receptor and by 451 

cytokines
140

. Despite this limitation, the data demonstrate comparable peripheral lymphocyte 452 

cytotoxicity upon exposure to non-self-antigens between pregnant and non-pregnant women.  453 

While a large body of work has considered the role of T cells in establishing and 454 

maintaining maternal-fetal tolerance, the second cellular component of adaptive immunity – 455 

B cells – is also critical to establishing and maintaining tolerance through 456 

gestation
31,66,93,142,143

. Prior studies have demonstrated that IgG immunoglobulins contained in 457 

maternal serum prevent maternal lymphocytes from mounting a cytotoxic response against 458 

cultured trophoblasts
92,144

. Indeed, spontaneous recurrent abortions are characterized by a 459 

lack of protective maternal antibodies directed towards paternal HLA antigens
145-148

. 460 

Protective antibodies bind their antigens with high affinity but are unable to initiate 461 

downstream immune responses such as complement activation and cytotoxicity
149

. In 462 

contrast, natural or autoantibodies, which are produced by B1a cells
66,150,151

, are associated 463 

with a range of obstetrical complications including intrauterine fetal demise and 464 

preeclampsia
152-155

. Accordingly, the circulating proportion of B1, but not B2, cells has been 465 

reported to decrease throughout gestation
30

, and B-cell subset composition at the maternal-466 

fetal interface is altered by the process of labor, preterm birth, or chronic histologic 467 

chorioamnionitis
31

. Herein, we considered alterations in peripheral B-cell subset composition 468 

as a function of pregnancy itself, and report increased frequencies of memory-like 469 

CD27
+
IgG

+
 B cells and activated CD38

+
CD24

-
 B cells in pregnant women. Notably, the latter 470 

finding is consistent with the observed greater responses to in vitro IgM/IgG stimulation in 471 
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pregnancy-derived B cells, given that CD38 ligation has been linked to Bruton tyrosine 472 

kinase (BTK) phosphorylation
156

. Higher median peripheral concentrations of B cell 473 

activating factor (BAFF) have been reported in pregnant compared to non-pregnant women, 474 

suggesting that BAFF may prime B cells during pregnancy and thus contribute to the 475 

pregnancy-specific increase in activation displayed by these cells
157

. In this study, we showed 476 

that peripheral B cells display a heightened response to stimulation during gestation, which 477 

could provide a more efficient cellular immune response to insults.  478 

Collectively, the results presented herein indicate that maternal circulating T cells and 479 

B cells display specific responses during pregnancy. Pregnancy-derived T cells show higher 480 

basal activation and greatly increased proliferative capacity; yet, such proliferated T cells 481 

resist signs of prolonged activation displayed by their non-pregnant counterparts. Moreover, 482 

B cells isolated from pregnant women display greater basal proportions of memory-like and 483 

activated phenotypes and exhibit higher activation following stimulation. These findings 484 

indicate that maternal circulating T cells and B cells display distinct responses during 485 

pregnancy, and suggest that maternal peripheral T cells are capable of responding to potential 486 

threats but are more resistant to aberrant activation, thereby preventing a systemic 487 

inflammatory response that can lead to adverse perinatal consequences.  488 
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FIGURE LEGENDS 915 

Fig. 1. Comparison of basal T-cell subset composition between non-pregnant and 916 

pregnant women. (A) Peripheral blood samples were collected from non-pregnant (n = 25, 917 

indicated in blue) and pregnant (n = 18, indicated in red) women to isolate peripheral blood 918 

mononuclear cells (PBMCs) for T-cell phenotyping at baseline (day 0). (B) Heatmap 919 

representation showing the basal proportion of T cells with various immunophenotypes from 920 

non-pregnant (indicated in blue) and pregnant (indicated in red) women. The color key 921 

indicates the relative proportion of T cells with the various immunophenotypes considered, 922 

which were not compared among each other. (C) Proportion of CD4
+ 

T cells expressing 923 

CD69 and (D) co-expressing CD69 and PD-1 at baseline from non-pregnant (blue circles) 924 

and pregnant (red circles) women. Data are presented as box-and-whisker plots where 925 

midlines indicate medians, boxes indicate interquartile ranges, and whiskers indicate 926 

minimum/maximum ranges. *p < 0.05. 927 
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 928 

Fig. 2. Comparison of CD4
+
 T-cell proliferation between non-pregnant and pregnant 929 

women. (A) Peripheral blood samples were collected from non-pregnant (n = 25, indicated in 930 

blue) and pregnant (n = 20, indicated in red) women to isolate peripheral blood mononuclear 931 

cells (PBMCs) for in vitro stimulation with anti-CD3/anti-CD28 and recombinant human IL-932 

2. Cells were cultured for 6 days prior to phenotyping. Controls were cultured in parallel 933 

without stimulation. (B) Heatmap representation showing the proportion of CD4
+
 T cells with 934 

various immunophenotypes from non-pregnant (indicated in blue) and pregnant (indicated in 935 

red) women with (stimulated) or without (control) stimulation. The color key indicates the 936 

relative proportion of T cells with the various immunophenotypes considered, which were not 937 
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compared among each other. (C) Absolute number of CD4
+
 T cells in control and 938 

proliferated samples from non-pregnant (blue symbols) and pregnant (red symbols) women. 939 

(D-F) Proportion of proliferated CD4
+
 T cells with the phenotype of (D) CD4+CD69+, (E) 940 

CD4
+
PD-1

+
, and (F) CD4

+
CD69

+
PD-1

+
. Data are presented as box-and-whisker plots where 941 

midlines indicate medians, boxes indicate interquartile ranges, and whiskers indicate 942 

minimum/maximum ranges. Each dot represents the mean of three biological replicates per 943 

sample. Grey lines and asterisks represent within-group differences between control and 944 

stimulated samples (i.e., pregnant control vs. pregnant stimulated), while black lines and 945 

asterisks represent significant differences between groups after stimulation (i.e., pregnant 946 

stimulated vs. non-pregnant stimulated). *p < 0.05; ***p < 0.001. 947 
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 948 

Fig. 3. Comparison of CD8
+
 T-cell proliferation between non-pregnant and pregnant 949 

women. (A) Peripheral blood samples were collected from non-pregnant (n = 25, indicated in 950 

blue) and pregnant (n = 20, indicated in red) women to isolate peripheral blood mononuclear 951 

cells (PBMCs) for in vitro stimulation with anti-CD3/anti-CD28 and recombinant human IL-952 

2. Cells were cultured for 6 days prior to phenotyping. Controls were cultured in parallel 953 

without stimulation. (B) Heatmap representation showing the proportion of CD8
+
 T cells with 954 

various immunophenotypes from non-pregnant (indicated in blue) and pregnant (indicated in 955 

red) women with (stimulated) or without (control) stimulation. The color key indicates the 956 
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relative proportion of T cells with the various immunophenotypes considered, which were not 957 

compared among each other. (C) Absolute number of CD8
+
 T cells in control and 958 

proliferated samples from non-pregnant (blue symbols) and pregnant (red symbols) women. 959 

(D-G) Proportion of proliferated CD8
+
 T cells with the phenotype of (D) CD8

+
CD69

+
, (E) 960 

CD8
+
PD-1

+
, (F) CD4

+
CD69

+
PD-1

+
, and (G) CD8

+
CD45RA

+
CCR7

-
 (terminal effector 961 

memory). Data are presented as box-and-whisker plots where midlines indicate medians, 962 

boxes indicate interquartile ranges, and whiskers indicate minimum/maximum ranges. Each 963 

dot represents the mean of three biological replicates per sample. Grey lines and asterisks 964 

represent within-group differences between control and stimulated samples (i.e., pregnant 965 

control vs. pregnant stimulated), while black lines and asterisks represent significant 966 

differences between groups after stimulation (i.e., pregnant stimulated vs. non-pregnant 967 

stimulated). *p < 0.05; **p < 0.01; ***p < 0.001. 968 
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 969 

Fig. 4. Comparison of lymphocyte cytotoxicity between non-pregnant and pregnant 970 

women. (A) Peripheral blood samples were collected from non-pregnant (n = 21, indicated in 971 

blue) and pregnant (n = 17-20, indicated in red) women to isolate peripheral blood 972 

mononuclear cells (PBMCs) for in vitro culturing with CFSE-labeled target cells. (B) Flow 973 

cytometry gating strategy used to identify killed target cells (CFSE
+
7AAD

+
), live target cells 974 

(CFSE
+
7AAD

-
), and live PBMCs (CFSE

-
7AAD

-
). (C) Percentage of target cells killed 975 

(calculated as [CFSE
+
7AAD

+
 / (CFSE

+
7AAD

+ 
+ CFSE

+
7AAD

-
) * 100]) among ratios of 976 

PBMCs:target cells ranging from 0:1 to 50:1 in non-pregnant (blue circles) and pregnant (red 977 



 

39 

 

 
This article is protected by copyright. All rights reserved. 
 

circles) women. Data are presented as box-and-whisker plots where midlines indicate 978 

medians, boxes indicate interquartile ranges, and whiskers indicate minimum/maximum 979 

ranges. Trend lines for each study group are included. 980 

 981 

Fig. 5. Comparison of B-cell subset composition and activation between non-pregnant 982 

and pregnant women. (A) Peripheral blood samples were collected from non-pregnant (n = 983 

25, indicated in blue) and pregnant (n = 19, indicated in red) women to evaluate B-cell 984 

phenotypes and activation following anti-human IgM/IgG stimulation. (B) Heatmap 985 

representation showing the basal proportion of B cells with various immunophenotypes from 986 

non-pregnant (indicated in blue) and pregnant (indicated in red) women. The color key 987 

indicates the relative proportion of T cells with the various immunophenotypes considered, 988 

which were not compared among each other. (C-E) Proportion of B cells with the phenotype 989 

(C) CD19+CD20+CD27
+
IgG

+
, (D) CD19+CD20+CD38

+
CD24

-
, and (E) 990 

CD19+CD20+CD40
+
CD138

-
 from non-pregnant (red circles) and pregnant (blue circles) 991 
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women. (F) Representative flow cytometry gating for B-cell activation assay: viable B cells 992 

were identified as CD19
+
, and then B-cell activation in control (open histograms) and 993 

stimulated (filled histograms) samples from non-pregnant (indicated in blue) and pregnant 994 

(indicated in red) women was determined as described in the Methods. (G) Fold change in B-995 

cell activation in non-pregnant (blue triangles) and pregnant (red triangles) samples after anti-996 

human IgM/IgG stimulation, calculated as the adjusted MFI of IgM/IgG-stimulated samples 997 

divided by the adjusted MFI of control samples. Fold changes <1 were considered as “no 998 

change” and assigned a value of 1. Data are presented as box-and-whisker plots where 999 

midlines indicate medians, boxes indicate interquartile ranges, and whiskers indicate 1000 

minimum/maximum ranges. *p < 0.05; **p < 0.01. 1001 

 1002 
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 1004 

Maternal peripheral T cells and B cells display distinct responses during pregnancy. 1005 

Pregnancy drives enhanced activation and proliferative capacity of T cells; yet, these cells 1006 

exhibit diminished activation in response to stimulation. Moreover, pregnancy is 1007 

accompanied by increased memory-like and activated B cells. 1008 
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