
1.  Introduction
Separating the magnetotail into northern and southern lobes, the plasma sheet extends from the edge of the 
dominance of Earth's magnetic dipole field to several dozen Earth radii (RE; RE is the Earth's radius, 6,371 km) 
downtail, and it's azimuthal extent ranges several hours of magnetic local time (MLT; Hill, 1974). The near-Earth 
(6–12RE, 06-18MLT) plasma sheet, which contains the transition region from stretched to dipolar magnetic field, 
is an important driver of inner magnetosphere dynamics (e.g., Artemyev et al., 2018; Ganushkina et al., 2015; 
Schield et al., 1969; Southwood & Wolf, 1978; Wolf et al., 2007). Suprathermal electrons (∼1 to 100 keV) in the 
near-Earth plasma sheet have particular effectiveness at altering the inner magnetosphere (e.g., Garrett, 1979; 
Turner & Li, 2008; Yu et al., 2019), and they are the seed population for radiation belt MeV electrons (e.g., Allison 
et al., 2019; Chen et al., 2007; Fu et al., 2011; Horne et al., 2005; Jaynes et al., 2015; Kennel & Petschek, 1966; 
Kennel & Thorne, 1967; Li et  al., 2008, 2012; Malykhin et  al., 2021). They contribute to spacecraft surface 
charging environments (e.g., Davis et  al.,  2008; Garrett,  1981; Koons et  al.,  1999), posing a space weather 
hazard to satellites at geosynchronous orbit (GEO; e.g., Choi et al., 2011; Ganushkina et al., 2021; Matéo-Vélez 
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et  al.,  2018; Thomsen et  al.,  2013); and, they can penetrate deep inside GEO to medium Earth orbit (MEO; 
Motoba et al., 2021; Turner et al., 2015).

Variations in the near-Earth plasma sheet are dependent on solar wind (SW) conditions upstream of Earth's bow 
shock (e.g., Borovsky et al., 1998; Burin des Roziers, Li, Baker, Fritz, Friedel, et al., 2009; Cao et al., 2013; 
Nagata et al., 2008; Nishida & Lyon, 1972; Terasawa et al., 1997; Wing et al., 2005). Many previous studies 
have used empirical modeling to study the relationships between solar driving and plasma sheet electron flux. 
Using Geotail in the plasma sheet and ACE in the SW, Luo et al. (2011) investigated the distribution of fluxes of 
electrons with energy >38 keV, dependent upon interplanetary conditions. They found that higher SW speed and 
southward interplanetary magnetic field (IMF) resulted in higher fluxes. They developed an empirical 2-D model 
predicting >38 keV electron fluxes in the plasma sheet as a function of SW velocity and density, and IMF magni-
tude and north-south components. Although the modeled fluxes had a relatively high correlation coefficient (R; 
defined in Appendix B) with the observed (R = 0.86), it was limited by using integrated flux with a lower energy 
boundary at 38 keV. Wang et al. (2013) used both Geotail and Time History of Events and Macroscale Interac-
tions during Substorms (THEMIS) in the plasma sheet to develop a model predicting total plasma sheet pressure 
(with contribution from both ions and electrons) as a function of fixed SW dynamic pressure and planetary K 
(Kp) index values. Yue et al. (2015) also used Geotail and THEMIS to model plasma sheet pressure, yet only 
during substorm growth phases. They found that the sunspot number was a controlling factor of plasma sheet 
pressure, in addition to SW dynamic pressure, combinations of IMF direction and magnitude (used to estimate 
cross polar cap potential) and the auroral electrojet (AE) index. For modeling geomagnetic storm-time electron 
plasma moments, Dubyagin et al. (2016) used THEMIS for the plasma sheet and OMNI for interplanetary param-
eters. They constructed a model based on dependencies of storm-time plasma sheet electron temperature to SW 
flow speed and plasma sheet electron density to SW proton density and southward IMF. Wang et al. (2017) used 
THEMIS for the plasma sheet and ACE, WIND, and Geotail spacecraft for interplanetary parameters combined 
with the machine learning method of support vector machine to predict electron temperature in the plasma sheet 
(with a limited domain of 6 < R < 8RE and 21 < MLT < 3). Investigating the relationship between SW and 
plasma sheet parameters, they found that electron temperature in this region of the plasma sheet can increase to 
beyond its 75th percentile (>3 keV) when the IMF north-south magnitude is weak but IMF ultra-low frequency 
(ULF) wave power remains high for several hours. Zou et al. (2020) trained a neural network to predict electron 
flux in the near-Earth plasma sheet from 7 to 12RE. Their model inputs included the AE and Disturbance Storm 
Time geomagnetic indices, F10.7, and several SW parameters with time lags of up to 48 hr. They achieved high 
correlation coefficient values (R = 0.92–0.95, depending on energy). Stepanov et al. (2021) built a regression 
model for electron fluxes in the near-Earth plasma sheet at three energies—10, 31, and 93 keV—using THEMIS 
and OMNI for the model output and input, respectively, looking for long-term (1–48 hr) correlations. They subdi-
vided the plasma sheet into nine bins (three azimuthal and three radial), created a regression model for each bin, 
and analyzed the interplanetary time delays in evaluating the best correlation coefficients between modeled and 
observed electron flux. They concluded that the two best interplanetary predictors for plasma sheet electron flux 
are the SW speed and convectional electric field modulated by the sine of the IMF clock angle.

The preceding models have investigated many aspects of solar driving of plasma sheet electron flux variations. 
However, several relationships between energetic electron flux in the plasma sheet and solar driving have yet to 
be fully investigated. This paper focuses on three such relationships.

1) Solar driving effects on short time-scale electron flux variations. Studies between upstream SW and plasma 
sheet electron flux to date have not considered small-scale variations (on time scales of minutes to an hour) in the 
plasma sheet electron flux. Yet, it is common for suprathermal electron flux in the plasma sheet to vary beyond 
an order of magnitude within minutes (e.g., Bame et al., 1966; Burin des Roziers, Li, Baker, Fritz, McPherron, 
et al., 2009). Since local processes within the plasma sheet contribute to short-term variations (e.g., Angelopoulos 
et al., 1992; Duan et al., 2014; Fu et al., 2011), any dependence of short-term variations on solar drivers has been 
difficult to infer.

2) Influence of the ionosphere on plasma sheet electron flux. The ionosphere sourcing ions to the plasma sheet 
is well established (e.g., Artemyev et al., 2020; Chappell et al., 1987; Kistler et al., 2019; Kronberg et al., 2012; 
Liemohn et al., 2005; Ohtani et al., 2011). Electrons of ionospheric origin in the plasma sheet has been less stud-
ied than ions, however there is some evidence that the ionosphere can play a similar role for the electron plasma 
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sheet. It has been suggested that energetic electron field-aligned currents observed in the plasma sheet originated 
in the auroral ionosphere (Zheng et al., 2012). Also, with increasing ionospheric activity, which is dependent on 
solar activity that varies with the 11-year solar cycle, the field-aligned, plasma sheet connected Region 1 and 
Region 2 currents are enhanced (Ohtani et al., 2014).

3) The role of SW-magnetosphere coupling functions in driving electron flux variations. Many SW-magnetosphere 
coupling functions have been proposed and shown to have strong correlations with geomagnetic indices through 
many decades of previous research (e.g., Balikhin et al., 2010; Boynton et al., 2011; Burton et al., 1975; Kan & 
Lee, 1979; Lockwood et al., 2019; Newell et al., 2007; Perreault & Akasofu, 1978; Vassiliadis et al., 1995). Many 
of these coupling functions are physically motivated, and they are expected to correlate well with directly driven 
magnetospheric phenomena. Relevant to our study, it has been suggested that SW-magnetosphere coupling func-
tions can have a role as a driver for plasma sheet suprathermal electron flux variations and their transport to GEO 
(e.g., Denton et al., 2019; Kaufmann, 2012; V. A. Sergeev et al., 2014).

Empirical modeling is one approach to investigate the preceding three associations between solar driving and the 
electron fluxes in the plasma sheet: small-scale variations, ionospheric control, and role of SW-magnetosphere 
coupling functions. Additionally, there are several desirable attributes for an electron plasma sheet model to have 
to further our understanding of the dependence on SW driving as well as provide forecasting utility.

1.	 �A model that is built to reproduce electron fluxes, not moments, is recommended to more accurately predict 
fluxes (Dubyagin et al., 2019).

2.	 �We would like the model output to be specifiable by exact location and by energy, with sufficient energy range 
and channels to meaningfully fit the modeled spectra to a distribution function and obtain plasma moments.

3.	 �The spatial domain should span the night side from 18 to 06MLT and include the transition region between 
stretched magnetic field and dipolar magnetic field.

4.	 �The temporal domain should include all phases of the solar cycle and all levels of geomagnetic activity.
5.	 �For forecasting capability, model inputs must not include driving parameters that are internal to the magneto-

sphere, such as geomagnetic indices.

The empirical models highlighted in the previous paragraph each include one or more of these model character-
istics, yet none encompass all of them.

In this study, we are addressing the aforementioned SW and plasma sheet electron flux relationships by adding 
characteristics to a preliminary model (Swiger et  al.,  2020) that will also incorporate the desirable attributes 
introduced in the preceding paragraph. We now have THEMIS observations of the plasma sheet which span a 
period longer than an ∼11-year sunspot cycle; and, we have consistent SW and IMF data from OMNI for the same 
period. Using the abundance of these data, we applied a neural network algorithm to build a predictive model 
of  plasma sheet electron flux. We include external drivers of SW, IMF, SW-magnetosphere coupling functions, 
and solar extreme ultraviolet (EUV) photon flux—all at high time resolution. The spatial domain spans 6–12RE 
and 18-06 MLT. We can specify electron flux at 31 different energy channels between 82.5 eV and 93 keV at any 
point within the spatial domain.

We describe the development of the model in Section 2. Model performance is assessed in Section 3, including 
comparison with a similar, existing model (Section  3.3). The driving parameters of near-Earth plasma sheet 
electron flux are analyzed in Section 3.4. Implications of the model output to relationships between solar driving 
and plasma sheet electron flux are discussed in Section 4. Further model use and a summary of our main findings 
are stated in Section 5.

2.  Model Development
The THEMIS spacecraft (Angelopoulos, 2008) have been observing suprathermal electron flux in the near-Earth 
plasma sheet since late 2007. There are accompanying observations of the SW and IMF from OMNI (King & 
Papitashvili, 2005), and solar EUV photon flux data are provided by the Flare Irradiance Spectral Model Version 
2 (FISM-2) (Chamberlin et al., 2020). These data constitute millions of samples over a period that ranges through 
all phases of a ∼11-year sunspot cycle. They are robust to climatological considerations and propitious to appli-
cations of machine learning methods. Our machine learned model is a feed-forward neural network that connects 
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solar drivers and the near-Earth electron plasma sheet response. The neural network takes multiple variables as 
inputs and multiple variables as outputs.

2.1.  Data

Electron flux data in the near-Earth plasma sheet come from three THEMIS probes—Th-A, Th-D, and Th-E. 
These spacecraft have been orbiting Earth continuously from 2007-present with a nominal spin rate of 3 s in 
near-equatorial orbits with perigee ∼1.5RE and apogee ∼12RE (Harvey et  al.,  2008). Each probe carries an 
Electrostatic Analyzer (ESA; McFadden, Carlson, Larson, Ludlam, et  al.,  2008) and Solid State Telescope 
(SST; Angelopoulos et al., 2008). For this study, we used the combination of these data from both instruments 
(GMOM—level 2 ground moments data product), which provides electron flux in energy channels ranging from 
a few eV to hundreds of keV. For this study, we used 31 energy channels spanning 83 eV to 93 keV (see Support-
ing Information S1 for a full list of energies). An example of THEMIS electron flux observations can be seen in 
Section 3.2. In the lineplot of observed flux (second from bottom panel of Figure 3), one can see typical varia-
tions of the flux levels of 0.08–93 keV electrons in the plasma sheet.

Electron measurements taken by the ESA instrument are susceptible to several sources of contamination which 
can lead to spurious data (McFadden, Carlson, Larson, Bonnell, et al., 2008). These include contamination from 
photoelectrons and errors from spacecraft charging and they contribute to artificially high count rates at lower 
energies <50 eV (McFadden, Carlson, Larson, Bonnell, et al., 2008). Electrons that enter the ESA instrument 
can further scatter before impacting the detector, resulting in additional, non-plasma source electron counts for 
energies up to 200 eV. We are using energies >83 eV, and therefore the effects from photoelectrons and spacecraft 
charging are negligible. However, the observations from the lower energies of our data set—up to 200 eV—are 
possibly contaminated with these internally produced scattered electrons. Another source of error of ESA elec-
tron counts comes from the instrument becoming saturated with high levels of electron counts that occur in higher 
density regions of the magnetosphere. In selecting our data, we rejected data taken during times when the ESA 
instrument was saturated.

The SST instrument also has some possible measurement errors that we needed to consider. Other studies 
have identified contamination and saturation in electron channels above 100 keV (e.g., Dubyagin et al., 2019; 
Ni et al., 2011). In a recent study by Stepanov et al.  (2021), it was found that even for SST data that was 
marked as saturated, the electron flux values continued to increase as the THEMIS probe moved to lower 
altitudes. Moreover, the Stepanov et al. (2021) model that included SST data marked as saturated proved to 
more accurately reproduce observations than the model that used only data marked as “good data.” In our 
study, we use SST energy channels at ≤93 keV only, and we follow the Stepanov et al. (2021) evidence that 
SST data that are marked as saturated can still be scientifically useful. Therefore, we included the data if 
only the SST (but not the ESA) was saturated. For all THEMIS data, we excluded periods that were marked 
as during eclipse or outside  the  magneto sphere. Descriptions of further paring of the THEMIS observations 
continues in the next section.

2.1.1.  Observed Output Data Set

Samples of the electron flux in the near-Earth plasma sheet were obtained in the following steps. (a) We compiled 
all GMOM pterf (ESA Reduced, SST Full at approximately 3-s resolution) data from the THEMIS probes A, 
D, and E from January 2008 through December 2020. (b) We removed all data where the ESA instrument was 
saturated. Along with good data quality flags, if only the SST instrument was marked as saturated, we kept the 
data. This follows the discussions of Dubyagin et al.  (2019) and Stepanov et al.  (2021) that showed the data 
with SST saturation do not invalidate results and significantly improve the accuracy of reconstructed fluxes. 
(c) We down-sampled the data from 3-s resolution to 1-min resolution by taking the average of the flux at 
each minute. (d) We restricted our sampling region to the night side, and to the near-Earth plasma sheet. The 
spatial domain is from 6RE ≤ XYGSM ≤ 12RE, and the azimuthal extent is from 18MLT (dawn) to 06MLT (dusk) 

across midnight. 𝐴𝐴 XYGSM =

√

X
2

GSM
+ Y

2

GSM
 , and GSM is the Geocentric Solar Magnetospheric coordinate 

system. The ZGSM direction is not constrained. Since the plasma sheet undergoes flapping in the ZGSM direction  

 15427390, 2022, 11, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022SW

003150 by U
niversity O

f C
olorado L

ibrari, W
iley O

nline L
ibrary on [04/11/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Space Weather

SWIGER ET AL.

10.1029/2022SW003150

5 of 28

(e.g., Runov et al., 2009; Tsutomu & Teruki, 1976; V. Sergeev et al., 2003), we relied on the low inclination of 
the THEMIS probes' orbits and a plasma-β ≥ 1 criterion (e.g., Ruan et al., 2005) to indicate that we were taking 
samples from the plasma sheet. In the ZGSM direction, >98% of the samples were within ±4 RE. See Figure 1 for 
sampling distributions in the GSM XY-, XZ-, and YZ-planes. (e) After applying steps (1–4) above, we compiled 
the electron flux at 31 energies (see Supporting Information S1 for list) from THEMIS-A, -D, and -E into a single 
data set comprising a total number of 1,722,949 1-min samples.

𝑦𝑦𝑖𝑖 =
[

log10 (𝑗𝑗1,𝑖𝑖) , log10 (𝑗𝑗2,𝑖𝑖) ,… , log10 (𝑗𝑗𝑚𝑚𝑚𝑚𝑚)
]

� (1)

Then, we converted the differential energy flux units into log10 differential number flux (with units of log10(1/
[cm 2 s sr keV])). We put these observations in the form of Equation 1, where jk,i is the flux of the kth energy 
channel for observation i.

The observations 𝐴𝐴 𝐴𝐴𝐴𝑖𝑖 were separated into three groups, based on year, for the training, validation, and test sets. 
We trained our model on data from years 2008, 2009, 2011, 2012, 2014, 2017, and 2018. The validation set 
uses data from years 2013, 2016, and 2019, and it was used to optimize the free parameters of the neural 
network algorithm (described in Section 2.2.2). The test set contains data from years 2010, 2015, and 2020. 
None of the data in the test set was “seen” by the model during training nor optimizing, and therefore is 
considered as out-of-sample data that we used to test our model's performance. Although there may be some 
autocorrelation of electron flux within the plasma sheet, which would allow “bleed” of information between 
train, validation, and test sets at the yearly boundaries, we assert that any such cross-over is negligible 
compared to the large number of independent examples in each set. Our training, validation, and test split 

Figure 1.  The 2D plane sampling locations of the Time History of Events and Macroscale Interactions during Substorms 
data used in the development of the model. Top row: sampling distributions in the GSM XY-, XZ,- and YZ-planes. Bottom 
row: number of observations shown in each bin is the number of samples used in the training (left), validation (center), and 
testing (right) data sets. Each bin in bottom row is 1RE by 0.5 hr of magnetic local time.
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strategy is an attempt to remove any bias that would be introduced by solar cycle phases. For example, we 
do not want to train on data taken solely during solar minimum. Moreover, our choice of years for the test 
set allows us to calculate more meaningful goodness-of-fit metrics, as we will be using data from multiple 
solar cycle phases. Yet, we wanted to keep sufficient data in the train and validation sets to maximize the 
potential for the model to learn. After this split, and after further reductions due to missing data described 
in Section 2.1.2, the train set contained 940,186 samples, the validation set contained 288,611 samples, and 
the test set contained 319,754 samples.

The top row of Figure 1 shows two-dimensional sampling distributions in the GSM XY-, XZ-, and YZ-planes of 
the full data set (train, validation, and test data combined). The bottom row of panels in Figure 1 are the sampling 
locations in the XY-plane separated into the train, validation, and test data. For the bottom panels, the distributions 
are organized by bins in radial distance and MLT. Each bin is 0.5 MLT by 1RE (we show gray grid lines at each 
hour of MLT). The color in each bin indicates the number of samples per bin, corresponding to the color bar 
shown below the panels. Gray color indicates areas outside of the model's spatial domain. The MLT values are 
labeled on the outside edge of the circle, and the radial distance, in RE, is labeled outward from the center. There 
are more samples near the apogee of the spacecraft around 11-12RE than at other radial distances, and generally 
the number of samples decreases with decreasing radial distance. These aspects of the sampling distribution 
are due to both the spacecraft spending more time near their apogees and the fact that it is less likely to satisfy 
the β ≥1 criterion the closer the observations are taken to Earth where the dipole magnetic field becomes more 
dominant.

For all three subsets—train, validation, and test—spatial bins greater than 8RE have more than 10 3 samples and 
many exceed 10 4 samples. At 6–7RE there is much lower numbers of samples, often less than 10 2 and in the small-
est case on order of 10 1. Nonetheless, Figure 1 shows that we have sufficient overall numbers of samples for our 
train, validation, and test sets, and that the samples are well distributed in the model's spatial domain. Sorting the 
data into spatial bins is done only for consideration of the sampling distribution. We did not use these bins during 
the development of the model, nor in analyzing the model's performance.

2.1.2.  Observed Model Inputs

For our inputs to the neural network, we use a combination of SW, IMF, SW-magnetosphere coupling functions, 
solar EUV photon flux, and sampling location. For each observation, 𝐴𝐴 𝐴𝐴𝐴𝑖𝑖 , in the observed output data, each input, 

𝐴𝐴 𝐴𝐴𝐴𝑖𝑖 , contains the following. (a) OMNI parameters; (b) SW-magnetosphere coupling functions; (c) IMF ULF wave 
power; (d) FISM-2 model output; and (e) the sampling location at the time of each 𝐴𝐴 𝐴𝐴𝐴𝑖𝑖 .

2.1.2.1.  OMNI Parameters

We chose SW flow speed VSW, number density NSW, IMF BZ, and IMF BY (the latter two in GSM-coordinates) 
from the 1-min High Resolution OMNI data set. For missing values, we applied a linear interpolation method, 
discarding periods where there were missing data for longer than 1 hr. For each observation timestamp in the 
plasma sheet observations, we constructed an input of OMNI parameters representing the state of the SW for 
the previous 4 hr. At this step, if any of the 4-hr periods contained missing data (after discarding data with gaps 
greater than 1  hr), we also removed the corresponding plasma sheet data. This reduced the total number of 
samples to 1,548,551. All of the OMNI data used in the development of the neural network were standardized by 
subtracting the climatic mean and dividing by the climatic standard deviation. That is,

𝑝𝑝norm,𝑖𝑖 =
𝑝𝑝𝑖𝑖 − 𝜇𝜇𝑝𝑝

𝜎𝜎𝑝𝑝

,� (2)

where pnorm ,i is the standardized value of the ith value of parameter p; and, μp and σp are the mean and standard 
deviation, respectively, of all p from January 2008 through December 2020. In addition to making it easier to 
train the neural network, standardizing has the benefit of negating the effect that physical units have on the input 
values.
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2.1.2.2.  SW-Magnetosphere Coupling Functions

Using the OMNI data parameters from Section 2.1.2.1, we calculated several SW-magnetosphere coupling func-
tions. The first SW-magnetosphere coupling function that we used is the rectified SW convectional electric field, 
defined by

𝑉𝑉 𝑉𝑉S =

⎧

⎪

⎨

⎪

⎩

𝑉𝑉𝑋𝑋|𝐵𝐵𝑍𝑍 | if𝐵𝐵𝑍𝑍 ≤ 0

0 otherwise,

� (3)

where VX is the SW speed in the GSM X-direction, making VBS a negative quantity in our calculations. VBS is 
well correlated with geomagnetic activity indices (e.g., Arnoldy, 1971; Burton et al., 1975; Foster et al., 1971; 
Kan & Lee,  1979; Kelley et  al.,  2003; Rostoker & Fälthammar,  1967; Shukhtina et  al.,  2005; Troshichev 
et  al., 2011; Vassiliadis et  al., 1995). We include it as an input to account for the effect of strong positive 
dawn-dusk electric field (strong southward IMF) in the SW that merges with the magnetosphere and results in 
a strong dawn-dusk electric field in the magnetotail, leading to increased E × B drift of particles in the plasma 
sheet.

NXCF = � 1∕2
�� � 4∕3

�� �� sin6
(�
2

)

� (4)

The second SW-magnetosphere coupling function we used as an input to the model takes the form of Equa-
tion 4. The coupling function in Equation 4, referred to here as NXCF was one of the coupling functions found by 
Boynton et al. (2011) using Nonlinear AutoRegressive Moving Average with eXogeneous inputs to have the best 
prediction of the Disturbance storm time index. We include it as an indicator for the model to predict the plasma 
sheet electron flux during geomagnetic storms. In Equation 4, PSW is the SW dynamic pressure, VSW is the SW 

flow speed, 𝐴𝐴 𝐴𝐴𝑇𝑇 =

√

𝐵𝐵
2

𝑌𝑌
+ 𝐵𝐵

2

𝑍𝑍
 is the tangential IMF magnitude, and 𝐴𝐴 𝐴𝐴 = arctan (𝐵𝐵𝑌𝑌 ∕𝐵𝐵𝑍𝑍 ) is the IMF clock angle.

The third SW-magnetosphere coupling function that we used quantifies solar energy input to the magnetosphere. 
Described in detail by Lockwood et al. (2019) and Lockwood (2019), Pα1 accounts for both kinetic particle energy 
in the SW and Poynting flux energy impacting Earth's magnetosphere. The Pα1 function, including the Pα factor, 
takes the form

P𝛼𝛼1 = 𝑃𝑃𝛼𝛼

[

1 + 2𝑓𝑓𝑠𝑠cos
2 (𝜙𝜙)𝑀𝑀

(2𝛼𝛼−2)

𝐴𝐴

]

.� (5)

�� = �� (2∕3−�)
sw � (7∕3−2�)

sw �2� sin4 (�∕2)� (6)

where K is a constant, if the magnetic moment of the Earth and the mass of the SW are approximated as constant. 
NSW, VSW, B, and θ are the SW number density, SW flow speed, IMF magnitude, and IMF clock angle, respec-
tively. Pα accounts for the kinetic energy flux of SW particles. Pα1 adds Poynting flux energy to the total SW 
energy entering the magnetosphere by including the Alfvén Mach number, MA, and by considering the angle 
between the SW velocity and the IMF, ϕ. We used the parameters α = 0.38 and fs = 0.74, which were empirically 
fit by Lockwood (2019) to optimize correlation with the daily averaged am geomagnetic index (Mayaud, 1980)—
an indicator of substorm activity.

Using the interpolated OMNI parameters from Section 2.1.2.1, we calculated these three coupling functions—
VBS, NXCF, and Pα1—for all available OMNI (excluding periods with missing data greater than 1 hr) from Janu-
ary 2008 through December 2020. Similarly to standardizing the individual OMNI parameters themselves, we 
standardized the calculated coupling functions using Equation 2, with an exception for VBS. We wanted to keep 
VBS as a rectified input (i.e., no positive values); therefore, in standardizing VBS we only divided by the climatic 
standard deviation and did not subtract the mean.
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2.1.2.3.  IMF BZ ULF Wave Power

Lyons et al. (2009) and Kim et al. (2009) investigated the effect that ULF wave power in the IMF BZ (hence-
forth called BZ,ULF) has on the coupled ionosphere-magnetosphere system. They found evidence that high BZ,ULF 
leads to enhanced magnetospheric and substorm activity. Later, Wang et al. (2017) showed that during weak or 
northward IMF BZ and high BZ,ULF, there was significantly increased electron temperature in the plasma sheet. 
The physical rationale for this finding, and for including BZ,ULF as an input to our model, is that higher ULF wave 
power impacting the magnetosphere may result in enhanced radial diffusion, bringing higher energy electrons in 
the plasma sheet farther earthward.

We used OMNI IMF BZ in GSM coordinates to calculate BZ,ULF following a procedure similar to one used by 
Wang et al. (2017), albeit with modifications. Details of the calculation of BZ,ULF can be found in Appendix A. 
Like the other parameters derived from OMNI data, we standardized the BZ,ULF by applying Equation 2, with the 
climatic mean and standard deviation taken from the period 2008–2020.

2.1.2.4.  FISM-2 Output

We include photons that are impacting the dayside ionosphere in a night-side plasma sheet model to account 
for ionospheric influences on electrons in the plasma sheet (e.g., ionospheric outflow or increased ionospheric 
currents connected to the near-Earth plasma sheet). FISM-2 is an empirical model whose output includes EUV 
photon flux in spectral bands from 0.1 to 190 nm, with a time resolution of either one or 5 min. The time reso-
lution of FISM-2 makes it more suitable to attempt to capture small scale plasma sheet variations than using an 
input with a much lower time resolution, for example, F10.7, for solar EUV flux. As an input to our model, we 
used a single band of FISM-2 output at ∼20 eV (54–65 nm), as this energy is sufficient to produce free electrons 
through photoionization of Oxygen in the upper atmosphere. FISM-2 data were taken from the LASP Interactive 
Solar Irradiance Data Center hosted by the Laboratory for Atmospheric and Space Physics (LASP). We matched 
the closest time stamps of FISM-2 data with the time stamps of the 𝐴𝐴 𝐴𝐴𝐴𝑖𝑖 observations. Similarly to the previously 
described inputs, we standardized FISM-2 data using the mean and standard deviation of the available FISM-2 
data from 2008 to 2020.

2.1.2.5.  Sampling Location

The sampling location within the plasma sheet was included using the radial distance from Earth and the azimuthal 
direction. Information about the radial distance was encoded using XYGSM. The azimuthal direction was encoded 
with sin ϕ and cos ϕ, where 𝐴𝐴 𝐴𝐴 =

𝜋𝜋

12
MLT . We standardized the radial distance by subtracting the mean and divid-

ing by the standard deviation of all plasma sheet samples identified by the methods of Section 2.1.1.

2.1.2.6.  Combining Inputs

For each 𝐴𝐴 𝐴𝐴𝐴𝑖𝑖 , a single 𝐴𝐴 𝐴𝐴𝐴𝑖𝑖 is constructed by combining all of the OMNI, coupling functions, FISM-2, and sampling 
location data into a single one-dimensional input. Each input takes the form

𝑥⃗𝑥𝑖𝑖 =
[

𝑓𝑓𝑡𝑡𝑖𝑖−Δ𝑡𝑡, 𝑓𝑓𝑡𝑡𝑖𝑖−Δ𝑡𝑡−𝛿𝛿𝛿𝛿, 𝑓𝑓𝑡𝑡𝑖𝑖−Δ𝑡𝑡−2𝛿𝛿𝛿𝛿,… , 𝑓𝑓𝑡𝑡𝑖𝑖−Δ𝑇𝑇 , sin𝜙𝜙𝜙 cos𝜙𝜙𝜙 𝜙𝜙𝑖𝑖

]

,� (7)

where

� = 2�
24

MLT

�� =
�� − ��

��

�� =
√

�2
GSM,� + � 2

GSM,�

�� = 1
�

�
∑

�=1
��

�� =

√

1
�

�
∑

�=1
(�� − ��)2

�⃗� =
[

��,�, �� ,�, ��
 ,�, ��
 ,�, ��1,�, (NXCF)� , � �
,�, ��,ULF,�, FISM2�
]

�
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The t in 𝐴𝐴 𝑓𝑓𝑡𝑡 represents the time of the observation of 𝐴𝐴 𝐴𝐴𝐴𝑖𝑖 . We used a time delay of Δt = 10 min and a time step of 
δt = 5 min in constructing inputs with time history. Our longest time delay is ΔT = 240 min. Therefore, each 𝐴𝐴 𝐴𝐴𝐴𝑖𝑖 
contains time history from −10 to −240 min in 5 min steps for each of the nine input parameters in 𝐴𝐴 𝑓𝑓𝑡𝑡 . Adding 
in the three position inputs without time history—sin ϕ, cos ϕ, and r—the total number of inputs for each 𝐴𝐴 𝐴𝐴𝐴𝑖𝑖 
becomes 426.

Combining the 𝐴𝐴 𝐴𝐴𝐴𝑖𝑖 in each set—train, validation, and test—we construct full input arrays X (train), X′ (validation), 
and X′′ (test) as

� =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

�⃗1

�⃗2

⋮

�⃗�

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

�′ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

�⃗1

�⃗2

⋮

�⃗�

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

�′′ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

�⃗1

�⃗2

⋮

�⃗�

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

� (8)

� =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

�⃗1

�⃗2

⋮

�⃗�

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

�′ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

�⃗1

�⃗2

⋮

�⃗�

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

�′′ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

�⃗1

�⃗2

⋮

�⃗�

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

� (9)

for N = 940,186 train, M = 288,611 validation, and L = 319,754 test samples. The observed arrays, Y, Y′, and Y′′ 
for the train, validation, and test sets, respectively, are similarly constructed, shown in Equation 9.

2.2.  Neural Network Description

The neural network finds a mapping between the inputs and outputs such that 𝐴𝐴 𝐴𝐴
(

𝐗̃𝐗
)

= 𝐘̂𝐘 , where 𝐴𝐴 𝐘̂𝐘 is the predicted 
output array after applying the trained neural network, F, to some input array 𝐴𝐴 𝐗̃𝐗 . The function F takes the form 
of Equation 10.

𝐹𝐹
(

𝐗̃𝐗
)

= 
(

𝐗̃𝐗𝐗𝐗𝟎𝟎 + 𝐛𝐛
)

𝐖𝐖𝟏𝟏 = 𝐘̂𝐘� (10)

In Equation 10, 𝐴𝐴  is an activation function, 𝐴𝐴 𝐖𝐖𝟎𝟎 ∈ ℝ
426×192 and 𝐴𝐴 𝐖𝐖𝟏𝟏 ∈ ℝ

192×31 are weight matrices, and 𝐴𝐴 𝐛𝐛 ∈ ℝ
192 is 

a bias vector. The goal is to find W0, W1, and b that minimize a loss metric between 𝐴𝐴 𝐘̂𝐘 and Y. We have intended 
our training set 𝐴𝐴 (𝐗𝐗,𝐘𝐘) to be a well-represented sample of the true population, so that applying the trained network 
to new observations, such as 𝐴𝐴 (𝐗𝐗′′

,𝐘𝐘
′′) , the loss metric between 𝐴𝐴 𝐘̂𝐘

′′ and Y′′ will also be small.

2.2.1.  Neural Network Training

To train the model, we updated the weights and biases—W0, W1, and b—using the Adam optimization algorithm 

(Kingma & Ba, 2017) to minimize our loss metric, the Huber function, 𝐴𝐴 𝐴𝐴

(

𝑦𝑦𝑦
̂
𝑦𝑦

)

 , defined in Equation 11.

Huber ≡ 𝐻𝐻 (𝑦𝑦𝑦 𝑦𝑦𝑦) =

⎧

⎪

⎨

⎪

⎩

1

2
(𝑦𝑦 − 𝑦̂𝑦)

2
for|𝑦𝑦 − 𝑦̂𝑦| ≤ 𝛿𝛿𝛿

𝛿𝛿|𝑦𝑦 − 𝑦̂𝑦| −
1

2
𝛿𝛿
2 otherwise.

� (11)

In Equation 11, y and 𝐴𝐴 𝐴𝐴𝐴 represent the observed and predicted outputs of the test data, respectively, and δ is a tuna-
ble free parameter, optimized as described in Section 2.2.2.

The advantage of using a Huber loss is that the function behaves like mean squared error (MSE) at lower abso-
lute residual 𝐴𝐴 |𝑦𝑦 − ̂

𝑦𝑦| values and behaves like mean absolute error (MAE) at higher absolute residual values. MSE 
tends to bias losses at higher residuals and MAE tends to bias losses at lower residuals. The values of the internal 
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parameters of the Adam method, α, β1, and β2 and the Huber value of δ were chosen during hyperparameter 
optimization (see Section 2.2.2). The network is designed with an input layer of nodes (426 inputs), a single 
hidden layer (192 nodes), and an output layer (31 outputs). We start with a fully connected network—all nodes 
connected to all other nodes in adjacent layers—then use a technique called dropout between the input layer 
and the hidden layer. Dropout randomly removes a fraction of the connections during training to help prevent 
overfitting of the model to the training data (Srivastava et al., 2014). Our activation function, applied to every 
node of  the hidden layer, was the rectified linear unit (ReLU), where 𝐴𝐴  = ReLU(𝑥𝑥) = max(0, 𝑥𝑥) . We updated the 
weights and biases using random sample batches of size 100, without replacement, and we cycled through all 
∼10 6 training data samples 20 times. Therefore, the weights and biases were updated by the Adam optimization 
algorithm approximately 200,000 times. All model training was implemented by TensorFlow (Abadi et al., 2016) 
and Keras (Chollet et al., 2015) software.

2.2.2.  Hyperparameter Optimization

When designing our neural network, we had many design choices, including choosing values for several hyper-
parameters. The hyperparameters are free parameters, for example, number of hidden layers, number of nodes 
in each layer, the neural network optimization algorithm (and its internal parameters), the loss function, etc. A 
list of hyperparameters that we optimized in our model is shown in Table 1. The values were found using a type 
of Bayesian optimization called Tree-structured Parzen Estimator (TPE). The TPE algorithm was implemented 
using hyperopt software (Bergstra et al., 2013). The search space for each hyperparameter (right-most column 
of Table 1) was defined by either randomly choosing discrete options (“choice”) or by selecting from a uniform 
distribution within minimum and maximum limits (“uniform”). The TPE algorithm is free to choose any combi-
nation of the hyperparameter values in the search space; however, rather than an exhaustive or random search, 
TPE creates a probabilistic model of the function to be optimized and iteratively suggests new hyperparameters 
based on the history of hyperparameter configurations—quickly converging to an optimized set of hyperparam-
eters. In our case, the function was the neural network and the quantity that we were trying to minimize was 
the median symmetric accuracy (MSA) metric (defined in Appendix  B) between the modeled and observed 
validation data. The MSA score stopped improving at around 50 iterations (even after 100 iterations there was no 
improvement beyond that obtained from 50). The values suggested by TPE optimization after 50 iterations are in 
the middle column of Table 1.

3.  Model Assessment
A robust set of model-observation comparison metrics is advantageous in obtaining a thorough examination of 
the model performance in predictive capability (Liemohn et al., 2021). We calculated metrics using individual 
energy channels, and using flux from energy channels over wider energy ranges. The combined flux across 
energy channels was calculated as JΔE,

Hyperparameter Optimized value Search space

Nodes (hidden layer) 192 Choice(32, 64, …, 992, 1,024)

Dropout rate 0.4495 Uniform (0, 1)

Huber δ 0.2293 Uniform (0.1, 10.0)

Adam β1 0.4501 Uniform (0.001, 0.999)

Adam β2 0.9913 Uniform (0.001, 0.999)

Adam learn rate 0.001 Choice (10 −5, 10 −4, 10 −3, 10 −2, 10 −1)

Batch size 100 Choice (100, 500, 1,000, 5,000, 10,000)

Table 1 
Hyperparameter Values Optimized Using Bayesian Tree-Structured Parzen Estimator Optimization
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𝐽𝐽Δ𝐸𝐸 =
1

Δ𝐸𝐸 ∫

𝐸𝐸max

𝐸𝐸min

𝐽𝐽 (𝐸𝐸)d𝐸𝐸 ≈
1

Δ𝐸𝐸

𝑛𝑛
∑

𝑖𝑖=1

𝐽𝐽𝑒𝑒𝑖𝑖
Δ𝑒𝑒𝑖𝑖.� (12)

To combine energy channels spanning a range of energy ΔE from Emin to Emax for metric calculations and visu-
alization, we computed a weighted average, JΔE, of the flux in each energy channel, 𝐴𝐴 𝐴𝐴𝑒𝑒𝑖𝑖

 , weighted by the width of 
each channel, Δei

We used the common logarithm (log10) of the flux to evaluate association, skill, and accuracy. Association between 
the model output and the observed data was assessed using the Pearson correlation coefficient (R). Model skill 
was assessed using the prediction efficiency (PE) metric. For accuracy, we include the model-observation metric 
of MSE.

Actual flux values are used to calculate three additional metrics. We also quantified model accuracy using the 
MSA metric, and we assessed model bias with symmetric signed percentage bias (SSPB). Both MSA and SSPB 
provide a more realistic interpretation of model performance than when evaluating flux values varying by orders 
of magnitude (Morley et al., 2018). The inclusion parameter (IP) provides the percentage of predicted points that 
are within a factor of the corresponding observed points, and was adapted from the exclusion parameter defined in 
Mukhopadhyay et al. (2021). All metrics used are defined in Appendix B. For IP, we used δ = 2, which provides 
the percentage of predicted points that are within a factor of two.

3.1.  Global Model Performance

With global model performance, we are evaluating how well the model performed using the entire test data set, 
which was not involved in training the model. After training our model, we create a predicted set of outputs, 𝐴𝐴 𝐘̂𝐘

′′ , 
using the observed test inputs, X′′.

3.1.1.  Qualitative Global Comparisons

Shown in Figure 2 are the predicted versus observed log10 flux values for several individual energy channels and 
combined energy ranges, as in Equation 12.

We chose to highlight the energy ranges of 1–10 and 10–50 keV because they are the energies most responsible 
for spacecraft surface charging at GEO (Matéo-Vélez et al., 2018; Thomsen et al., 2013); the range 0.5–1 keV was 
chosen as the population in the plasma sheet that is yet to be energized to these higher energies. Similar panels for 
all 31 energy channels predicted are shown in Supporting Information S1. The data span the entire test data set 
period—all observations and predictions from years 2010, 2015, and 2020. Observed flux values are shown on 
the horizontal axis and predicted flux values are shown on the vertical axis. In each panel a 1:1 dash-dot black line 
is drawn that indicates a hypothetical perfect prediction. The red dashed lines above and below the 1:1 line repre-
sent the extent with a factor of two for flux values (±log102 on log scale). The color for each scatterplot varies 
according to the number of points in a two-dimensional histogram with square bins of dimension 0.34 by 0.34 log 
flux units (log10(1/[cm 2 s sr keV])). The values of the histogram are then used to interpolate the number of points 
at each location in the observation-prediction space. The saturation of the number of points beyond the maximum 
value of each color bar is shown as pink. Note that in panel C (41 keV) there are 10s of observations even lower 
than 1 log10(1/[cm 2 s sr keV]) that we do not show. For all energies shown in Figure 2 (and in other energies not 
shown), the majority of observation-prediction paired points are within a factor of two, indicated by the red lines.

3.1.2.  Global Metrics

We calculated global metrics using the observed-modeled arrays 𝐴𝐴

(

𝐘𝐘
′′
, 𝐘̂𝐘

′′

)

 . We present metric values for several 
energy channels and combined energy ranges in Table  2. The columns are the metrics calculated for either 
specific energy channels (in keV) or energy channels combined by Equation 12. The bottom two rows show the 
variance in log10 of both the observed sample, y, and the predicted sample, 𝐴𝐴 𝐴𝐴𝐴 .

Examining the metrics in Table 2 (and in Supporting Information S1, where all 31 energy channels are listed), 
we can see that the model has predictive capability. MSA metric values of 100% mean that the median modeled 
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flux values are generally at a factor of two within the observed flux values. Most of the MSA metric values in 
Table 2, and 21 of the total 31 channels are ≤100%. The highest MSA value of 140% occurs for energy 26.4 keV. 
The eight channels between 0.74 and 5.1 keV (inclusive) have MSA values of ≤50%, whereas the 12 channels 
between 15.2 and 93 keV (inclusive) have MSA values of ≥85%. Another metric calculated with actual flux 
values—SSPB—shows the bias of the modeled fluxes compared to the observed fluxes. A model with zero bias 
would have an SSPB score of 0%. Deviations from 0 indicate either a systematic over-prediction (positive values) 
or a systematic under-prediction (negative values). For individual energy channels not listed in Table 2, SSPB 
shows that the model under-predicts all energies between 1 and 31 keV and has up to an 27% under-prediction  

Energy (in keV) 0.74 1.3 8.8 31 52 93 1–10 10–50

R* 0.63 0.65 0.76 0.74 0.72 0.75 0.76 0.79

PE* 0.39 0.42 0.57 0.55 0.49 0.54 0.58 0.62

MSA † 50% 46% 69% 87% 130% 130% 33% 77%

MSE* 0.14 0.15 0.20 0.20 0.36 0.39 0.09 0.17

SSPB † 1.2% −0.5% −6.8% −5.8% 20% 16% −11% −18%

IP † 73% 77% 61% 54% 44% 43% 84% 59%

Var(y)* 0.23 0.25 0.46 0.45 0.71 0.83 0.21 0.44

Var𝐴𝐴 (𝑦̂𝑦) * 0.10 0.11 0.25 0.26 0.30 0.38 0.11 0.29

Note. Columns show the calculated value for several different energy channels (energies in keV). Metrics calculated using 
log10 flux values are marked with *. Metrics calculated using actual flux values are marked with  †. All metrics are defined 
in Appendix B.

Table 2 
Selected Observed-Modeled Metrics Used in the Assessment of the Neural Network

Figure 2.  In each panel, observed flux is on the horizontal and predicted flux is on the vertical. A black dashed line shows hypothetical perfect prediction 
𝐴𝐴

(

log10𝑦̂𝑦 = log10𝑦𝑦
)

 . Red dash-dot lines show lines of 𝐴𝐴 log10𝑦̂𝑦 = log10𝑦𝑦 ± log102 . Points inside the red lines represent predicted flux that is within a factor of two of the 
observed flux. The number of overlapping points is shown using the color scale. Saturation in the number of points beyond the maximum of each color bar is shown as 
pink. Note that the color bar range is not the same for each panel.
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(at 26.4 keV). For energy channels <1 and >31 keV, the model over-predicts and has up to a 23% over-prediction 
(at 65.5 keV). The IP metric indicates the percentage of predicted points are within a factor of δ from the observed 
points. For our calculations, we used δ = 2. Overall, 59% of predicted points are within a factor of two of observed 
points. The same 21 channels that have MSA ≤100% also have IP ≥50%. The 26 keV energy channel has the 
lowest IP value of 40%. The predicted variance is systematically lower than the observed variance for all energy 
channels. In general, as the observed variance increases, the IP decreases. This indicates that the model is not able 
to capture large variations occurring on short time-scales.

Figure 3.  Energy spectrograms of observed and modeled particle number flux of the THEMIS-E spacecraft during April 2010 for periods that fit plasma sheet criteria. 
The middle panel shows an 8 hr period on 11 April. The bottom panel shows line plots for selected energies for observed and modeled flux during the same 8 hr period. 
THEMIS-E = Time History of Events and Macroscale Interactions during Substorms probe E.
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The possible values for PE are in (−∞, 1], with unity indicating perfect prediction and anything less than zero 
indicating that the prediction is worse than simply using the observed mean for every model value. All PE scores 
are well above zero, indicating that the model does have some skill in predicting the full test set. The MSE of all 
channels is low compared to the variance of either the observed or the modeled values, which indicates that the 
data-model errors are less than the spread of either set against their mean value.

3.2.  Local Model Performance

Aside from the global view of the model, we also probed whether the model has capability to capture small 
time-scale (sub-hourly) variations of plasma sheet electron flux. For this purpose, we selected a month of obser-
vations from a single spacecraft as it traversed into and out of the plasma sheet. We then zoomed in on 8 hr of 

single orbit and assessed the model performance using 𝐴𝐴

(

𝑦𝑦𝑦
̂
𝑦𝑦

)

 sample data from the month-long period and the 
8 hr sub-period.

3.2.1.  Qualitative Local Comparisons

Figure 3 is showing the energy spectrograms from both observed and modeled electron flux during 1–29 April 
2010, with the observed data from the THEMIS-E probe. The energy range is shown on the vertical axis, and 
spans the energy channels used for model development, from 82.5 eV to 93 keV. The color represents the 
electron differential number flux, with units of 1/[cm 2 s sr keV]. Flux ≥5.5 × 10 7 is shown as gray and flux 
≤3.5 × 10 3 is shown as black. White gaps between the flux data are times when the THEMIS-E probe was 
outside of our model domain and plasma sheet criterion. The sub-period (middle and bottom pairs of panels 
of Figure 3) ranges from 08:30 to 16:30 on April 11. For this 8 hr period, the horizontal axis is labeled with 
the time, radial distance, and MLT of the observations. The middle two panels is showing electron flux spec-
trograms, and the bottom two panels are showing line plots for every other energy channel of observed and 
modeled flux.

For the month-long period of April 2010, the modeled data are following the trend of the observed data well. In 
the 8 hr sub-period starting 08:30 11 April 2010, there are some noteworthy similarities and differences between 
the modeled and observed flux. As the magnitude of the observed flux increases, so too does the modeled flux. 
This is seen, for example, at 13:00, when there is a sharp rise in flux at all energies in observed data. The model 
also has an increase in flux, although it is not as sharp, but more gradually and the increase starts earlier, at 12:30. 
Also, as the spacecraft moves closer toward Earth, the flux values at all energies gradually rise, and this trend is 
matched by the modeled flux. Noticeably, the model does not resolve the variations that are occurring on minute 
timescales.

In Figure 4, we show the log10(observed/modeled) flux for the same periods as Figure 3. For both periods, it is 
easier to see when and at which energies the model over- or under-predicts. The month-long comparison (top 
panel) of Figure 4 shows that there are some orbits where ranges of flux were either highly under-predicted (blue/
gray color) or highly over-predicted (red/black color). Yet for the majority of the periods through the plasma 
sheet, the modeled flux is within 0.5 orders of magnitude of the observed (±0.5 on color scale). Similarly for 
the 8  hr period on April 11, there are ranges of energy, and for small amounts of time where the model is 
under-predicting the observations by more than an order of magnitude. These are most noticeable for >10 keV 
before 10:00, at 13:00, and 15:00–16:00.

3.2.2.  Local Metrics

We calculated the same metrics as in Section 3.1.2 using data for only the April 2010 period and 8 hr sub-period 
(see Table 3). For both the period and sub-period, the higher energies (>8 keV) are wholly under-predicted by the 
model. Yet, the trend of the observed flux for these energies is being followed, indicated by the higher R values. 
The higher variance of these energies is not able to be captured by the model, leading to low IP and high MSA 
values.
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However, for thermal energies (around 1 keV) where the bulk of the electrons are, the prediction is much better. 
These energies also have the least variance, and, as mentioned in Section 3.1.2, the model is not able to capture 
large variations occurring on small time-scales. In the 8 hr sub-period, the IP for these energies are above 90%, 
and the MSA values are below 30%, indicating a very high accuracy.

We also calculated metrics for six spatial bins, shown schematically in Figure 5. The bins are bounded by radial 
distance (6, 9, and 12RE) and MLT (18, 22, 02, 06). Metrics for two energy ranges 1–10 and 10–50 keV, calcu-
lated for these bins, are shown in Table 4. We show only metrics for energy ranges in Table 4 for conciseness and 
because the metrics for energy channels within each energy range are similar to the metrics for that range. As with 
previous metrics, the model has better accuracy at lower energies (1–10 keV) than at higher energies. Nearly all of 
the metrics for both the 1–10 and 10–50 keV energy ranges are better for distances >9RE than for distances <9RE. 
This is likely due to the sampling distribution (shown in Figure 1) having much higher samples at distances >9RE. 
Similarly for both energy ranges, the metrics show that the model performs better in the pre-dawn side (02-06 
MLT, regions A and D) than in the midnight region (22-02 MLT, regions B and E); and, better in the midnight 
region than the post-dusk side (18-22 MLT, regions C and F). The improvement in model performance as MLT 
approaches dawn can be attributed to the drastic decrease in the observed variance for the 1–10 keV energies for 
the pre-dawn sector versus the post-dusk sector. As shown in Figures 3 and 4 and Table 3, the model is not able 
to reproduce short time-scale variations. Therefore, in the pre-dawn region, when the observed fluxes do not vary 
as much, the model has better performance.

3.3.  Model Comparison

The Dubyagin et al. (2016) study modeled plasma sheet electron density and temperature using SW and IMF input 
parameters. The model, which we call Dubyagin2016, was developed using THEMIS data from geomagnetic 

Figure 4.  The log10 (observed/modeled) for the same periods shown in Figure 3.
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storm periods in the plasma sheet from 6 to 11 RE and 18-06 MLT (across midnight). We convert Dubyagin2016 
electron density and temperature into differential flux assuming either Maxwellian or Kappa distributions. When 

compared to THEMIS differential flux observations, Dubyagin et al. (2019) 
found that their derived flux differed by over an order of magnitude from 
observed flux for energies ≥40 keV. For thermal energies, ∼1 to 10 keV, the 
derived fluxes were within a factor of two of observed fluxes.

Here, we present the results of calculating the differential number flux 
at four reference energies for non-storm periods using the Dubyagin2016 
model, and their comparison with output from the model presented in this 
paper, which we refer to as SWPSNN (Solar Wind Plasma Sheet Neural 
Network). We use the orbit path of THEMIS-E during April 2010 to build 
input data sets for both the Dubyagin2016 and SWPSNN models. The 
observations are a subset of the SWPSNN test data set. They include times 
when the observations were valid for the SWPSNN and when there were 
no missing OMNI data. Due to excluding missing OMNI data entirely, 
rather than interpolating as was done for the data in Section 2.1.2.1, there 
are fewer data points for the period in this section than in Section  3.2. 
In Section 3.2, the number of points in April 2010 is 10,280, and in this 
section, the number of points for April 2010 is 8,048.

Figure 6 shows observed, SWPSNN, and Dubyagin2016 reconstructed elec-
tron flux at the four reference energies of 1, 9, 31, and 52 keV. Three differ-
ent distributions—Maxwellian, κ  =  4, and κ  =  2—were used to calculate 
the reconstructed flux from Dubyagin2016 electron density and temperature. 
Each panel shows the same 6-hr period, starting on 21 April 2010 1200 UT. 
The period chosen to show is representative of any such 6-hr period from the 
entire month of April 2010. For the thermal energies at 1 and 9 keV, κ = 2 
and 4 both are reasonable reconstructions of the observed flux. However, 

Energy (in keV) 0.74 1.3 8.8 31 52 93

1–29 April 2010 R 0.54 0.50 0.65 0.73 0.75 0.77

PE 0.17 0.24 0.37 0.29 0.28 0.32

MSA 59% 50% 85% 180% 220% 290%

MSE 0.14 0.12 0.21 0.41 0.48 0.56

SSPB 0.25% −3.9% −44% −140% −190% −250%

IP 66% 74% 55% 34% 29% 25%

Var(y) 0.16 0.15 0.34 0.58 0.66 0.82

Var𝐴𝐴 (𝑦̂𝑦) 0.06 0.05 0.21 0.37 0.39 0.46

08:30-16:30, 11 
April 2010

R 0.42 0.51 0.92 0.78 0.83 0.88

PE −0.84 −0.11 −0.54 0.29 0.30 0.39

MSA 25% 19% 140% 120% 140% 160%

MSE 0.03 0.02 0.15 0.35 0.36 0.41

SSPB −8.5% −7.8% −140% −110% −140% −160%

IP 91% 98% 30% 45% 33% 37%

Var(y) 0.02 0.02 0.10 0.50 0.52 0.66

Var𝐴𝐴 (𝑦̂𝑦) 0.03 0.02 0.18 0.24 0.25 0.31

Note. The format is similar to Table 2. Var(y) and 𝐴𝐴 Var (𝑦̂𝑦) are the observed and modeled sample variance, respectively.

Table 3 
Observed-Modeled Metrics Calculated for the Two Periods Shown in Figure 3 Only

Figure 5.  Spatial regions used for assessing the model's performance at 
different radial distances and local times.
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consistent with the Dubyagin et al. (2019) study, at the superthermal energies—31 and 52 keV, the Dubyagin2016 
reconstructed fluxes differ by more than an order of magnitude from observed fluxes.

In contrast, the SWPSNN model, built directly from fluxes, matches reasonably well with the observed fluxes at 
all of the energies shown in Figure 6.

Using the Dubyagin2016 electron density and temperature, we reconstructed flux for five energies—1, 9, 31, 52, 
and 93 keV—for all 8,048 points in the April 2010 period. The metrics for κ = 2 are shown in Table 5. Metrics 
for κ = 4 and Maxwellian Dubyagin2016 versions are available in Supporting Information S1. Listed in Table 5 
are metrics for five Dubyagin2016 modeled reference energies when compared to the THEMIS observations. The 
SSMSE (Skill Score using a reference Mean Square Error) row, shown in bold, compares the Dubyagin2016 model 
output with the SWPSNN by considering the ratio of their MSE values (see Appendix B). For these calculations, the 
Dubyagin2016 model was used as the reference model; therefore, any values in the SSMSE row greater than zero can 
be taken to mean that the SWPSNN has better skill than the Dubyagin2016 model, with comparative skill increas-
ing as the SSMSE metric goes closer to one. Considering all metrics in Table 5 shows that with increasing energy  

A B C D E F

Energy (in keV) 1–10 10–50 1–10 10–50 1–10 10–50 1–10 10–50 1–10 10–50 1–10 10–50

R 0.67 0.73 0.64 0.74 0.60 0.68 0.63 0.75 0.65 0.76 0.67 0.69

PE 0.44 0.42 0.37 0.50 0.33 0.45 0.38 0.56 0.43 0.57 0.44 0.48

MSA 31% 67% 58% 110% 150% 120% 25% 68% 27% 76% 67% 86%

SSPB −12% −47% −36% −46% −23% 4.1% −12% −19% −4.1% −10% −13% −5.8%

IP 93% 67% 71% 46% 39% 45% 96% 64% 92% 59% 61% 55%

Var(y) 0.07 0.21 0.18 0.47 0.64 0.49 0.04 0.31 0.07 0.40 0.41 0.32

Table 4 
Selected Metrics for Spatial Subregions A to F Shown in Figure 5

Figure 6.  Comparing Dubyagin2016 flux from Maxwellian, κ = 4, and κ = 2 distributions with the Solar Wind Plasma Sheet Neural Network and with Time History of 
Events and Macroscale Interactions during Substorms observations.
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above the thermal range (1–10 keV), the performance of the Dubyagin2016 
model decreases substantially faster than does the performance of the 
SWPSNN model. The IP, similarly to Tables 2–4, shows the percentage of 
predicted flux that is within a factor of two of the observed. For <10 keV, 
Dubyagin2016 predicts roughly half of the flux to be within a factor of 2. 
However, at 31 keV the IP value drops to around a quarter and less for higher 
energy. We also see vastly decreasing accuracy and bias for the 31, 51, and 
93 keV Dubyagin2016 fluxes, with the 52 and 93 keV fluxes at 630% and 
1,400% MSA errors, respectively. Meanwhile, the SWPSNN flux, while also 
decreasing accuracy for increasing energies, does not suffer as dramatic loss 
in MSA (i.e., see Table 3), and the SWPSNN for the higher energies shows 
much greater skill (0.56 and 0.70 SSMSE for 52 and 93 keV, respectively) than 
the Dubyagin2016 model.

3.4.  Driving Parameter Importance

Extracting information from black-box type machine learning models, such as the one used by us, is important if we 
are trying to understand the reasoning why the model performed either well or poorly. We additionally seek to use 
the model as a tool to infer relationships between input and output parameters of the modeled system. For neural 
networks, there are now available several techniques to extract and rank the importance of individual inputs that 
were used by the model to make its predictions. Ranking inputs in this way, while not providing insight into how a 
particular input is related to a particular prediction, will nonetheless provide useful information about which inputs 
warrant further study and analysis or which may be inconsequential to the system which we are trying to predict.

3.4.1.  Driving Parameter Ranking With DeepSHAP

Of the 426 individual inputs, there are 9 input types, listed in Figure 7, that we consider to be driving parameters of 
electron flux in the plasma sheet. For determining the importance of each driving parameter to our model output, we 
use an algorithm called DeepSHAP, which is a combination of SHapley Additive exPlanations (SHAP) (Lundberg 
& Lee, 2017) and Deep Learning Important FeaTures (Shrikumar et al., 2017) techniques. The DeepSHAP algo-
rithm uses Shapley values (Shapley, 1953) to estimate the relative contribution from each input (one of 426 compo-
nents of 𝐴𝐴 𝐴𝐴𝐴 ) that went into producing each output (one of 31 log10 flux values in 𝐴𝐴 𝐴𝐴𝐴 ). We refer the reader to Lundberg 
and Lee (2017) and Shrikumar et al. (2017) for detailed descriptions of how DeepSHAP works.

We used the DeepSHAP algorithm to calculate SHAP values using 200 randomly sampled inputs from the test 
set. We calculated the importance of model output with data from the test set since these were not used during 
the training of the model. The DeepSHAP algorithm provided SHAP values for each sample example (200), for 
each input (426), for each output (31). The next steps describe how we parsed these 2,641,200 SHAP values in 
the 200 × 426 × 31 array. (a) We start by taking the absolute value of all SHAP values, |SHAP|. The SHAP values 
could be positive or negative depending on how each input was weighted; however, we are interested only in the 
absolute contribution of each input. (b) We add the |SHAP| values across energy channels, 𝐴𝐴

∑𝐸𝐸𝑛𝑛

𝐸𝐸𝑖𝑖

|SHAP| , resulting 
in a 200 × 426 array. (c) For the 200 samples, we calculate the sample mean, standard deviation, and uncertainty 
of the 𝐴𝐴

∑𝐸𝐸𝑛𝑛

𝐸𝐸𝑖𝑖

|SHAP| values. The uncertainty is defined as the standard deviation of the mean (𝐴𝐴 SDOM =
𝜎𝜎𝑠𝑠
√

𝑁𝑁

 , where 
σs is the sample standard deviation and N is the sample size). The values of the 200 samples from step 2 were 
replaced by their mean and uncertainty, reducing the array to 2 × 426. (d) We organized the inputs as driving 
parameters by grouping the time steps of similar parameters. For example, the driving parameter VSW contains 
all 47 time steps of the SW speed (and similarly for all other inputs with time history). The Location parameter 
contains the radial distance, cos ϕ, and sin ϕ inputs; although, we do not consider the Location to be a “driving” 
parameter per se. (e) The contribution to model output of each parameter, as defined in step 4, is the sum of the 
sample means from step 3 within each parameter grouping. Likewise, the uncertainty in the contribution of each 
parameter is the sum of the uncertainties calculated in step 3. We added the means (as opposed to taking the 
maximum, e.g.,) to equally account for the contribution from all time steps for each parameter with time history. 
This reduced the array to a 2 × 10 (sum of means and sum of uncertainties by the 10 input parameters). (f) We 
repeated steps 2–5 for each desired energy group: all energies modeled (0.08–93 keV; all energy channels), low 
energy (0.5–1 keV), medium energy (1–10 keV), and high energy (10–50 keV).

Energy (keV) 1 9 31 52 93

SSMSE 0.48 0.28 0.40 0.56 0.70

R 0.19 0.54 0.71 0.70 0.68

MSA 88% 98% 290% 630% 1,400%

SSPB 55% −20% 290% 630% 1,400%

IP 54% 51% 27% 17% 8%

Note. The SSMSE metric (bold row) compares the Dubyagin2016 model to the 
Solar Wind Plasma Sheet Neural Network (SWPSNN) model directly: scores 
that are >0 indicate that the SWPSNN model outperforms the Dubyagin2016 
model.

Table 5 
Metrics Calculated for Available Dubyagin2016 (κ = 2) Model Output for 
April 2010
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The contributions of each of the driving parameters to model outputs are shown in Figure 7. We have 10 param-
eters, listed on the vertical axis. The “Location” parameter includes the contribution of the radial distance, cos ϕ, 
and sin ϕ inputs. The Location is included in this analysis as it is an input to the model; however, we do not 
consider the sampling location to be an external driving parameter of plasma sheet electron flux. The driving 
parameters—VSW through BZ,ULF in Figure 7—include the contribution of that input at each time step from −10 to 
−240 min in 5 min increments. The inputs VSW through BZ,ULF are all of the parameters external to the magneto-
sphere, and we therefore consider them as driving parameters to plasma sheet electron flux. For each parameter, 
we calculated four different contributions, shown using four different colored bars. The contribution of each 
parameter to the full model output, comprising all 31 energy channels modeled, from 0.083 to 93 keV, is shown 
as cyan. The tan bars show the relative contribution of each parameter to only those channels in the energy range 
0.5–1 keV. Similarly, the green bars are for modeled energy channels between 1 and 10 keV, and the magenta 
bars are for modeled energy channels between 10 and 50 keV. The parameters on the vertical axis are listed in 
descending order of contribution to the full model output (all energy channels, cyan bars). Uncertainties for each 
contribution are shown with black horizontal lines and represent the ±SDOM.

Figure 7 shows that the least important driving parameters to model output are the coupling functions Pα1 and 
NXCF, the IMF Bz ULF wave power, and IMF BY. For the “all energies modeled” group (full model output), the 
most important driving parameters are the SW speed (VSW), the rectified SW electric field (VBS), and the IMF BZ. 
For lower energies (0.5–1 keV), SW proton number density, NSW, ranks as most impactful driving parameter, and 
for the 1–10 keV energy range, VBS is the most impactful driving parameter.

We did not investigate the importance of time history of the inputs because many of them are highly autocor-
related. For example, VSW has a 4-hr Pearson product-moment autocorrelation of 0.96 (see also Figure 8). On a 
global scale, whichever VSW time step ranked the highest would be irrelevant to its actual importance, because the 
autocorrelation value implies that all other time steps would be almost equally as important. Nonetheless, investi-
gating the time history importance of the driving parameters is a consideration for further investigation. Any such 
investigation is inherently complicated due to the intercorrelated nature of SW parameters and their time history 
(e.g., Borovsky, 2018). Furthermore, the interpretation of DeepSHAP output is difficult when assessing input 
variables that have correlation with each other. As shown in the next section, most of the input variables are not 
correlated. We further discuss the limitation of the DeepSHAP method for input variables Pα1 and NXCF, which 
have high correlation, in Section 4.

Figure 7.  Input rankings by type of parameter. The parameters are listed by rank order according to their contribution for the 
full model output. Input contribution for subsets of model output, denoted by energy, are shown using different colored bars. 
The uncertainty of each bar represents the standard deviation of the mean. See text for further description.
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3.4.2.  Driving Parameter Correlations

In Figure 8, we show the Spearman's rank correlation coefficients of driving parameters with one another, along 
with the Pearson product-moment autocorrelation of each parameter. We excluded the position parameter from this 
part of the analysis because we are only concerned with inputs which have time history. The left panel of Figure 8 
shows Spearman's rank correlation of driving parameters for all samples from the combined train, validation, and 
test data. The Spearman's rank correlation assesses the monotonic relationship between variables regardless of the 
linearity of such relationships. It is an appropriate measure of correlation in our case, since the neural network is a 
non-linear function approximator. Mostly, the parameters are not correlated with each other. The largest correlation 
between two parameters are the coupling functions Pα1 and NXCF, which is expected as these two coupling functions 
share common factors in their calculations. Similarly, IMF BZ and VBS have positive correlation. NSW and VSW have 
negative correlation, as expected (e.g., Le Chat et al., 2012). Aside from these and other minor correlations between 
the remaining parameters, there is generally a lack of rank correlation. In contrast, the autocorrelation of each driv-
ing parameter with its own time history is markedly much higher. In the nine right panels of Figure 8, we show the 
autocorrelation of each parameter using the combined train and test sets as the observed sample. In each panel, the 
correlation of input I at time ta is correlated with I at time tb and |ta − tb| ranges from 0 to 230 min. The parameter with 
the highest autocorrelation is FISM-2, having a 230 min correlation of >0.99. The parameter with the least amount 
of auto-correlation—BZ,ULF—has a 230 min correlation coefficient of 0.14.

4.  Discussion
Our assessment of the model is that it captures the variations of electron flux in the near-Earth plasma sheet 
overall, which is supported by the model-observation goodness-of-fit metrics. In Table 2, our model accuracy 
metric, MSA, is between 46% and 130%. We see also in Figure 2 that the bulk of modeled flux values are within 
a factor of 2 (in between the red lines) for all energies and energy ranges shown. An overall bias does exist, where 
for energies 1–31 keV the model has an under-prediction of ≤27% and an over-prediction of ≤23% for <1 and 
>31 keV energies. The metric values of R and PE likewise depend on energy. For individual energy channels, R 
values range from 0.59 to 0.77 and PE values range from 0.34 to 0.59. The PE values are well above zero for each 
channel, showing the skill that this model has in predicting plasma sheet flux.

We compared the model from this paper to a reference model whose output is electron density and temperature. 
From these bulk plasma properties, and assuming a distribution function such as Maxwellian, we can obtain 

Figure 8.  The Spearman rank correlation coefficients of the driving parameters (left panel). The auto-correlation of each driving parameter with itself is shown in the 
nine rightmost panels. The center color scale applies to all panels.
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differential electron flux at any energy. The results of a direct comparison between the Dubyagin2016 model 
and this paper's model, the SWPSNN, show that the SWPSNN model has better predictive skill at all energies, 
and this skill improves with increasing energy above the thermal energy range (above 1–10 keV). Overall, the 
SWPSNN model, built on fluxes as recommended by Dubyagin et al. (2019), is better at than the Dubyagin2016 
model at reproducing suprathermal flux in the near-Earth plasma sheet.

Despite overall improvements, the model fails to capture sub-hourly variations. Although variations on these times-
cales in the plasma sheet are clearly occurring in the observed data (i.e., Figure 3), the model cannot predict them. 
A couple of explanations for this deficiency are plausible. First, the inputs to the model, although used at a 5-min 
resolution, do not themselves typically have much variance on these short time scales. In Figures 7 and 8, we see 
that the driving parameters that have the most influence on model prediction also have some of the highest amounts 
of autocorrelation. The VSW input, for example, has a 4-hr autocorrelation of >0.96. The next two most impactful 
inputs, VBS and IMF BZ, have 4-hr autocorrelations of >0.26 and 2-hr autocorrelations of >0.37. Indeed, many 
previous studies have examined the hours-long autocorrelation of SW and IMF parameters at 1 AU (e.g., Gosling 
& Bame, 1972; King & Papitashvili, 2005; Richardson & Paularena, 2001; Wicks et al., 2010). Since the model's 
most impactful driving parameters have hours-long auto-correlation, we surmise that it was unlikely that this model 
would be able to consistently predict magnetospheric variations on timescales less than that by which the model 
inputs are appreciably varying. Denton et  al.  (2019) faced a similar problem with their model being unable to 
account for variations in the plasma sheet that are occurring on timescales shorter than that of their input parameters 
(for which they used the Kp index with a 3-hr cadence). Second, much of the short time-scale variation seen in the 
observed flux data is the result of local plasma processes that are occurring within  the plasma sheet, albeit influ-
enced by external drivers. That is, the plasma sheet in general is responding to the SW variations, such as increased 
cross-tail electric field due to increased SW convectional electric field. But on local scales—both temporally and 
spatially—electrons in the plasma sheet are beholden to respond to the local forces acting on them.

The FISM-2 driving parameter provides a relatively high contribution to model output, at 9%–10% for all energy 
groups. FISM-2 represents the flux for photons at energies between 19 and 23 eV. The long-term trend in the flux of 
photons at these energies are highly dependent on the 11-year sunspot cycle and the ∼28-day solar rotation period. 
As the sunspot cycle phases from solar minimum to solar maximum, background (non-flare) solar EUV flux varies 
from low to high. By including FISM-2 model output as an input to our model, we therefore included information 
about the overall solar activity congruous with the sunspot cycle and the solar rotation period. That levels of solar 
activity hold sway over electrons in the plasma sheet has been modeled by Yue et al. (2015) and Zou et al. (2020). 
In Yue et al. (2015) study, the sunspot number was used as an indicator for plasma sheet pressure. Zou et al. (2020) 
included F10.7 (as possibly a proxy for sunspot number and/or solar EUV flux) as an input to their model. A possi-
ble explanation for an effect of solar activity on the near-Earth electron plasma sheet is that increased solar EUV flux 
will create a higher dayside ionospheric conductance from increased photoionization. Increased dayside conduct-
ance drives stronger field-aligned Region 1 and 2 currents between the plasma sheet and nightside ionosphere 
(Ohtani et al., 2014). The result is increased ionospheric outflow to the plasma sheet, leading to background plasma 
sheet electron flux levels that are dependent on the solar cycle. An investigation into any direct links between solar 
flare impact events or solar rotation and plasma sheet electron flux dependence is a consideration for a future study.

Two of the three SW-magnetosphere coupling functions, similar in form to 𝐴𝐴 𝐴𝐴 𝐴𝐴sin
𝛼𝛼

(

𝜃𝜃

2

)

 , (where α is optimized 
for correlation with some geomagnetic index and θ is the IMF clock angle), had meager impact on model output. 
Functions that contain the sine of the clock angle not being an important contribution to modeled electron 
flux in the plasma sheet conflicts with one of the results from the Stepanov et  al.  (2021) study, which had 

identified 𝐴𝐴 𝐴𝐴𝑘𝑘𝑘𝑘 = 𝑉𝑉 𝑉𝑉𝑋𝑋𝑋𝑋 sin
2

(

𝜃𝜃

2

)

 as a main driver of near-Earth plasma sheet 10–200  keV electron flux. The 
SW-magnetosphere coupling functions that we used, NXCF and Pα1, and especially their α parameter, were opti-
mized to best correlate with a particular geomagnetic index, and not with the electron flux variations within 
the plasma sheet directly. Although our model did not weight these coupling functions very much, it remains 
inconclusive whether they could—after optimizing them for the plasma sheet—provide a larger contribution to 
the driving of plasma sheet electron flux. Moreover, these coupling functions are highly correlated with each 
other, which makes their ranking from the DeepSHAP method more difficult to interpret. It is unlikely that the 
DeepSHAP algorithm could distinguish between these inputs to the model when assigning importance weight-
ings. The full contribution of SW-magnetosphere coupling functions to plasma sheet electron flux variations is a 
consideration for further study.
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The least important input to impact model output was the IMF BZ wave power. Although Wang et al.  (2017) 
found some dependence of plasma sheet electron temperature to BZ,ULF, the dependence was limited compared to 
the larger domain of our model. In Wang et al. (2017), the BZ,ULF was only relevant to plasma sheet temperature 
during strong BZ,ULF and weak or northward IMF. Our model, not selecting for these conditions, failed to assign 
much weight to the BZ,ULF inputs. Moreover, we are predicting electron fluxes at individual energies, whereas the 
Wang et al. (2017) study was investigating BZ,ULF on electron temperature only.

The Zou et al. (2020) study, similar in scope to this paper, modeled near-Earth plasma sheet 0.06–293 keV differ-
ential electron flux with R values above 0.91 and MSE values less than 0.13 (for comparison, see Table 2). In 
contrast to this paper, the Zou et al. (2020) model used inputs that were internal to the magnetosphere (geomag-
netic indices) and input time history of 48  hr, both of which could add sufficient information of near-Earth 
electron flux variations to obtain such high correlation coefficients and low MSE values. Indeed, Stepanov 
et al. (2021) found that 10 − 200 keV electron flux in the near-Earth plasma sheet has a response “memory” to Ekl 
of up to 24 hr. Increasing the time history of the SWPSNN model input parameters is a consideration for a future 
investigation to further quantify the response of electron flux in the plasma sheet to longer durations of variations 
in these parameters. Geomagnetic indices and their time history may also be added to the SWPSNN model in a 
future study to investigate the correlation of plasma sheet electron flux with geomagnetic disturbances.

Uncertainty within the model comes from uncertainty in the SW measurements and their assumed propagation 
from L1 to the Earth's bow shock (e.g., King & Papitashvili, 2005; Weimer & King, 2008). There is also uncer-
tainty that arises in using data from a single mission in training the model. For example, comparisons between 
THEMIS electron flux and other spacecraft, such as the LANL geosynchronous satellites, have shown a consistent 
offset in observed fluxes (Ni et al., 2011). Uncertainty also comes from the lack of information about local elec-
tron acceleration and transport processes occurring within the plasma sheet. We did not select any specific periods 
of geomagnetic activity when selecting the data that was used for the development of this model. Therefore, the 
minute-averaged data were sampled from the prevailing distribution of geomagnetic activity. Over long periods, this 
is dominated by quiet conditions (see, e.g., bottom panels in Figure 1 of Ganushkina et al. (2021), which shows the 
occurrence frequencies of geomagnetic index values over 16 years). Consequently, the periods in our data set where 
a large variation in flux occurred on short timescales were very few compared to periods where flux remained rela-
tively constant. It is most likely that the algorithm optimized for the over-abundance of quiet geomagnetic activity 
samples. If we were to retrain the neural network but include only times during high geomagnetic activity as samples 
for training, it is possible that we would obtain different results. This is a consideration for a future study.

5.  Conclusions
Suprathermal electrons from the plasma sheet appreciably contribute to inner magnetosphere dynamics and 
severe space weather environments at GEO and MEO. Specifying the intensity, duration, and location of elec-
tron flux enhancement in the near-Earth plasma sheet is important for increased understanding, improved fore-
casting, and potentially obtaining more accurate boundary conditions for physics-based inner magnetosphere 
models. Using empirical modeling, we investigated three relationships between solar driving and electron flux 
in the plasma sheet: (a) the possibility of using high resolution SW input parameters to improve predictions of 
short-term plasma sheet electron flux variations; (b) the indirect influence of solar EUV flux; and (c) whether 
SW-magnetosphere coupling functions are an important driver of plasma sheet electron flux.

The model is a neural network that predicts 0.08–93 keV electron flux in the near-Earth plasma sheet from 6 to 
12RE in radial distance and 18-06 MLT in azimuthal range. We trained the model using 12 years of data from 
the THEMIS mission to sample the plasma sheet, and all of the model's driving parameters are external to the 
magnetosphere: SW and IMF data from OMNI, and solar EUV flux from FISM-2. Our findings are the following:

1.	 �Short-term variations—≲1  hr—of electron flux in the plasma sheet are not predicted from high 
resolution—5 min—SW input parameters.

2.	 �The most important drivers of the modeled flux are IMFBZ, VSW, and VBS, which is consistent with previous 
studies. Solar EUV flux provided a contribution to model output, yet was markedly not as influential as 
IMFBZ, VSW, VBS, or NSW.

3.	 �SW-magnetosphere coupling functions with a 𝐴𝐴 sin
𝛼𝛼

(

𝜃𝜃

2

)

 term and BZ,ULF are amongst the least important exter-
nal drivers of modeled plasma sheet electron flux.
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The model has potential to be used as a representation of plasma sheet electron flux, given inputs of upstream 
SW, and solar EUV photon flux. It could be used as a boundary condition for first-principles based inner 
magnetosphere models or as part of a specification model for the electron radiation environment of near-Earth 
space.

Appendix A:  Calculation of BZ,ULF

Figure A1 shows an example of the wave spectra and calculated wave power index, BZ,ULF, for a 3 hr period on 12 
March 2009. We show the interplanetary magnetic field (IMF) BZ from OMNI in panel (a). Panel (b) shows the 
wave spectra from 0 to 8 mHz. Panel (c) is the calculated BZ,ULF index found by adding all the spectra from 1.667 
to 6.667 mHz at each time step. Panel (d) shows the standardized BZ,ULF using Equation 2. The climatic mean and 
standard deviation were calculated with the period from January 2008 through December 2020.

Figure A1.  A period of 3 hr of interplanetary magnetic field BZ (a); the ultra-low frequency (ULF) wave spectra in the Pc5 
band (b); BZ,ULF index (c); and standardized BZ,ULF (d). In panels (c and d), the climatic BZ,ULF mean and standard deviation are 
shown with dash-dot and dashed lines, respectively.
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𝑤𝑤(𝑛𝑛) = 0.5 − 0.5 cos
(

2𝜋𝜋𝜋𝜋

𝑀𝑀 − 1

)

� (A1)

In Equation A1, 0 ≤ n ≤ M − 1, M is the number of points, and w(n) is the value of the Hann window at the nth 
point. A summary of our steps (modified from Wang et al. (2017)) is as follows:

1.	 �Fill missing data with an Akima spline cubic interpolation (Akima, 1970).
2.	 �Remove the background by subtracting a 60 min rolling mean from the original signal.
3.	 �For a window of 30 min, shifted each minute, we calculated the wave spectra from the Fast Fourier Transform 

coefficients of the smoothed signal. In this step, the smoothed IMF BZ signal was first shaped by a Hann 
window (Equation A1).

4.	 �The wave power index was calculated by adding the spectra in the Pc5 ultra-low frequency band 
(1.667–6.667 mHz).

Appendix B:  Metric Definitions
The metrics used in our study are defined for reference in Table B1.

Metric Common name Formula Range Optimal

R Pearson correlation coefficient
𝐴𝐴

𝑛𝑛
∑

𝑖𝑖=1
[𝑦𝑦𝑖𝑖−𝑦̄𝑦][𝑦̂𝑦𝑖𝑖− ̄̂𝑦𝑦]

√

𝑛𝑛
∑

𝑖𝑖=1
[𝑦𝑦𝑖𝑖−𝑦̄𝑦]

2

√

𝑛𝑛
∑

𝑖𝑖=1
[𝑦̂𝑦𝑖𝑖− ̄̂𝑦𝑦]2

 
[ − 1, 1] 1

PE Prediction efficiency 𝐴𝐴 1 −
MSE(𝑦𝑦𝑦 𝑦𝑦𝑦)

Var(𝑦𝑦)
  (−∞, 1] 1

SSMSE Reference skill score 𝐴𝐴 1 −
MSE(𝑦𝑦𝑦 𝑦𝑦𝑦)

MSEr (𝑦𝑦𝑦 𝑦𝑦𝑦𝑟𝑟)
  (−∞, 1] 1

MSA Median symmetric accuracy
𝐴𝐴 100

(

𝑒𝑒
M

(

|

|

|

|

ln
(

𝑦̂𝑦

𝑦𝑦

)

|

|

|

|

)

− 1

)

 
[0, ∞) 0

MSE Mean square error
𝐴𝐴

1

𝑁𝑁−1

𝑁𝑁
∑

𝑖𝑖=1

(𝑦̂𝑦𝑖𝑖 − 𝑦𝑦𝑖𝑖)
2 

[0, ∞) 0

SSPB Symm. signed % bias
𝐴𝐴 100

(

sign

[

M
(

ln
(

𝑦̂𝑦

𝑦𝑦

))])

(

𝑒𝑒

|

|

|

|

M
(

ln
(

𝑦̂𝑦

𝑦𝑦

))

|

|

|

| − 1

)

 
(−∞, ∞) 0

IP Inclusion parameter
𝐴𝐴 100

(

1

𝑁𝑁

𝑁𝑁
∑

𝑖𝑖=1

bool

[

max

(

𝑦𝑦𝑖𝑖

𝑦̂𝑦𝑖𝑖

,
𝑦̂𝑦𝑖𝑖

𝑦𝑦𝑖𝑖

)

≤ 𝛿𝛿

]

)

 
[0, 100] 100

Var Sample variance
𝐴𝐴

1

𝑁𝑁−1

𝑁𝑁
∑

𝑖𝑖=1

(𝑦𝑦𝑖𝑖 − 𝑦̄𝑦)2 
n/a n/a

𝐴𝐴 𝐴𝐴𝐴  Sample mean 𝐴𝐴
1

𝑁𝑁

∑𝑁𝑁

𝑖𝑖=1
𝑦𝑦𝑖𝑖  n/a n/a

Note. In all formulas, y is the observed sample and 𝐴𝐴 𝐴𝐴𝐴 is the modeled sample. M is the median function. MSEr and 𝐴𝐴 𝐴𝐴𝐴𝑟𝑟 are the 
mean squared error and modeled sample, respectively, of a reference model. The Range column shows the possible values for 
each metric. The Optimal column shows the value for each metric if the model has perfect data-model comparison.

Table B1 
Definitions of the Metrics Used in the Study
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Data Availability Statement
Model implementation source code and examples are provided at https://github.com/briswi/ESWPSNN. The 
source code is also released with a DOI at https://doi.org/10.5281/zenodo.7083352 (Swiger, 2022). Flare Irradi-
ance Spectral Model Version 2 data are available from the LASP Interactive Solar Irradiance Data Center data 
center (https://lasp.colorado.edu/lisird/). OMNI and Time History of Events and Macroscale Interactions during 
Substorms data are available via CDAWeb (https://cdaweb.gsfc.nasa.gov/). The input and output data for the new 
model is deposited at the DeepBlue Data Repository (https://deepblue.lib.umich.edu/data), and can be accessed 
publicly at https://doi.org/10.7302/araa-6f62 (Swiger et al.,   2022). The authors thank developers of SpacePy, 
Matplotlib, pandas, TensorFlow/Keras, Hyperopt, and SHAP for making their software free and open source.
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