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Abstract
The genetic basis of many epilepsies is increasingly understood, giving rise to the 
possibility of precision treatments tailored to specific genetic etiologies. Despite 
this, current medical therapy for most epilepsies remains imprecise, aimed pri-
marily at empirical seizure reduction rather than targeting specific disease pro-
cesses. Intellectual and technological leaps in diagnosis over the past 10 years 
have not yet translated to routine changes in clinical practice. However, the 
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epilepsy community is poised to make impressive gains in precision therapy, 
with continued innovation in gene discovery, diagnostic ability, and bioinformat-
ics; increased access to genetic testing and counseling; fuller understanding of 
natural histories; agility and rigor in preclinical research, including strategic use 
of emerging model systems; and engagement of an evolving group of stakehold-
ers (including patient advocates, governmental resources, and clinicians and sci-
entists in academia and industry). In each of these areas, we highlight notable 
examples of recent progress, new or persistent challenges, and future directions. 
The future of precision medicine for genetic epilepsy looks bright if key opportu-
nities on the horizon can be pursued with strategic and coordinated effort.
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1  |  WHAT IS “PRECISION 
MEDICINE,” IN THE CONTEXT OF 
GENETIC EPILEPSY?

The National Research Council has defined precision medi-
cine (PM) as “the ability to classify individuals into sub-
populations that differ in their [disease] susceptibility, …
biology and/or prognosis, or in their response to a specific 
treatment. …Interventions can then be concentrated on 
those who will benefit, sparing expense and side effects for 
those who will not.”1 In the epilepsies, genetic diagnoses 
can define treatment- relevant subgroups of patients. This is 
particularly true for single pathogenic variants in which a 
specific gain or loss of function can be targeted. Copy num-
ber variants (deletions and duplications) and polygenic risk 
in epilepsy with complex inheritance may also help to prog-
nosticate in the future.2,3 Important variations in the defini-
tion of PM in the context of genetic epilepsy have suggested 
the need to further define therapies in terms of specific bio-
logical mechanisms4 and to consider personalized factors, 
such as environmental factors and chronicity of symptoms.5 
In our view, there is a spectrum of increasing precision and 
personalization, representing advancement upon current 
treatment for most forms of epilepsy. The ideal precision 
treatment would correct a well- defined genetic mechanism 
in the context of individualized factors, to impart freedom 
from seizures and comorbidities. Recent developments with 
antisense oligonucleotides (ASOs) and other precision ap-
proaches have brought us closer to this ideal. A less person-
alized, existing antiseizure drug or newly repurposed drug 
with superior efficacy to improve outcomes in a genetically 
defined group of patients with epilepsy also represents an 
advance in precision from the current practice, even with-
out full understanding of the underlying mechanisms. 
Here, we will consider examples from across this spectrum 
of precision approaches, and we will primarily focus on ex-
amples of epilepsy arising from single pathogenic variants. 
Pharmacogenomics is another aspect of precision medicine, 
involving consideration of genetic variants that do not nec-
essarily directly contribute to the disease, but influence 
medication response and susceptibility to adverse reactions; 
this has been reviewed thoroughly.6

2  |  WHY DO WE NEED EPILEPSY 
PM, AND HOW DO WE GET THERE?

Up to one third of the 65 million people worldwide affected 
by epilepsy do not respond satisfactorily to available thera-
peutics.7 In most cases, antiseizure medications are chosen 
based on whether seizures are focal or generalized, and/or 
related to particular electroclinical syndromes. However, 
there is relatively little understanding of how these 

medications help some individuals but not others. This em-
pirical approach can be lengthy, frustrating, and costly.

The era of gene discovery that followed completion 
of the Human Genome Project has explained a signifi-
cant fraction of epilepsies by causes such as pathogenic 
variants in single genes8 or copy number variants.2 This 
renewed the emphasis on disease etiology for treatment 
approaches and led to hope for a pipeline of precision 
novel targets and clinical trials.9 But the ideal of PM for 
genetic epilepsy has been more elusive than some pre-
dicted, due to the complexity of underlying biological 
mechanisms and challenges in targeting them.4 Despite 
these challenges, considerable progress has been made 
in understanding mechanisms of monogenic epilepsies, 
some with evidence- based precision approaches emerg-
ing.10 Here, we give a state of the art survey of progress, 
challenges, and future directions in the major segments 
of the pipeline linking genetic epilepsies to precision ther-
apies, starting with gene discovery and diagnostics, and 
proceeding to understanding of natural history; therapeu-
tic discovery; preclinical testing; and clinical trials (sum-
marized in Table 1). Concomitantly, dynamic stakeholder 
groups including patient advocates have increasingly fa-
cilitated progress toward epilepsy PM.

3  |  GENE DISCOVERY AND 
DIAGNOSIS

3.1 | Progress

During the past decade, international teams such as 
Epi4K, the Epilepsy Phenome/Genome Project, and 

Key Points
• Despite rapid discovery of genetic causes of epi-

lepsy, precision therapies are not yet available 
for the majority of genetic epilepsies

• Progress has been made in diagnosis, under-
standing natural histories, therapeutic develop-
ment, preclinical models, and clinical trials

• We provide an overview of progress and key re-
maining challenges for precision medicine for 
genetic epilepsy

• We argue for coordinated and systematic 
streamlining of the epilepsy precision medicine 
pipeline, from gene discovery to clinical trials

• Collaborative efforts of clinicians, scientists, 
patient advocates, and policy makers, as in the 
Epilepsy Leadership Council, are needed
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EuroEPINOMICS enabled increasingly powered gene 
identification in epilepsy.8,11 These efforts, combined with 
bioinformatics advances such as aggregation of large da-
tabases and matching tools (e.g., Azzariti and Hamosh12), 
led to a rapidly expanding number of genes implicated in 
epilepsy (Figure 1). The Epi25 Collaborative, seeking to 
sequence the exomes or genomes of 25 000 individuals 
with epilepsy, will be the largest epilepsy gene discovery 
effort to date, creating unprecedented opportunities for 
worldwide clinical trials (http://epi- 25.org/).13

International teams also brought insights into genetic 
mechanisms. De novo mutations play a key role in devel-
opmental and epileptic encephalopathies.8 Copy number 
variants confer risk for developmental and epileptic en-
cephalopathies, generalized genetic epilepsy, and lesional 
focal epilepsy.2 Noncoding regions of the genome can pro-
mote disease; multiple variants outside of the annotated 
coding regions of SCN1A were found to promote inclusion 
of a poison exon, or nonsense- mediated decay, causing 

Dravet syndrome through reduced SCN1A expression,14 
and intronic expansions in SAMD12 and other genes 
were identified as the cause of adult familial myoclonic 
epilepsy.15

Epilepsy genetics has also moved beyond Mendelian 
paradigms. Whereas high- risk pathogenic variants tend 
to be rare or ultrarare, approximately 30% of the genetic 
liability for generalized epilepsy is explained by common 
genetic variants.16 In the future, all epilepsy may need to 
be considered within the context of polygenic risk.3,17 It 
is further hypothesized that some forms of epilepsy are 
inherited in an oligogenic fashion, in which “modifier” 
genes can epistatically increase disease risk together but 
not individually.18

Diagnostic ability also increased, thanks to next gen-
eration sequencing. Gene panels, exome sequencing, 
and whole genome sequencing provide the greatest di-
agnostic yield, each with important advantages and ca-
veats that determine their utility and cost- effectiveness 

T A B L E  1  Precision medicine for genetic epilepsy: overview of progress, challenges, and future directions

Figure created with Biorender.
Abbreviations: AAV, adeno- associated virus; ASO, antisense oligonucleotide.

http://epi-25.org/
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for individual patients.19,20 In the United States, most 
genetic testing is done commercially. Reports from four 
diagnostic laboratories account for >25 000 individuals 
who have undergone gene panel sequencing,21– 23 in-
cluding >5000 individuals with 20 of the most common 
monogenic etiologies (Figure  1). Additional measures 
to clarify variants of unknown significance (such as pa-
rental testing of candidate variants) and reanalysis of 
exome or genome sequencing increases the likelihood 
of identifying an etiology. A recent meta- analysis of the 
diagnostic yield of genetic testing in patients with ep-
ilepsy found that exome sequencing led to a diagnosis 
in 24% of cases tested.20 The diagnostic yield of exome 
sequencing was highest in patients with developmen-
tal and epileptic encephalopathies (27%) and in pa-
tients with epilepsy and neurodevelopmental disorders 
(27%).20 Based on these findings, the future standard 
of care for suspected genetic epilepsy may be exome 
sequencing, or a tiered approach such as a gene panel 
with reflex genome sequencing.

Genetic testing is also becoming more efficient, which 
will be critical for timely intervention. Whereas a turn-
around time of several months was standard several years 

ago, diagnostic laboratories are now providing test results 
within a few weeks or in some cases, hours.24,25

3.2 | Challenges and future directions

As the science of gene discovery progresses, important 
challenges relate to unequal access to care. Genetic 
counseling and testing remain out of reach for signifi-
cant numbers of individuals in the United States, in-
cluding older individuals,26 those with public health 
insurance plans,27 and underserved populations.28 
Genetic testing is not accessible for most people outside 
of North America, Europe, and parts of Asia.29 These 
disparities could impede efforts toward natural his-
tory studies and clinical trials in diverse populations. 
Genetic testing is particularly important for infants and 
children in whom timely diagnosis could determine 
outcomes. The meta- analysis of Sheidley et al.20 indi-
cated that pivotal treatment decisions resulted from 
12%– 80% of genetic diagnoses, such as use of stiripen-
tol in Dravet syndrome, initiation of the ketogenic diet 
in SLC2A1- related epilepsy, and the identification of 

F I G U R E  1  Overview of genetic testing results from large- scale diagnostic studies in >25 000 individuals.21– 23 The 50 most common 
genetic etiologies across all three studies are shown. lpath, likely pathogenic; path, pathogenic.
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treatable inborn errors of metabolism. Genetic diagno-
ses in patients with epilepsy also influenced prognosis 
and led to decreased hospitalizations.20 Therefore, ad-
vocacy and funding are needed to implement genetic 
testing as a standard of care. Greater access to expert 
providers will also be necessary. The recent evolu-
tion toward telemedicine, including for rare genetic 
diseases,30 could connect patients who are unable to 
travel with specialists. Further measures to increase 
access include increased genetics training for neurolo-
gists; training greater numbers of neurogenetics spe-
cialists, including clinicians and genetic counselors; 
and improved education of individuals with epilepsy 
about the meaning and implications of genetic testing 
and diagnosis.

4  |  UNDERSTANDING NATURAL 
HISTORIES

4.1 | Progress

Following genetic diagnosis, management will depend on 
the dynamic manifestations of a genetic condition, includ-
ing when signs and symptoms become evident, and vari-
ability between affected individuals. A prototype example 
is STXBP1, a gene initially associated with Ohtahara syn-
drome,31 a severe developmental and epileptic encepha-
lopathy. With further monitoring of affected individuals, 
pathogenic STXBP1 variants are now associated with a 
range of epilepsies and neurodevelopmental disorders not 
involving seizures.32 Well- designed natural history stud-
ies are being performed for Rett syndrome.33 Increasingly, 
advocacy groups are catalysts for natural history studies, 
aided by larger collaboratives such as the Rare Epilepsy 
Network (www.raree pilep synet work.org) or Rare- X 
(www.rare- x.org/) or in collaboration with industry (e.g., 
Invitae, https://www.ciiti zen.com/).

4.2 | Challenges and future directions

Natural history studies are needed to quantify the pheno-
typic spectrum of genetic epilepsies, and to inform the de-
sign of relevant disease scales and outcome measures for 
clinical trials, including endpoints beyond seizure burden 
(e.g., as done for CDKL5- deficiency disorder34 and Batten 
disease35). Rapid increases in genetic diagnoses, natural his-
tory, and clinical information will need to be integrated ef-
ficiently. Novel approaches, such as the Human Phenotype 
Ontology, can exploit data extracted from electronic medi-
cal records in conjunction with large- scale data harmo-
nization.36 The ENIGMA- Epilepsy collaborative applies 

innovative approaches to integrate imaging, genetic, and 
other clinical data.37 “Portals” integrating genetic, preclini-
cal, and clinical data for specific neurogenetic disorders 
are being assembled (e.g., http://grin- portal.broad insti tute.
org/). A culture of transparency and data- sharing, together 
with virtual “structures” streamlining integration of rapidly 
emerging data, will enable progress.

5  |  THERAPEUTICS

5.1 | Repurposed drugs

5.1.1 | Progress

Particularly for channelopathies, careful functional 
characterization has enabled strategic use of existing 
antiseizure medications or repurposed compounds. 
Published accounts of targeted treatments for individual 
variants are numerous; we describe a few prominent 
examples (a more comprehensive list can be found in 
Guerrini et al.10).

Most cases of Dravet syndrome are caused by loss of 
function (LOF) variants in the sodium channel Nav1.1, 
encoded by SCN1A, leading to impaired function of inhib-
itory interneurons.38 Thus, antiseizure medications that 
block sodium channels may exacerbate seizures.39 Expert 
consensus and clinical trials enabled development of first- 
line therapies for Dravet syndrome, including valproic 
acid, clobazam, fenfluramine, stiripentol, topiramate, and 
cannabidiol.39,40 Pathogenic variants in SCN2A, which en-
code Nav1.2, cause a range of epilepsy syndromes. Gain 
of function (GOF) variants are broadly associated with 
neonatal presentations (benign familial infantile seizures, 
early infantile epileptic encephalopathy), and some LOF 
variants are associated with developmental delay, au-
tism spectrum disorders, and/or epileptic encephalopa-
thies presenting later in childhood. Accordingly, sodium 
channel- blocking medications such as oxcarbazepine are 
optimal for treatment of GOF variants, but avoided for 
SCN2A LOF variants.41,42 Systematic study of patients 
with neonatal epilepsy related to KCNQ2 LOF has indi-
cated that sodium channel- blocking agents are more ef-
fective than other agents.43,44 For individuals with LOF 
variants in SLC2A1 leading to GLUT1 glucose transporter 
impairment, the ketogenic diet provides an alternative fuel 
source that dramatically decreases or eliminates seizures, 
and improves cognition and other disease manifestations 
such as movement disorders.45

In other cases, genetic diagnoses have prompted re-
purposing of drugs not traditionally used for antiseizure 
purposes. KCNA2 variants resulting in GOF in the voltage- 
gated potassium channel Kv1.2 were correlated with severe 

http://www.rareepilepsynetwork.org
http://www.rare-x.org/
https://www.ciitizen.com/)
http://grin-portal.broadinstitute.org/
http://grin-portal.broadinstitute.org/
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phenotypes, including medically refractory epilepsy, de-
velopmental delay, intellectual disability, ataxia, and other 
manifestations.46 Subsequently, treatment of patients with 
GOF KCNA2 mutations with a potassium channel blocker, 
4- AP, dramatically decreased seizure burden and improved 
cognitive and motor function.47 As noted above, a previ-
ously US Food and Drug Administration (FDA)- approved 
drug promoting serotonergic signaling, fenfluramine, was 
approved for treatment of Dravet syndrome by the FDA 
and the European Commission in 2020, following clini-
cal trials demonstrating reduced convulsive seizures.48 
Memantine targets GOF variants in GRIN2A.49 Quinidine 
treatment of KCNT1- related epilepsy dramatically re-
duced seizure burden in case reports.50 Subsequent trial 
experience was less encouraging; challenges in the use of 
quinidine include heterogeneity in blood– brain barrier 
penetration and susceptibility to quinidine cardiotoxicity, 
as well as different responsiveness in patients, potentially 
due to different variants/electroclinical syndromes, ages, 
or treatment regimens.51

5.1.2 | Challenges and future directions

Challenges in drug repurposing efforts, as with quini-
dine, illustrate useful lessons for the future. A systematic 
approach to drug identification may accelerate develop-
ment of precision therapies that can be implemented on 
a larger scale. Using systems biology approaches, indi-
vidually rare genetic diagnoses may be functionally clas-
sified by linking them to smaller numbers of canonical 
biochemical pathways, which could then serve as broadly 
useful therapeutic targets.52 High- throughput screen-
ing of drug libraries enables unbiased identification of 
compounds with the greatest efficacy and desirable phar-
macological/toxicity profiles.53 The recent development 
of preclinical models that enable studies at larger scale 
may facilitate such systematic approaches (see section 6, 
Preclinical Models). Human clinical trials involving re-
purposed drugs should maximize sample size and adhere 
to standardized protocols, allowing for joint data analy-
sis. Functional characterization of variants to elucidate 
GOF or LOF, and severity of the impairment, is obliga-
tory. Leveraging alternative clinical trial designs for small 
sample sizes can increase rigor and generalizability (see 
section 7, Clinical Trials for Genetic Epilepsy).

Newly repurposed or novel drugs may have unknown 
mechanisms and/or may ultimately prove to be broadly ef-
fective, as opposed to targeted, antiseizure medications. For 
example, the mechanism of fenfluramine in Dravet syn-
drome is incompletely understood, but is thought to involve 
augmented serotonergic signaling and additional mecha-
nisms, such as modulation of σ1 receptors.54 Fenfluramine 

may ultimately prove beneficial in multiple forms of refrac-
tory epilepsy, including Lennox– Gastaut syndrome.55

We have focused on monogenic epilepsies, which are 
enriched in developmental and epileptic encephalopathies 
but account for a small proportion of epilepsies overall.16 
Ideally, the epilepsy community would also find ways to 
leverage information about pathogenic copy number vari-
ants and polygenic risk to increase precision in treatment.

5.2 | Gene- based approaches: ASOs, 
adeno- associated virus vectors, and 
gene editing

5.2.1 | Progress

Precision treatment with ASOs has become a reality in 
clinical neurology, including for spinal muscular atrophy 
(SMA),56 Duchenne muscular dystrophy,57 and famil-
ial amyloid polyneuropathy.58 In genetic epilepsies, pre-
clinical and clinical studies of ASOs are underway. ASOs 
are oligonucleotides 18– 30 base pairs in length that are 
chemically engineered to optimize pharmacokinetic and 
pharmacodynamic properties. ASOs correct or compen-
sate for GOF or LOF genetic variants by targeting their 
mRNA transcripts and enabling modified mRNA splicing 
or mRNA degradation.59 ASOs decreasing gene expres-
sion reduced premature death and seizures in knockin 
mouse models carrying human SCN2A or SCN8A GOF 
variants.60,61 ASOs can also enhance gene expression by 
modulating nonproductive splicing events. One of these 
approaches, targeted augmentation of gene output, re-
duced seizures and mortality in a mouse model of Dravet 
syndrome,62 and is being tested in multiple clinical trials 
in the United States and United Kingdom (https://clini 
caltr ials.gov/ct2/show/NCT04 442295). ASO approaches 
to reinstate UBE3A expression in Angelman syndrome 
have also entered clinical trials.63

On the horizon are promising approaches to directly 
repair mutant genes, such as gene editing with clus-
tered regularly interspaced short palindromic repeats 
(CRISPR)/Cas9. Considerable obstacles remain before 
these technologies can be safely deployed in humans, such 
as targeting these therapies to specific brain regions of in-
terest, potential adaptive immunity to forms of Cas9, and 
mitigation of off- target effects. Originally, CRISPR/Cas9 
technology was used to introduce insertion and deletion 
mutations to inactivate genes; however, more recent base 
editing and prime editing approaches obviate the need to 
cleave host cell DNA.64,65 A dCas9 (dead Cas9)- mediated 
promoter- enhancing strategy augmenting SCN1A expres-
sion was effective in vitro and in a mouse model of Dravet 
syndrome.66

https://clinicaltrials.gov/ct2/show/NCT04442295
https://clinicaltrials.gov/ct2/show/NCT04442295


2468 |   KNOWLES et al.

Adeno- associated virus (AAV)- based approaches in-
clude gene replacement therapy and use of AAVs as 
vectors for ASOs and CRISPR/Cas9 systems. AAV- based 
approaches have not yet been tested in humans for ge-
netic epilepsy, but have been used in preclinical models 
to reduce neuronal excitability in the epileptic focus, in-
cluding overexpression of a potassium channel67 and re-
plenishment of the endogenous antiseizure neuropeptide 
preprodynorphin.68

5.2.2 | Challenges and future directions

A long- term goal will be to develop gene- based approaches 
that can safely be administered systemically. Currently, 
most gene- based approaches require intrathecal adminis-
tration, due to poor central nervous system penetration and 
stability, in the absence of a vector that can be administered 
via systemic approaches, such as AAV. Strategies to over-
come limitations on vector cargo size, or to decrease vector 
cargo size as in the example of specific Cas9 systems (e.g., 
dCas910,66), would enable expanded use of AAV vectors. It 
is important to consider that even “definitive” gene therapy 
may not reverse all deleterious phenotypes of a pathogenic 
variant, particularly those arising during early neurode-
velopment.10 Furthermore, optimal titration of ASO effect 
is needed. For example, in studies cited above, ASOs tar-
geting SCN2A or SCN8A GOF were not allele specific.60,61 
Excessive suppression of either gene could be detrimental, 
as LOF in SCN2A or SCN8A is also associated with deleteri-
ous phenotypes, including epilepsy.41,69

Broader challenges relate to large- scale development 
of safe, ethical, and equitable gene- based approaches 
for the emerging multitude of rare genetic epilepsies. 
This will require regulation and new infrastructure. The 
Child Neurology Society outlined considerations for 
gene- targeted therapies in children, including rules and 
common standards regarding the choice of vectors; pre-
clinical and clinical testing; consideration of how cer-
tain gene- based interventions might impact subsequent 
brain development in infants and children; long- term 
follow- up of individuals receiving novel therapies, given 
the likely emergence of new natural histories and possi-
ble long- term treatment side effects; adequate training for 
practitioners providing gene- based therapies; continuous 
ethical oversight; and sustainable and equitable economic 
support, which will likely vary in countries with different 
health care systems.70

An additional precision therapeutic modality, re-
viewed in Guerrini et al.10 is surgical management of 
focal genetic epilepsies. Emerging evidence suggests 
that certain medically refractory focal genetic epilepsies 
(such as tuberous sclerosis complex [TSC]) are likely to 

benefit from surgical intervention. In other cases, the 
presence or absence of a focal structural abnormality, 
in conjunction with germline versus somatic mutations, 
should be considered together with the usual presurgi-
cal investigations.10

6  |  PRECLINICAL MODELS TO 
UNDERSTAND PATHOGENESIS 
AND TEST PRECISION THERAPIES

6.1 | Progress

In recent years, impressive work by numerous groups de-
veloped high-  or medium- throughput preclinical models 
that hold promise to support rapid translation of basic bio-
logical mechanisms to precision therapies.

6.1.1 | Functional characterization 
with heterologous cells and cultured 
neuronal networks

Genetic material from humans can be expressed “heter-
ologously” in cell lines that otherwise would not express 
the gene, such as Chinese hamster ovary cells or human 
embryonic kidney cells. This enables simplified but de-
tailed study of protein function. Heterologous cell lines 
are particularly useful for characterization of ion channel 
function, and in numerous instances such studies have in-
formed precision approaches (e.g., Wolff et al.,41 Masnada 
et al.,46 Hedrich et al.,47 Johannesen et al.69). In KCNB1- 
related disorders, classification of variants into distinct 
functional categories was performed with automated 
patch clamp recording.71

Neurons in culture form spontaneous networks that 
can be monitored on multielectrode arrays (MEAs), al-
lowing characterization of epilepsy- related attributes such 
as intrinsic network excitability and synchrony.72 Thus, 
MEAs may complement electrophysiological studies of 
single neurons by revealing specific network dynamics. 
MEAs can be used to monitor cultured networks non-
invasively for extended periods of time, have been used 
to study epilepsy- related genes such as CHRNB2,73 and 
can be used to screen compounds (which can be directly 
added to MEA wells).

6.1.2 | Induced pluripotent stem cell- derived 
neurons and cerebral organoids

There are important differences between mouse and 
human brain development, including the presence of 
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certain neuronal cell types that are not represented in 
mouse brain. Patient- derived induced pluripotent stem 
cells (iPSCs) are an emerging model system to under-
stand mechanisms of neuronal excitability in humans.74 
iPSCs can theoretically be differentiated in culture to 
any cell type in the body, including all subtypes of neu-
rons, thus allowing the study of epilepsy variants in the 
context of an individual's unique genetic background. 
In Dravet syndrome, patient- derived neurons have been 
generated by several groups (e.g., Liu et al.75). iPSC- 
derived excitatory cortical neurons from patients with 
SCN8A- related disorders showed variant- specific in-
creases in persistent or resurgent sodium current that 
were responsive to riluzole,76 and subsequent adminis-
tration of riluzole to individuals with the specific SCN8A 
variants led to substantial seizure reduction. Numerous 
genetic epilepsies have been modeled with iPSC- derived 
neurons, including Rett syndrome, TSC, Angelman syn-
drome, developmental and epileptic encephalopathies, 
progressive myoclonic epilepsies, and others (reviewed 
in Hirose et al.77). iPSC- derived neurons have been func-
tionally characterized using MEAs.78

Cerebral organoids are important intermediate 
models between traditional two- dimensional (2D) cell 
cultures and animals. Human embryonic stem cells 
or fibroblasts reprogrammed to become iPSCs can 
self- organize into 3D spheroids in culture.79 Cerebral 
organoids have been used to study multiple forms of 
genetic epilepsy, including Rett syndrome,80 lissenceph-
aly,81 Angelman syndrome,82 and others. Compared to 
2D iPSC neuronal cultures, organoids maximize cell– 
cell interactions during neural development, can be 
maintained for longer timelines to better recapitulate 
structural features and cellular heterogeneity found in 
brain,79 and enable assessment of neuronal cell types 
not found in mouse brain (e.g., radial glial cells).74,79 
An organoid model of TSC allowed for recapitulation 
of tubers, which are not observed in mouse models.83 
Current limitations, which may be surmountable with 
further development, include difficulty in the genera-
tion of consistent phenotypes between experiments and 
the current inability to generate mature cortical struc-
tures with the full repertoire of neuronal and glial cell 
subtypes in organoids.

6.1.3 | Zebrafish

Zebrafish exhibit behavioral and electrographic changes 
suggestive of seizures, for example, in the setting of pen-
tylenetetrazol or kainic acid treatment, or with genetic 
manipulation.84 The rapid breeding cycle, low space re-
quirement (embryos can be grown in 96- well plates), 

ability to easily administer treatments directly to the 
water environment, ability to automate video monitoring 
of movements such as seizures, and other features make 
zebrafish particularly amenable to high- throughput drug 
screens.84 For example, compounds targeting serotoner-
gic signaling were identified in zebrafish models of Dravet 
syndrome.85

6.2 | Challenges and future directions

The models described above may aid in studying genetic 
conditions at greater scale. A future challenge is their stra-
tegic application to identify precision therapies. There is 
a need to identify robust, reproducible phenotypes that 
are relevant to human disease and can serve as reliable 
endpoints when testing potential therapeutics. These end-
points ideally would recapitulate not only across labora-
tories, but across modeling paradigms (e.g., consistent 
findings related to ion channel function in heterologous 
cells or neurons, network bursting activity in MEAs, sei-
zures and behavioral abnormalities in an in vivo model).

Given the strengths and limitations of different ex-
perimental approaches, there may not be a one size fits 
all approach. Preclinical study design may vary, depend-
ing on whether a disease results from dysfunction of an 
ion channel, for example, versus a structural protein. 
Coordination between clinical and translational research-
ers to pair clinical questions with optimal experimental 
approaches would expedite preclinical PM efforts.

It may not be feasible to extensively characterize all 
pathogenic variants. Instead, one might test hypotheses 
about how genetic variants can be classified into func-
tional groups, for example, using systems approaches.52

7  |  CLINICAL TRIALS FOR 
GENETIC EPILEPSY

7.1 | Progress

Given the rarity of many genetic diagnoses, there has 
been increasing movement toward developing personal-
ized treatments in small groups of patients. There are 
numerous characterizations of individual ion channel 
variants, along with testing of targeted treatments that 
correct electrophysiological abnormalities and some-
times clinical symptoms (e.g., Wolff et al.,41 Hedrich 
et al.,47 Tidball et al.76; see section 5 on Therapeutics). 
An individualized approach to ASO treatment for epi-
lepsy has also been demonstrated. Milasen, an ASO 
modeled on the SMA treatment nusinersen, was rap-
idly created for a child with a lethal disease, neuronal 
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ceroid lipofuscinosis (CLN7).86 Milasen was engineered 
to modify transcript splicing related to a unique muta-
tion in the gene MFSD8, and was tested in the patient's 
own fibroblasts. Following preclinical and toxicity test-
ing, Milasen appeared to stabilize neurological and neu-
ropsychiatric function, and decreased seizure burden in 
the patient.86 Although the patient ultimately died, the 
remarkable creation of an individualized ASO within 1 
year of patient evaluation challenged conventional as-
sumptions about the time needed for ASO development 
and regulatory approval. The example of Milasen also 
raises issues pertaining to ethics and equity that are in-
herent to “n of 1” approaches, discussed below.

7.2 | Challenges and future directions

Many genetic epilepsies are rare diseases. In the United 
States, a rare disease is defined as one that affects 
<200 000 people, or in which cost of therapy develop-
ment and testing is not expected to be recovered follow-
ing approval.87 Furthermore, pleiotropy (one variant 
manifesting with differing phenotypes between indi-
viduals) may obscure a beneficial effect in a traditional 
randomized control trial (RCT).87 Thus, adequately 
powered RCTs will likely be challenging for many ge-
netic epilepsies.

Alternative trial designs can overcome issues of low 
sample size and high interindividual variability. Examples 
include small crossover trials and prospective, rigorously 
designed “n of 1” trials in which individuals undergo 
sequential treatment phases, serving as both a test and 
control; and adaptive designs (reviewed in Abrahamyan 
et al.87). A recent systematic review of “n of 1” trials for 
rare genetic neurodevelopmental disorders proposed 
methodological criteria to enhance their interpretation 
and generalizability, including blinding and randomiza-
tion; ample description of subject baseline characteristics; 
statistical methods that can account for small sample size 
and phenotypic heterogeneity; and appropriately timed, 
sequential testing of conditions (intervention vs. placebo) 
alternating with washout periods.88 Broader challenges 
related to “n of 1” approaches relate to ethics, regulation, 
and equity. Development of a therapy for one individual, 
rather than a population, blurs the line between research 
and medical treatment, a key distinction in the ethical 
framework for clinical research.89 In an “n of 1” scenario, 
the subject and the subject's surrogates may act more as 
research collaborators than clinical trial participants, rais-
ing the possibility of conflicts of interest and inadequately 
informed consent. There is an imperative to objectively 
define potential risks, benefits, and criteria for stopping 
the trial.89,90 Minimum preclinical safety and efficacy data 

needed to test “n of 1” interventions, such as some ASOs, 
in human subject(s) remain to be defined.90 For person-
alized ASOs, thorough functional characterization of ge-
netic variants and rational design of therapies, rigorous 
preclinical testing, and standardized toxicity testing as 
well as regulatory approval should be required.86

Patient advocacy groups recently highlighted the im-
portance of nonseizure outcomes for individuals with ep-
ilepsy, including cognitive function and quality of life.91 
Some genetic epilepsies give rise to complex phenotypes, 
including impaired neurodevelopment, ataxia, movement 
disorders, and progressive loss of mobility (e.g., Schreiber 
et al.92) that may be as important to patients as seizures. It 
will therefore be essential to define and measure patient- 
centered nonseizure outcomes.

Not all variants are amenable to an ASO strategy, and it 
may not be feasible to generate uniquely personalized ASOs 
for the majority of individuals. The allocation of limited re-
sources for ASO development and testing could be based 
on different factors, such as the number of patients likely 
to benefit, disease severity, and magnitude of benefit. These 
questions should be addressed and ASO- related resources 
allocated in a transparent manner that promotes equity 
and avoids perpetuation of disparities.89 Standardization 
of vectors, ASO manufacturing, and streamlining the ASO 
development/testing process could increase efficiency and 
broaden access to gene- based approaches.70

8  |  EVOLVING STAKEHOLDERS 
IN EPILEPSY PRECISION THERAPY 
DEVELOPMENT

The Epilepsy Leadership Council (www.epile psyle aders 
hipco uncil.org), and a number of the 51 patient advocacy 
groups within that council, represent both common and 
rare epilepsies, as well as professional societies and fed-
eral agencies. These groups have emerged as an important 
driver of epilepsy research. Groups including the Lennox– 
Gastaut Syndrome Foundation (www.lgsfo undat ion.
org), the Dravet Syndrome Foundation (www.drave tfoun 
dation.org), and the Tuberous Sclerosis Alliance (www.
tscal liance.org), as well as broader epilepsy advocacy or-
ganizations, such as the Epilepsy Foundation (www.epile 
psy.org) and Citizens United for Research in Epilepsy 
(CURE Epilepsy; www.curee pilep sy.org), are advocat-
ing for and supporting research advances for the epilep-
sies. The Epilepsy Genetic Initiative supported by CURE 
Epilepsy, launched in 2014, reanalyzed negative diagnos-
tic exomes and uncovered new genetic etiologies such as 
de novo variants in alternative exons in SCN8A.93 The 
Epilepsy Foundation was instrumental in establishing the 
Rare Epilepsy Network, capturing patient and caregiver 

http://www.epilepsyleadershipcouncil.org
http://www.epilepsyleadershipcouncil.org
http://www.lgsfoundation.org
http://www.lgsfoundation.org
http://www.dravetfoundation.org
http://www.dravetfoundation.org
http://www.tscalliance.org
http://www.tscalliance.org
http://www.epilepsy.org
http://www.epilepsy.org
http://www.cureepilepsy.org
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data from >40 rare epilepsy syndromes. The American 
Epilepsy Society and the International League Against 
Epilepsy recently updated seizure and epilepsy classifica-
tion to better reflect state of the art knowledge and facili-
tate standardized communication.94

Federally supported efforts in the United States in-
clude the Centers Without Walls' projects such as Epi4K, 
EpiBiosS4Rx, the Center for SUDEP Research, the 
Channelopathy- Associated Epilepsy Research Center, 
and Epilepsy Multiplatform Variant Prediction. The 
Undiagnosed Diseases Network has brought together na-
tional expertise and cutting edge diagnostic genetic tools, 
leading to increased rate of diagnosis and the definition 
of 31 new clinical syndromes.95 The Epilepsy Therapy 
Screening Program refocused its efforts in 2016 to include 
rare epilepsies, developing a drug screening platform 
using a mouse model of Dravet syndrome.96

Industry partners and startup companies are focused 
on specific PM approaches such as targeted ion chan-
nel modifiers. Finally, there is renewed interest in inte-
grative academic centers in providing multidisciplinary 

care for rare epilepsies. Increasingly, academic collab-
orative networks of clinicians and researchers, such as 
the EuroEPINOMICS- RES Consortium, the Network for 
Treatment of Rare Epilepsies, and the Treat- ION network 
for rare neurological channelopathies (https://www.resea 
rch4r are.de/en/), collaborate to improve management of 
rare genetic epilepsies. Emerging learning health systems 
are also expected to inform natural history and treatment 
responses in rare conditions.97

9  |  CONCLUSIONS

We have described tremendous progress at each stage of 
the epilepsy PM pipeline, including gene discovery, di-
agnostics, natural history studies, therapeutic strategies, 
preclinical models, and clinical trials, but with formidable 
challenges remaining (Table 1) to translate this progress 
into precision therapies and cures. SCN8A- related devel-
opmental and epileptic encephalopathy is a genetic epi-
lepsy progressing in this pipeline with relative efficiency. 

F I G U R E  2  Following discovery of SCN8A- related disorders, these were modeled, supported by patient advocacy, and translated into 
potential treatments, providing an example of relatively efficient progression through the “pipeline” from gene discovery to novel precision 
medicine approaches. ASO, antisense oligonucleotide.

https://www.research4rare.de/en/
https://www.research4rare.de/en/
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It has been ~10 years since the discovery of SCN8A as a 
disease- causing gene, with significant advancement to-
ward PM in that time (Figure 2). The examples of milasen 
and SCN8A- related epileptic encephalopathy are proof 
that teams with the necessary combination of expertise 
(clinicians, scientists, patient advocates, federal resources, 
and regulatory bodies) can efficiently shepherd particular 
therapeutics through the pipeline.

At the same time, larger national and international 
efforts are likely to be required to achieve the ends out-
lined in Table 1, such as adoption of genetic testing as 
a standard of care, ethical and equitable incorporation 
of gene- based therapies, and increasing the number of 
genetic epilepsies with targeted therapies. We and oth-
ers argue that the international epilepsy community is 
at an “inflection point” in our efforts toward epilepsy 
PM,91 at which coordinated and concerted efforts will 
be needed to translate the gains highlighted in this 
review into epilepsy precision therapies. A working 
group of the Epilepsy Leadership Council in the United 
States recently proposed development of a “National 
Plan,” modeled on efforts in pediatric oncology (e.g., 
Child rensO ncolo gyGro up.org)91 following the Curing 
the Epilepsies Conference in 2021.98 National and in-
ternational coordination could fully integrate scientific 
discovery, increasing clinical knowledge, and health 
policy to overcome the tendency for these areas to be-
come siloed. Important organizing forces are already 
in place. For example, the American Epilepsy Society/
National Institute of Neurological Disorders and Stroke 
Epilepsy Research Benchmark Stewards Committee 
has effectively outlined and tracked progress in prior-
ity areas, such as understanding the causes of epilepsy, 
preventing epilepsy, improving treatments, and pre-
venting adverse consequences of seizures (www.ninds.
nih.gov/About- NINDS/Strategic- Plans- Evaluations/
Strategic- Plans/2020- NINDS- Benchmarks- Epilepsy- 
Research). We argue that what is further needed is 
the coordinated and systematic streamlining of the 
epilepsy precision medicine pipeline, beginning with 
gene discovery and concluding with the approval of 
new and innovative therapies, and bringing together 
expert teams of clinicians, scientists, patients, and pol-
icy makers to overcome present hurdles and accom-
plish these ends. Although the strategies we propose 
are ambitious, the resulting gains could bring us to a 
new age in the care of epilepsy, in which treatment 
shifts from loosely informed empiricism to data- driven 
and patient- centered precision therapy. In the words 
of one patient advocate, “Time is brain and we've 
lost too much of both. It's time for Covid- level collab-
oration that includes a National Strategy to cure the 
epilepsies.”91
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