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ABSTRACT
Background: Postoperative hemodynamic deterioration among cardiac 
surgical patients can indicate or lead to adverse outcomes. Whereas pre-
diction models for such events using electronic health records or physiologic 
waveform data are previously described, their combined value remains incom-
pletely defined. The authors hypothesized that models incorporating electronic 
health record and processed waveform signal data (electrocardiogram lead II, 
pulse plethysmography, arterial catheter tracing) would yield improved perfor-
mance versus either modality alone.

Methods: Intensive care unit data were reviewed after elective adult car-
diac surgical procedures at an academic center between 2013 and 2020. 
Model features included electronic health record features and physiologic 
waveforms. Tensor decomposition was used for waveform feature reduction. 
Machine learning–based prediction models included a 2013 to 2017 training 
set and a 2017 to 2020 temporal holdout test set. The primary outcome was 
a postoperative deterioration event, defined as a composite of low cardiac 
index of less than 2.0 ml min˗1 m˗2, mean arterial pressure of less than 55 
mmHg sustained for 120 min or longer, new or escalated inotrope/vasopres-
sor infusion, epinephrine bolus of 1 mg or more, or intensive care unit mortal-
ity. Prediction models analyzed data 8 h before events.

Results: Among 1,555 cases, 185 (12%) experienced 276 deterioration events, 
most commonly including low cardiac index (7.0% of patients), new inotrope (1.9%), 
and sustained hypotension (1.4%). The best performing model on the 2013 to 
2017 training set yielded a C-statistic of 0.803 (95% CI, 0.799 to 0.807), although 
performance was substantially lower in the 2017 to 2020 test set (0.709, 0.705 
to 0.712). Test set performance of the combined model was greater than corre-
sponding models limited to solely electronic health record features (0.641; 95% 
CI, 0.637 to 0.646) or waveform features (0.697; 95% CI, 0.693 to 0.701).

Conclusions: Clinical deterioration prediction models combining electronic 
health record data and waveform data were superior to either modality alone, 
and performance of combined models was primarily driven by waveform data. 
Decreased performance of prediction models during temporal validation may be 
explained by data set shift, a core challenge of healthcare prediction modeling.
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EDITOR’S PERSPECTIVE

What We Already Know about This Topic

•	 Hemodynamic deterioration after cardiac surgery can range from 
easily reversable to severe sustained events and may lead to clini-
cally relevant adverse outcomes

•	 Clinicians currently rely on close clinical observation and experien-
tial judgment to anticipate and treat such events

•	 Little is known regarding machine learning approaches to real-
time prediction after cardiac surgery based on data available at the 
bedside in the electronic health record or features extracted from 
commonly used physiologic monitoring devices

•	 The authors have previously developed advanced signal process-
ing techniques for feature extraction from lead II of the elec-
trocardiogram, the invasive arterial waveform, and peripheral 
plethysmography

What This Article Tells Us That Is New

•	 In this single-center, retrospective cohort study, the authors stud-
ied machine learning–based prediction models for postoperative 
hemodynamic deterioration using discrete electronic health record 
and continuous physiologic waveform data, alone or in combination, 
for 1,555 patients after cardiac surgery

•	 All patients had pulmonary artery catheters placed during surgery 
per institutional protocol, allowing the thermodilution-derived car-
diac index to be included as a key component of the composite 
hemodynamic endpoint

•	 The best performing model in the training data set (2013 to 2017) 
used both data sources (area under the curve, 0.803) but was pri-
marily driven by waveform data, suggesting that a black box wave-
form approach alone may have clinical utility in this setting

•	 However, validation of these approaches in a later data set (2017 to 
2020) showed substantially decreased performance (area under the 
curve, 0.709), most likely consistent with the phenomena of data set shift
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Approximately 300,000 patients across the United States 
undergo cardiac surgeries annually, and nearly all receive 

postoperative intensive care unit (ICU) care.1 In the ICU, up 
to 20% of cardiac surgical patients incur complications,2,3 asso-
ciated with $36,000 increased cost per case and up to eight-
fold increased adjusted odds of mortality.4–6 Postoperative 
hemodynamic deterioration, either secondary to structural 
heart complications from the surgery or as a manifestation 
of underlying pathophysiologic processes exacerbated by the 
surgical insult, may lead to inadequate end-organ perfusion 
and precipitate life-threatening adverse events.7,8 However, 
if identified early, appropriate treatments—including fluid 
resuscitation, pharmacologic therapies, mechanical ventila-
tion management, and procedural interventions—may pre-
vent or diminish postoperative adverse outcomes.9 Through 
potentially reducing rates of failure to rescue, early detection 
and management of hemodynamic deterioration represent 
opportunities for significant reductions in healthcare costs 
and improved outcomes.10,11

In the ICU, a wealth of electronic health record data is 
collected postoperatively. In addition to electronic health 
record data, high-fidelity physiologic waveform data con-
taining valuable diagnostic information are increasingly 
collected in perioperative and critical care settings.12 With 
such data sources growing in size and complexity, emerg-
ing demands may be placed upon skilled ICU teams to 
synthesize, interpret, and act upon acute patient condi-
tions conveyed through the data. In many cases, hemody-
namic deterioration is recognized in a timely fashion, and 
life-saving treatments are administered. However, occa-
sionally, recognizable features of hemodynamic deteriora-
tion are elicited, but due to cognitive overload or limited 
ICU clinical team resources, synthesis and interpretation 
of such features are delayed, and opportunities for early 

interventions are missed.13 Still, in other cases, subclini-
cal features of deterioration may elude human clinician 
detection before clinically overt patient compromise, and 
opportunities for early interventions are also missed.14,15 
Data science approaches may overcome such issues 
through improved synthesis of diverse, complex health 
data for detecting digital signatures of early-stage clinical 
deterioration.16–20

Through this observational study of high-fidelity elec-
tronic health record and physiologic waveform ICU data 
from an academic quaternary care hospital, we leveraged 
machine learning techniques for early detection of post-
operative deterioration among patients undergoing cardiac 
surgical procedures. We hypothesized that patterns exist 
within both electronic health record data and physiologic 
waveform data predictive of hemodynamic deterioration 
and that the performance of models using both electronic 
health record and physiologic waveform data to predict 
postoperative deterioration is superior to models using 
either modality alone.

Materials and Methods

Study Design

We followed multidisciplinary guidelines for developing 
and reporting of machine learning predictive models21 
and strengthening the reporting of observational stud-
ies in epidemiology22 throughout conducting this study 
(Supplemental Digital Content 1, http://links.lww.com/
ALN/C892). We obtained institutional review board 
approval (HUM00092309) for this observational study, and 
patient consent was waived. We established an a priori study 
protocol and registered our observational study within a 
peer-review forum before data access.23
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Study Population

We studied elective cardiac surgical procedures with full 
cardiopulmonary bypass performed on adult patients from 
February 1, 2013, to January 31, 2020, at our quaternary 
care center. For purposes of developing a cohort reflective 
of typical cardiac surgical procedures, we restricted our 
cohort to patients more than 40 yr old undergoing coro-
nary artery bypass grafting, valve, and thoracic aortic pro-
cedures performed in isolation or combination. Procedures 
were limited to open cardiac procedures; transcatheter or 
robotic procedures were excluded. Cases were restricted to 
those with valid postoperative ICU physiologic waveform 
data available within the waveform repository (Michigan 
Anesthesiology Informatics and Systems Improvement 
Exchange, Ann Arbor, Michigan). To enable ascertain-
ment of all possible deterioration events including pulmo-
nary artery catheter–derived cardiac output (described in 
Appendix 2), we additionally restricted cases to those per-
formed on patients with pulmonary artery catheter moni-
toring, as was our institutional practice pattern for cardiac 
surgical patients during the study period.

Data Source and Model Features

The data were extracted from the electronic health record 
(Epic Systems Corporation, Verona, Wisconsin) within the 
cardiovascular ICU of our institution. Prediction model 
features were selected on the basis of electronic health 
record and waveform data potentially available in near-
real time at the point of care, among which included those 
in previously described cardiac surgical risk models24 and 
other commonly used critical illness scoring systems.25,26 
These included patient demographics and comorbidities, 
lab values, surgical details, left ventricular ejection fraction, 
and nurse-validated vital signs, as well as features extracted 
from three widely available physiologic waveforms avail-
able during postoperative ICU care: an electrocardiogram 
(ECG) lead II (240 Hz sampling rate), an invasive arterial 
line (120 Hz), and a pulse plethysmographic waveform 
generated from a pulse oximeter (60 Hz). Additional phys-
iologic waveforms available in a subset of patients (central 
venous pressure, pulmonary artery pressure) were not used 
in this study, due to (1) incomplete data, (2) nonrandom 
missingness, (3) frequent episodes with unusable data due 
to waveform artifact (e.g., clamped line, wedged catheter, 
fluid/infusion-induced alterations), and (4) an inability to 
generalize the models developed to other ICU populations 
for which such waveforms were not commonly available. 
Waveform data were collected with a physiologic data inte-
gration system (Capsule, Capsule Technologies, USA).

Primary Outcome: Postoperative Deterioration Events

Postoperative hemodynamic deterioration events were 
determined by an a priori consensus agreement among 
three cardiac anesthesiologist and critical care physicians 

(M.R.M., M.C.E., K.J.G.) familiar with the cardiovascu-
lar ICU processes of care, documentation patterns, and 
quality of the ICU electronic health record data available 
for review. In contrast to traditional cardiac surgical risk 
models (e.g., Society for Thoracic Surgeons risk calculator, 
EuroSCORE-II)2,24 predicting broad complications over 
the entirety of the postoperative hospital stay and requiring 
abstraction via manual chart review, our approach favored 
dynamic, time-limited deterioration events that could 
potentially be detected via automated means in real time 
to enable ease of future model deployment at the point 
of care, with the potential for continuous retraining and 
tuning. To this end, we selected hemodynamic deteriora-
tion events that were (1) self-included within structured 
electronic health record data, (2) specific to discrete time 
intervals during postoperative recovery, (3) nurse-validated 
at the time of data entry, and (4) feasible to be retrospec-
tively adjudicated via physician manual chart review.

Events were defined as a composite outcome in which 
any of the following occurred: new low cardiac index (less 
than 2.0 l min˗1 m˗2 assessed via pulmonary arterial cath-
eter thermodilution), new sustained hypotension (mean 
arterial pressure of less than 55 mmHg for 120 contin-
uous minutes or longer; i.e., three consecutive nurse- 
validated hourly blood pressure values), epinephrine bolus 
of 1 mg or more (e.g., advanced cardiac life support for 
cardiac arrest), new inotrope initiated, new vasopressor 
initiated, inotrope infusion dose rate escalation of 100% or 
more, vasopressor infusion dose rate escalation of 100% or 
more, and in-ICU all-cause 90-day mortality. Full specifi-
cations of postoperative deterioration event definitions are 
provided in Appendix 2. To focus on events of potential 
high relevance to ICU care teams and mitigate against 
potential alert fatigue, patients incurring ongoing low car-
diac indices or ongoing mean arterial pressure of less than 
55 mmHg for periods for periods far beyond 120 contin-
uous minutes were not considered to have new deterio-
ration events, unless triggering a different deterioration 
event (e.g., new vasopressor/inotrope infusion or dose 
escalation) or returning to a nondeteriorated state for more 
than 48 h. Pulmonary arterial catheter thermodilution– 
based cardiac index measurements were obtained by ICU 
nurses educated and tested on such measurements; mea-
surements were obtained in triplicate, and the averages 
were recorded. As a standard practice within our institu-
tion’s cardiac surgical ICU, cardiac indices were assessed 
every 4 h; less frequently if instructed by the physician- 
directed ICU team for patients judged to be hemodynam-
ically stable; and more frequently if therapies (e.g., fluids, 
medications) were being actively titrated based upon the 
cardiac index. For the sustained hypotension outcome, in 
cases of multiple concurrent blood pressure data sources 
(e.g., noninvasive blood pressure and invasive arterial line), 
the highest nurse-validated blood pressure was consid-
ered as the gold standard. For inotrope and vasopressor 
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dose rate escalations, the events were restricted to those 
in which the previous infusion rate was above prespeci-
fied infusion-specific thresholds (e.g., for a norepinephrine 
infusion, a threshold rate was selected as 0.10 µg kg˗1 min˗1; 
a dose rate escalation of 100% or more was only consid-
ered if the previous rate was at or above the 0.10 µg kg˗1 
min˗1 threshold).

Importantly, for purposes of enabling before-event pre-
diction window ICU data to be available and improving 
the clinical utility of the postoperative deterioration events 
studied, primary outcomes were restricted to late deterio-
ration events only. Postoperative deterioration events were 
defined as events occurring after 24 h postoperatively, such 
that at least 24 h of ICU data were available upon which to 
base deterioration predictions. Furthermore, patients with 
events occurring during the initial 24 h of ICU admission 
were judged by ICU physician reviewers to commonly 
receive continuous active resuscitation initiated at the time 
of patient handover from the intraoperative team, by an 
ICU team already cognizant of current or impending dete-
rioration, limiting the utility of the prediction algorithm in 
such cases.

All postoperative deterioration events were adjudicated 
by manual electronic health record review with a struc-
tured questionnaire (Supplemental Digital Content 2, 
http://links.lww.com/ALN/C893) by four trained physi-
cian investigators familiar with local practice patterns and 
electronic health record documentation patterns within 
the ICU (M.R.M, A.J.C., A.M.W., B.E.B.) with removal of 
false positives. Importantly, for postoperative deterioration 
events occurring after a determination of comfort or end-
of-life care was made by the ICU team as determined by 
manual review of clinical notes and inspection of nursing 
flowsheet data for patient care indicators (e.g., extubation, 

disconnection from monitors, morphine boluses), events 
were excluded, and all ICU data generated after the change 
in goals of care were right-censored.

All patients with at least one postoperative deterioration 
event were compared to a random sample of control patients 
meeting study inclusion criteria and spending greater than 
24 h within the ICU yet not experiencing postoperative 
deterioration events. Nonevent control patients were simi-
larly adjudicated by the ICU physician panel with removal 
of false negatives.

Feature Analysis Time Window and Temporal Gap 
Before Deterioration Event

For analyzed physiologic waveforms, the data were 
extracted within a 15-min time window, segmented into 
five 3-min subwindows, and separated by an 8-h temporal 
gap between the window and the postoperative deteriora-
tion event (fig. 1). The data generated during the temporal 
gap were not used for prediction. Among nonevent control 
patients, fiducial time points (reference points representing 
nondeterioration events) were randomly selected (using a 
uniform probability distribution) from the duration of their 
ICU stay. Multiple fiducial time points were extracted from 
nonevent controls such that analysis windows from non-
event controls constituted 65% of the total sample size.

Physiologic Waveforms: Data Conditioning and Feature 
Extraction

Methods used to process and extract features from each set 
of physiologic waveforms have been previously described 
in detail27 and are summarized in figure 2. These methods 
were independent of heart rhythm (e.g., normal sinus, atrial 
fibrillation, etc.) and included waveform-specific bandpass 

Fig. 1.  Case selection, physician adjudication, development of feature analysis time windows, data partitioning, and machine learning model 
development.
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filtering (0.5 to 120 Hz for ECG; 1.25 to 25 Hz for arterial 
line; 1.75 to 10 Hz for pulse plethysmography) to remove 
commonly arising artifacts, as well as peak detection (sys-
tolic and diastolic peaks for arterial line and pulse plethys-
mography waveforms, R peaks for ECG waveform).28 Taut 
string estimation29 was applied to the filtered arterial line 
and pulse plethysmography signals, after which the sequence 
of estimated systolic and diastolic peaks were used to cal-
culate beat-to-beat metrics (Supplemental Digital Content 
3, http://links.lww.com/ALN/C894). The sequence of R 
peaks from the ECG signal was used to generate a heart-
rate variability sequence for feature extraction. Separately, 
taut string estimation was applied to the filtered ECG with 
additional morphological and statistical predictive features 
extracted. Taut string estimation was also applied to the fil-
tered ECG signal with similar predictive features extracted. 

Finally, a dual-tree complex wavelet packet transform30 was 
applied to the taut string estimate of the filtered ECG sig-
nal with the decomposition level set to 2, with additional 
features extracted.

Discrete Electronic Health Record Data: Feature 
Extraction

Patient comorbidities were classified using the Enhanced 
Elixhauser Comorbidity Index derived from International 
Classification of Diseases, Ninth Revision (ICD-9) and 
ICD-10 codes.31 Lab values were transformed into ordi-
nal variables using commonly accepted reference ranges 
(Supplemental Digital Content 4, http://links.lww.com/
ALN/C895). Building from previous work,27 features newly 
included in prediction modeling included surgical details, 
left ventricular ejection fraction, additional comorbidities, 

Fig. 2.  Overview of waveform and discrete electronic health record data conditioning, featurization, and tensor decomposition. ECG, elec-
trocardiogram; HR‚ heart rate.
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nurse-validated vital signs, and urine output electronic 
health record data. For missing vital signs data, previous vital 
signs were carried forward until new data were available. 
Urine output was calculated on a per-hour basis with val-
ues evenly distributed across up to 8 h previous, for hours 
with no urine output documented.

To capture longer-term trends in patient electronic 
health record data, additional periods of analysis leading 
up to the prediction window gap before the deterioration 
event were extracted. Building from previous work,27 newly 
studied retrospective periods of electronic health record 
features from the aforementioned categories of lab values 
and vital signs were extracted. For each retrospective period, 
the median of the values for each feature during that period 
was chosen as the feature value; four periods were extracted 
in total. For prediction window gaps of 8 h (primary anal-
ysis) and 12 h (sensitivity analysis), the periods were 8 h in 
duration; for prediction window gaps of less than 8 h (addi-
tional sensitivity analyses), the retrospective periods were 
4 h in duration. All electronic health record data variables 
were standardized using their respective mean and standard 
deviations calculated from the training data set, with these 
values being used to standardize corresponding features in 
the validation and test sets.

Feature Reduction via Tensor Decomposition and 
Principal Component Analysis

Using the above methods and permuting waveform features 
across analytic subwindows and є values as described in pre-
vious work,27 a total of 5,150 waveform features and 486 
discrete electronic health record features were extracted. To 
develop a reduced feature set for analysis, tensor decompo-
sition techniques27 were used, consisting of three steps: ten-
sor formation, tensor structure analysis, and reduced feature 
extraction.

For each waveform and its attendant features, a third- 
order tensor (taut string є value x waveform feature x 
subwindow) was formed for each patient in the training 
set. The third-order tensors were then stacked, creating a 
fourth-order tensor composed of all extracted waveform 
features from all patients in the training data set. The ten-
sor structure was then analyzed using canonical polyadic 
decomposition,32 which produces factor matrices for each 
mode. Higher-order singular value decompositions33 were 
employed as a preprocessing step for the dual-complex 
wavelet packet transform, arterial line, and pulse plethys-
mography feature tensors to reduce computational cost. 
The factor matrices corresponding to the є value and sub-
window modes were then used to extract a reduced set 
of features from the tensors formed using the test data set. 
Through this process, the number of waveform features was 
reduced on average to 430.

Separately from the waveform features, the 486 discrete 
electronic health record features were reduced via a prin-
cipal component analysis using a 90% explained variance 

threshold. The reduced waveform and discrete electronic 
health record features were then analyzed in a combined 
prediction model.

Machine Learning Models

Machine learning analyses and tensor decomposition34 
were performed using MATLAB (version 2020b, The 
Mathworks Inc., USA). Four machine learning models—
naïve Bayes, support vector machine, random forest, and 
learning using concave and convex kernels—were used to 
predict the postoperative deterioration event target output. 
Whereas naïve Bayes, support vector machine, and random 
forest models are well established machine learning tech-
niques, the Learning Using Concave and Convex Kernels 
modeling method is a novel machine learning technique 
used in previously published health applications35 with 
notable advantageous properties including the ability to be 
trained using relatively small data sets and to handle outliers 
on a per-feature basis.

As a baseline comparison, the naïve Bayes model was 
trained using a normal distribution with no additional 
hyperparameter optimization. Configurable hyperpa-
rameters for the remaining machine learning models are 
described in Supplemental Digital Content 5 (http://
links.lww.com/ALN/C896). The optimal combination 
of parameters was determined via a grid search approach 
for all models, with those corresponding to the high-
est receiver operating characteristic area under the curve 
(AUC) chosen.

To assess robustness of machine learning models to 
time-varying trends in clinical care and documentation 
patterns, cases were partitioned into a training/validation 
set (February 1, 2013, to February 28, 2017) and a tempo-
ral holdout test set (March 1, 2017, to January 31, 2020). 
Within the training/validation set, the modeling process 
used three-fold cross-validation repeated 101 times. Each 
fold contained a random selection of the total cohort; 
67% of the patients with deterioration events were used 
to train the model, and 33% were used to perform vali-
dation (hyperparameter optimization). Within each fold 
for model training and validation, 35% were patients with 
postoperative deterioration events, and 65% were non-
event patients. No patient observations occurred in more 
than one fold (fig.  1). The performance of each tuned 
model on the training/validation set and temporal hold-
out test set was evaluated using AUC, positive predictive 
value, sensitivity, specificity, and F1 score. Model calibra-
tion was evaluated using Brier score and expected cali-
bration error.

Relative Importance of Waveform versus Electronic 
Health Record Features

To evaluate the extent to which the prediction models 
were driven by the physiologic waveform versus discrete 
electronic health record features, we performed secondary 
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analyses using waveform features only and discrete elec-
tronic health record features only. Differences in AUC 
between models were compared using Welch’s t test.

Sensitivity Analyses

In addition to the primary analysis which used an 8-h 
prediction window temporal gap, preplanned sensitivity 
analyses were performed using temporal gaps of 0.5, 1, 2, 
4, and 12 h. In response to peer review, additional post hoc 
sensitivity analyses were performed in which (1) individual 
waveform features were separately evaluated, (2) the dete-
rioration event outcome definition was revised to exclude 
inotrope and vasopressor infusion escalations, and (3) the 
deterioration event outcome definition revised to exclude 
all inotrope and vasopressor-based outcomes.

Results

Patient Population: Baseline Characteristics

Of the 1,671 cardiac surgery index postoperative ICU 
admissions with valid waveform data reviewed, 1,555 met 
study inclusion criteria after physician adjudication (fig. 1). 
We summarize perioperative characteristics for the entire 
cohort, patients with deterioration events, and nonevent 
controls in table 1 (extended details in Supplemental Digital 
Content 6, http://links.lww.com/ALN/C897). Our study 
population had a median age of 67 yr (interquartile range, 
58 to 74), and 64% were men. Cardiac surgical procedures 
included valve (78% of cases; 36% of cases isolated to valve), 
coronary artery bypass grafting (26%; 10% isolated), and tho-
racic aortic (24%; 10% isolated). The most common med-
ical comorbidities included valvular disease (87%), cardiac 
arrhythmias (58%), and peripheral vascular disorders (52%). 
The median ICU length of stay was 55 h (interquartile range, 
36 to 100). Time to last cardiac index before pulmonary 
artery catheter removal, last arterial line waveform before 
removal, and ICU length of stay are shown for the training/
validation and temporal holdout cohorts in Supplemental 
Digital Content 7 (http://links.lww.com/ALN/C898). 
Compared to the training/validation data set, patients in the 
temporal holdout test set more commonly had cardiovascu-
lar comorbidities, less frequently underwent aortic or mitral 
valve surgeries, and had higher postoperative urine output.

Postoperative Deterioration Events

Among the 1,555 cases meeting inclusion criteria, 185 
(12%) patients experienced 276 physician-adjudicated 
postoperative deterioration events between 24 h after post-
operative ICU admission and discharge from the ICU. 
Deterioration events most commonly included new low 
cardiac index less than 2.0 l min˗1 m˗2 (108 patients, 7.0% 
of total cohort; 150 events, 54% of all events), new ino-
trope infusion initiated (29 patients, 1.9% of total cohort; 
31 events, 11% of all events), and sustained hypotension (22 

patients, 1.4% of total cohort; 25 events, 9% of all events). 
Deterioration event types and hours after postoperative 
admission, split between the training/validation cohort and 
the temporal holdout cohort, are summarized across events 
in table 2 and patients in Supplemental Digital Content 8 
(http://links.lww.com/ALN/C899). Compared to patients 
not developing deterioration events, patients with deteri-
oration events were more commonly female, had multiple 
comorbidities, underwent combinations of procedures, and 
had postoperative lab values indicative of coagulopathy and 
renal dysfunction.

Machine Learning Model Performance

After feature extraction and dimensionality reduction, we 
describe 8-h predictive performance metrics of the training/
validation set and the temporal holdout test set for machine 
learning models in table  3. Among the machine learning 
models used, the random forest model yielded the best per-
formance with AUCs and positive predictive values of 0.803 
(95% CI, 0.799 to 0.807) and 63.6% (95% CI, 62.8 to 64.4%), 
respectively, in the training/validation set and 0.709 (95% CI, 
0.705 to 0.712) and 33.9% (95% CI, 33.1 to 34.6%), respec-
tively, in the temporal holdout test set. This corresponded to 
three patients in the test set predicted to have deterioration 
events needed to identify a single patient with a true deteri-
oration event (number needed to identify). We describe ran-
dom forest model calibration in the temporal holdout test 
set (Brier score = 0.154; expected calibration error = 6.6%) 
compared to the training/validation model (Brier score = 
0.190; expected calibration error = 15.7%) in Supplemental 
Digital Content 9 (http://links.lww.com/ALN/C900).

Waveform versus Electronic Health Record Features

We describe performance of the best performing model 
(random forest) on the training/validation and temporal 
holdout test sets, using solely waveform features or discrete 
electronic health record features versus both in figure  3. 
Models using both waveform and discrete electronic health 
record features consistently outperformed models using 
solely waveform features (P < 0.001) and solely discrete 
electronic health record features (P < 0.001). Furthermore, 
the model using solely waveform features (AUC, 0.697; 
95% CI, 0.693 to 0.701; positive predictive value, 32.9%; 
95% CI, 32.0 to 33.8%) significantly outperformed the 
model using solely discrete electronic health record features 
(AUC, 0.641; 95% CI, 0.637 to 0.646; positive predictive 
value, 32.2%; 95% CI, 31.3 to 33.2%; P < 0.001).

Sensitivity Analyses

In preplanned sensitivity analyses varying the temporal gap 
windows for the deterioration prediction model, statistically 
significant increases in model AUCs were observed for gap 
lengths less than 4 h before deterioration events, although no 
statistically significant change in model AUCs were observed 
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Table 1.  Summary Characteristics for Entire Cohort, Nonevent Controls, and Deterioration Event Patients

Category Feature

Entire Cohort
N = 1,555,
n (%) or Median 
(Interquartile 
Range)

Nonevent Control 
Patients,
N = 1,370,
n (%) or Median 
(Interquartile 
Range)

Deterioration Event 
Patients,
N = 185
n (%) or Median 
(Interquartile Range) P Value

Demographic/anthropo-
metric data

Age, yr 67 (58 to 74) 66 (57 to 74) 70 (63 to 77) 0.457
Male sex 997 (64.1%) 915 (66.8%) 82 (44.3%) < 0.001
Race     
  Caucasian 1,370 (88.1%) 1,210 (88.3%) 160 (86.5%) 0.005
 O ther 28 (1.8%) 27 (2.0%) 1 (0.5%)
  Unknown 21 (1.4%) 19 (1.4%) 2 (1.1%)
  African American 99 (6.4%) 83 (6.1%) 16 (8.6%)
  Asian 26 (1.7%) 22 (1.6%) 4 (2.2%)
  Patient Refused 8 (0.5%) 8 (0.6%) 0 (0.0%)
  American Indian or Alaskan Native 1 (0.1%) 1 (0.1%) 0 (0.0%)
  Native Hawaiian and other Pacific 

Islander
2 (0.1%) 0 (0.0%) 2 (1.1%)

Patient medical history Congestive heart failure 659 (42.4%) 532 (38.8%) 127 (68.6%) < 0.001
Cardiac arrhythmias 896 (57.6%) 762 (55.6%) 134 (72.4%) < 0.001
Valvular disease 1,357 (87.3%) 1,192 (87.0%) 165 (89.2%) 0.403
Pulmonary circulation disorders 320 (20.6%) 244 (17.8%) 76 (41.1%) < 0.001
Peripheral vascular disorders 803 (51.6%) 713 (52.0%) 90 (48.6%) 0.386
Hypertension, complicated 322 (20.7%) 254 (18.5%) 68 (36.8%) < 0.001
Hypertension, uncomplicated 1,125 (72.3%) 990 (72.3%) 135 (73.0%) 0.839
Paralysis 28 (1.8%) 20 (1.5%) 8 (4.3%) 0.006
Other neurologic disorders 86 (5.5%) 65 (4.7%) 21 (11.4%) < 0.001
Chronic pulmonary disease 509 (32.7%) 425 (31.0%) 84 (45.4%) < 0.001
Diabetes, complicated 173 (11.1%) 143 (10.4%) 30 (16.2%) 0.019
Diabetes, uncomplicated 377 (24.2%) 322 (23.5%) 55 (29.7%) 0.064
Liver disease 155 (10.0%) 125 (9.1%) 30 (16.2%) 0.003
Coagulopathy 312 (20.1%) 252 (18.4%) 60 (32.4%) < 0.001
Coronary artery disease 722 (46.4%) 618 (45.1%) 104 (56.2%) 0.004
Recent myocardial infarction 28 (1.8%) 21 (1.5%) 7 (3.8%) 0.031
Previous open cardiac surgery 102 (6.6%) 95 (6.9%) 7 (3.8%) 0.104
Active endocarditis 109 (7.0%) 87 (6.4%) 22 (11.9%) 0.006

Preoperative
labs/studies and status

Left ventricular ejection fraction, % 55.0 (55.0 to 65.0) 56.5 (55.0 to 65.0) 55.0 (45.0 to 60.0) 0.916
Estimated glomerular filtration rate, 

ml min˗1 1.73 m˗2

75.0 (58.8 to 88.5) 76.5 (61.4 to 89.4) 59.7 (41.7 to 78.9) 0.201

Preoperative inotrope infusion 6 (0.4%) 3 (0.2%) 3 (1.6%) 0.004
ASA physical status classification    0.067
  2 2 (0.1%) 2 (0.1%) 0 (0.0%)  
  3 308 (19.8%) 283 (20.7%) 25 (13.5%)  
  4 1,244 (80.0%) 1,085 (79.2%) 159 (85.9%)  

Surgery type Isolated CABG 160 (10.3%) 147 (10.7%) 13 (7.0%) 0.007
 Isolated non-CABG 829 (53.3%) 737 (53.8%) 92 (49.7%) 0.007
 Two procedures 437 (28.1%) 375 (27.4%) 62 (33.5%) 0.007
 Three or more procedures 38 (2.4%) 28 (2.0%) 10 (5.4%) 0.007
Postoperative nonwave-

form-derived vital signs
Spo2, % 97.0 (95.0 to 99.0) 97.0 (95.0 to 99.0) 96.0 (94.8 to 98.0) 0.884
Temperature, ºC 36.9 (36.6 to 37.2) 36.9 (36.6 to 37.2) 36.8 (36.5 to 37.3) 0.030

Postoperative outputs Median hourly urine output, ml 35.0 (0.0 to 71.0) 38.2 (0.3 to 75.0) 25.0 (0.0 to 50.0) 0.067
Postoperative laboratory 

values v1.3 to 2.0
Creatinine range, mg/dl    < 0.001
   Unknown 0 (0.0%) 0 (0.0%) 0 (0.0%)  
   Less than 0.5 (females) or  

less than 0.7 (males)
95 (6.1%) 92 (6.7%) 3 (1.6%)  

   0.5 to 1.0 (females) or  
0.7 to 1.3 (males)

1,072 (68.9%) 999 (72.9%) 73 (39.5%)  

   1.1 to 2.0 (females) or  
1.3 to 2.0 (males)

282 (18.1%) 212 (15.5%) 70 (37.8%)  

   Greater than 2.0 106 (6.8%) 67 (4.9%) 39 (21.1%)  
Glucose range, mg/dl    0.943
   Unknown 0 (0.0%) 0 (0.0%) 0 (0.0%)  
  Less than 40 0 (0.0%) 0 (0.0%) 0 (0.0%)  
  40 to 69 4 (0.3%) 3 (0.2%) 1 (0.5%)  

(Continued)
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between 4 and 12 h (Supplemental Digital Content 10, 
http://links.lww.com/ALN/C901). Across all gap lengths, 
the random forest model consistently outperformed other 

machine learning models (Supplemental Digital Content 
11, http://links.lww.com/ALN/C902). In post hoc sensitiv-
ity analyses performed in response to peer review, prediction 

  70 to 180 1,442 (92.7%) 1,272 (92.8%) 170 (91.9%)  
  Greater than 180 109 (7.0%) 95 (6.9%) 14 (7.6%)  
Hemoglobin range, g/dl    0.003
   Unknown 0 (0.0%) 0 (0.0%) 0 (0.0%)  
   Less than 7.0 25 (1.6%) 16 (1.2%) 9 (4.9%)  
   7.0 to 11.9 (females) or 7.0 to 

13.4 (males)
1,453 (93.4%) 1,282 (93.6%) 171 (92.4%)  

   12.0 to 16.0 (females) or 13.5 to 
17.0 (males)

76 (4.9%) 71 (5.2%) 5 (2.7%)  

   Greater than 16.0 (females) or 
greater than 17.0 (males)

1 (0.1%) 1 (0.1%) 0 (0.0%)  

INR range    < 0.001
   Unknown 2 (0.1%) 2 (0.1%) 0 (0.0%)  
   Less than 0.9 0 (0.0%) 0 (0.0%) 0 (0.0%)  
   0.9 to 1.2 1,350 (86.8%) 1,220 (89.1%) 130 (70.3%)  
   1.3 to 2.0 177 (11.4%) 131 (9.6%) 46 (24.9%)  
   Greater than 2.0 26 (1.7%) 17 (1.2%) 9 (4.9%)  
Lactate range, mmol/l    0.013
   Unknown 13 (0.8%) 13 (0.9%) 0 (0.0%)  
   Less than 0.5 1 (0.1%) 1 (0.1%) 0 (0.0%)  
   0.5 to 1.6 (arterial) or 0.5 to 2.2 

(venous)
867 (55.8%) 763 (55.7%) 104 (56.2%)  

   1.7 to 4.0 (arterial) or 2.3 to 4.0 
(venous)

620 (39.9%) 553 (40.4%) 67 (36.2%)  

  Greater than 4.0 54 (3.5%) 40 (2.9%) 14 (7.6%)  
Platelet count range, 109/l    < 0.001
  Unknown 1 (0.1%) 1 (0.1%) 0 (0.0%)  
  Less than 50 9 (0.6%) 3 (0.2%) 6 (3.2%)  
  50 to 149 939 (60.4%) 816 (59.6%) 123 (66.5%)  
  150 to 400 596 (38.3%) 541 (39.5%) 55 (29.7%)  
  Greater than 400 10 (0.6%) 9 (0.7%) 1 (0.5%)  
Potassium range, mmol/l    0.118
  Unknown 0 (0.0%) 0 (0.0%) 0 (0.0%)  
  Less than 3.5 35 (2.3%) 32 (2.3%) 3 (1.6%)  
  3.5 to 5.0 1,422 (91.4%) 1,259 (91.9%) 163 (88.1%)  
  5.1 to 6.0 94 (6.0%) 75 (5.5%) 19 (10.3%)  
  Greater than 6.0 4 (0.3%) 4 (0.3%) 0 (0.0%)  
Sodium range, mmol/l    < 0.001
  Unknown 0 (0.0%) 0 (0.0%) 0 (0.0%)  
  Less than 136 97 (6.2%) 83 (6.1%) 14 (7.6%)  
  136 to 146 1,398 (89.9%) 1,250 (91.2%) 148 (80.0%)  
  147 to 155 56 (3.6%) 37 (2.7%) 19 (10.3%)  
  Greater than 155 4 (0.3%) 0 (0.0%) 4 (2.2%)  
Leukocyte count range, 109/l    0.096
  Unknown 0 (0.0%) 0 (0.0%) 0 (0.0%)  
  Less than 4 10 (0.6%) 9 (0.7%) 1 (0.5%)  
  4 to 10 467 (30.0%) 416 (30.4%) 51 (27.6%)  
  11 to 20 963 (61.9%) 853 (62.3%) 110 (59.5%)  
  Greater than 20 115 (7.4%) 92 (6.7%) 23 (12.4%)  

Additional characteristics are available in the extended table in Supplemental Digital Content 6 (http://links.lww.com/ALN/C897).
CABG, coronary artery bypass graft; INR, international normalized ratio; Spo2, oxygen saturation measured by pulse oximetry. 

Table 1. Continued

Category Feature

Entire Cohort
N = 1,555,
n (%) or Median 
(Interquartile 
Range)

Nonevent Control 
Patients,
N = 1,370,
n (%) or Median 
(Interquartile 
Range)

Deterioration Event 
Patients,
N = 185
n (%) or Median 
(Interquartile Range) P Value
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models using solely arterial line or pulse plethysmography 
waveforms outperformed a model using solely ECG wave-
forms (Supplemental Digital Content 12, http://links.lww.
com/ALN/C903), and deterioration prediction models 
using a composite outcome definition excluding inotrope 
or vasopressor infusion dose rate escalations of 100% or 
more (Supplemental Digital Content 13, http://links.lww.
com/ALN/C904) and excluding all inotrope or vasopres-
sor infusion outcome components (Supplemental Digital 
Content 14, http://links.lww.com/ALN/C905) yielded 
similar performance to the primary model.

Discussion
In this study of hemodynamic deterioration after car-
diac surgery, we report a patient-level deterioration event 

incidence of 12% at a quaternary center. Through waveform 
processing, tensor decomposition, and machine learning, 
we developed models combining electronic health record 
and ICU physiologic waveform data to predict postopera-
tive deterioration 8 h before the event. The best perform-
ing model demonstrated high performance in the training/
validation set (AUC, 0.803) yet substantially decreased per-
formance in the temporal holdout test set (0.709). Model 
performance was consistently greater than models limited 
to solely electronic health record or waveform data. Our 
study serves as a proof-of-concept that patterns within 
ICU waveform data can be combined with electronic 
health record data for improved early detection of post-
operative deterioration events. However, the substantially 
decreased model performance in the temporal holdout test 
set highlights challenges inherent to implementation of 

Table 2.  Postoperative Deterioration Event Summary: Event Level

All Deterioration Events n (%)

Deterioration Events

Postoperative Timing Surgical Subgroups

24 to 48 h 
Postopera-

tive,  
n (%)

48 to 96 h 
Postopera-

tive,  
n (%)

96 h to 7  
Days Postop-

erative,  
n (%)

More than 7  
Days Postoper-

ative,  
n (%)

Isolated 
CABG,  
n (%)

Isolated 
Non-CABG,  

n (%)

Two Proce-
dures,  
n (%)

Three or 
More Pro-
cedures,  

n (%)

Training/validation cohort 153 (100%) 82 (54%) 34 (22%) 16 (10%) 21 (14%) 6 (4%) 70 (46%) 55 (36%) 11 (7%)
   Mortality 4 (3%) 1 (1%) 0 (0%) 1 (6%) 2 (10%) 0 (0%) 2 (50%) 2 (50%) 0 (0%)
   Cardiac index of less than 

2.0 l min˗1 m˗2

79 (52%) 58 (71%) 15 (44%) 6 (38%) 0 (0%) 1 (1%) 42 (53%) 26 (33%) 5 (6%)

   Mean arterial pressure of 
less than 55 mmHg for 
more than 120 min

18 (12%) 5 (6%) 6 (18%) 2 (13%) 5 (24%) 1 (6%) 3 (17%) 9 (50%) 3 (17%)

   Epinephrine bolus of 1 mg 
or more

5 (3%) 2 (2%) 3 (9%) 0 (0%) 0 (0%) 0 (0%) 2 (40%) 3 (60%) 0 (0%)

   Inotrope infusion initiated 14 (9%) 7 (9%) 3 (9%) 1 (6%) 3 (14%) 1 (7%) 7 (50%) 6 (43%) 0 (0%)
   Inotrope infusion escalated 

by 100% or more
9 (6%) 3 (4%) 1 (3%) 1 (6%) 4 (19%) 1 (11%) 3 (33%) 2 (22%) 0 (0%)

   Vasopressor infusion 
initiated

9 (6%) 4 (5%) 2 (6%) 1 (6%) 2 (10%) 1 (11%) 3 (33%) 3 (33%) 2 (22%)

   Vasopressor infusion esca-
lated by 100% or more

15 (10%) 2 (2%) 4 (12%) 4 (25%) 5 (24%) 1 (7%) 8 (53%) 4 (27%) 1 (7%)

Temporal holdout cohort 123 (100%) 45 (37%) 18 (15%) 21 (17%) 39 (32%) 15 (12%) 59 (48%) 46 (37%) 1 (1%)
   Mortality 10 (8%) 1 (2%) 2 (11%) 0 (0%) 7 (18%) 1 (10%) 6 (60%) 3 (30%) 0 (0%)
   Cardiac index of less than 

2.0 l min˗1 m˗2

71 (58%) 33 (73%) 12 (67%) 11 (52%) 15 (38%) 9 (13%) 29 (41%) 33 (46%) 0 (0%)

   Mean arterial pressure of 
less than 55 mmHg for 
more than 120 min

7 (6%) 3 (7%) 1 (6%) 0 (0%) 3 (8%) 0 (0%) 6 (86%) 0 (0%) 1 (14%)

   Epinephrine bolus of 1 mg 
or more

3 (2%) 0 (0%) 0 (0%) 2 (10%) 1 (3%) 0 (0%) 1 (33%) 1 (33%) 0 (0%)

   Inotrope infusion initiated 17 (14%) 4 (9%) 1 (6%) 4 (19%) 8 (21%) 1 (6%) 10 (59%) 6 (35%) 0 (0%)
   Inotrope infusion escalated 

by 100% or more
8 (7%) 1 (2%) 2 (11%) 4 (19%) 1 (3%) 1 (13%) 5 (63%) 1 (13%) 0 (0%)

   Vasopressor infusion 
initiated

6 (5%) 3 (7%) 0 (0%) 0 (0%) 3 (8%) 2 (33%) 2 (33%) 2 (33%) 0 (0%)

   Vasopressor infusion esca-
lated by 100% or more

1 (1%) 0 (0%) 0 (0%) 0 (0%) 1 (3%) 1 (100%) 0 (0%) 0 (0%) 0 (0%)

CABG, coronary artery bypass graft.
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machine learning–based prediction models in clinical set-
tings with continuously evolving clinical documentation 
and practice patterns.

The performance of prediction algorithms developed 
in this study, although modest, were substantially below 
other widely used postoperative or critical illness prediction 
models using classical statistical approaches and developed 
in other ICU populations, such as EuroSCORE-II (AUC, 
0.810; 95% CI, 0.782 to 0.836)24 and SOFA (0.88; 95% CI, 
0.82 to 0.94),26 as well as meta-analyses of machine learn-
ing–based postcardiac surgery prediction models (0.88; 95% 
CI, 0.83 to 0.93).36 This was likely due to the different nature 
of our primary outcome, which focused on dynamic and 
potentially unexpected deterioration events occurring more 

than 24 h postoperatively yet before end-of-life care rather 
than all deterioration events over the entirety of the postop-
erative period. Additionally, compared to other widely used 
cardiac surgery postoperative prediction models (e.g., STS, 
Euroscore-II),2,24 our prediction model focused on events 
that could be potentially detected via automated means 
in real time rather than retrospective chart review. This 
approach offers the advantage of being able to be deployed 
and continuously retrained at the point of care.

Compared to traditional cardiac surgical risk models 
limited to electronic health record data and other machine 
learning–based prediction models developed for anesthesi-
ology and critical care settings,17–20,37,38 our study uniquely 
combines both discrete electronic health record features and 

Table 3.  Performance of Optimized Postoperative Deterioration Prediction Models with 8-h Prediction Window, Test Set

Prediction Model AUC (95% CI)
Positive Predictive  

Value (95% CI) F1 Score (95% CI) Sensitivity (95% CI)
Specificity  
(95% CI)

Training/validation set      
  Naive Bayes 0.648 (0.639 to 0.657) 0.485 (0.476 to 0.495) 0.587 (0.582 to 0.592) 0.801 (0.788 to 0.813) 0.483 (0.457 to 0.509)
  Learning using concave and 

convex kernels
0.783 (0.777 to 0.788) 0.620 (0.611 to 0.629) 0.670 (0.665 to 0.675) 0.751 (0.742 to 0.760) 0.730 (0.718 to 0.742)

 R andom forest 0.803 (0.799 to 0.807) 0.636 (0.628 to 0.644) 0.684 (0.680 to 0.688) 0.761 (0.752 to 0.769) 0.748 (0.738 to 0.758)
  Support vector machines 0.787 (0.783 to 0.790) 0.640 (0.632 to 0.649) 0.681 (0.677 to 0.685) 0.745 (0.737 to 0.752) 0.757 (0.746 to 0.768)
Temporal holdout test set      
  Naive Bayes 0.557 (0.549 to 0.565) 0.255 (0.247 to 0.263) 0.354 (0.349 to 0.359) 0.673 (0.639 to 0.706) 0.482 (0.434 to 0.529)
  Learning using concave and 

convex kernels
0.708 (0.705 to 0.711) 0.336 (0.329 to 0.342) 0.428 (0.425 to 0.431) 0.617 (0.601 to 0.634) 0.703 (0.687 to 0.718)

 R andom forest 0.709 (0.705 to 0.712) 0.339 (0.331 to 0.346) 0.434 (0.43 to 0.438) 0.631 (0.614 to 0.647) 0.698 (0.682 to 0.714)
  Support vector machines 0.677 (0.671 to 0.682) 0.346 (0.339 to 0.353) 0.429 (0.425 to 0.433) 0.584 (0.570 to 0.598) 0.730 (0.714 to 0.747)

AUC, area under the curve.

Fig. 3.  Comparative performance (C-statistics) of best-performing prediction models (random forest) on test set: solely discrete electronic 
health record features versus solely physiologic waveform features versus both. The 95% CI values are shown in brackets.
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waveform features. Our study also leverages tensor decompo-
sition, a method of parsing multidimensional arrays of wave-
form data in a computationally efficient manner, for feature 
reduction. Through combining such features and handling 
via a means robust to high dimensionality, our analytic tech-
niques are an improvement to commonly used prediction 
and alerting systems using a single mode of physiologic 
waveform data or solely discrete electronic health record data 
lacking clinical context and leading to “alarm fatigue” from 
high false-positive rates.39–41 To this end, the techniques used 
in our study offer incremental progress toward improved 
prediction model performance, although with clinical utility 
challenged by temporal changes in electronic health record 
documentation and clinical practice patterns.

The machine learning–based prediction models devel-
oped in this study are capable of drawing complex infer-
ences from rich, complementary electronic health record 
and waveform data sources. For such capabilities of machine 
learning models to be fully realized, implementation of clin-
ical decision support systems embedded into the electronic 
health record at the point of care—in a way which remains 
robust to changes in practice over time—must be further 
developed. Within anesthesiology and critical care, a regula-
tory landscape for such tools has been developed,42–44 includ-
ing methods to address data set shift,45,46 although currently 
demonstrating limited success in improving outcomes.

Of critical concern to clinical decision support systems 
leveraging machine learning is the notion of relative harms of 
different outcomes posing competing risks, which are often 
implicitly understood by clinicians based upon clinical judg-
ment.47 Whereas the performance of healthcare prediction 
models may be improved via incorporation of physiologic 
waveform data and machine learning techniques, the relative 
harms of particular outcomes (e.g., low cardiac index, sus-
tained hypotension, mortality) have yet to be fully quantified 
by clinicians. Such relative valuation of harms requires consid-
eration of nuanced clinical contexts and furthermore varies by 
patient preferences, clinical providers, and geographic region 
with varying patient care priorities or standards. In this study, 
for simplicity, we assume component postoperative deteriora-
tion events to have equal value, yet it is clear that some events 
(e.g., mortality) have greater health implications than others 
(e.g., new sustained hypotension). As techniques to improve 
the performance of prediction models continue to be refined, 
so must the methods to quantify relative harms based upon 
clinical judgment. One such technique incorporating relative 
harms based upon clinician judgment includes reinforcement 
learning, in which a prediction model seeks to learn an opti-
mal individualized treatment plan; currently, early-stage appli-
cations of reinforcement learning have been deployed into 
anesthesiology and critical care settings.48,49

Study Limitations

Our study has multiple important limitations. First, we 
observed substantial decreases in model performance and 

calibration during temporal validation. Such decreases may 
be explained by (1) time-varied changes in electronic health 
record documentation and clinical practice patterns and (2) 
increased sampling of deterioration event patients to improve 
class balance during model training, leading to a generally 
greater number of false-positive predictions during tempo-
ral validation, offering caution to the generalizability of the 
model developed. These findings potentially represented data 
set shift, a major source of model underperformance among 
machine learning–based electronic health record prediction 
models, particularly in the setting of an information technol-
ogy software/infrastructure update, changes to clinical prac-
tice, or shifts in patient demographics.45 Next, our study used a 
convenience sample of ICU data among primarily Caucasian 
patients with pulmonary artery catheter monitoring (required 
for availability of thermodilution cardiac index measurements) 
at an academic medical center, potentially skewing toward 
more complex cardiac surgical procedures, limiting general-
izability. Although a larger sample size may have allowed for a 
more diverse data set, including more cases over a longer time 
span would be unlikely to increase prediction model perfor-
mance, given the potential data set shift requiring continuous 
retraining of prediction models.50 Additionally, although we 
performed a temporal validation through the use of a test set 
with future cardiac surgeries relative to the training set, our 
study lacked external validation on a population within a sep-
arate ICU, postoperative surgical cohort, or institution.

Given the low prevalence of component postoperative 
deterioration events, a composite endpoint was used as the 
target output for this study to improve the class balance of the 
machine learning algorithms developed. Although mutually 
agreed upon via a consensus of ICU physicians, component 
postoperative deterioration events defining the target output 
of this study had subjective thresholds and are likely to have 
(1) varying clinical importance, (2) incomplete capture of all 
events potentially representing hemodynamic deterioration, 
(3) different early warning signs benefiting from separate pre-
diction algorithms, and (4) different treatment implications. 
Additionally, several components of the composite deterio-
ration event were determined by clinician actions (e.g., new 
inotrope or vasopressor infusion or escalation) with varying 
levels of proactivity or reactivity to clinical events anticipated 
or having occurred (e.g., low cardiac index or sustained hypo-
tension), potentially leading to bias in the outcome measure. 
Furthermore, during deescalation of care, patients incurring 
occult low cardiac indices after pulmonary artery catheter 
removal not accompanied by another component of the 
composite outcome (e.g., sustained hypotension or vasopres-
sor infusion) potentially led to underestimation of hemody-
namic deterioration outcomes.

Next, other health data sources available to the ICU team 
yet not reliably available for this study (e.g., central venous 
oxygen saturation, information within operative notes or 
nuances discussed during postoperative handover, central 
venous pressure or pulmonary artery catheter waveforms 
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with high rates of artifact or inadequate capture within the 
waveform repository) may have limited or biased the perfor-
mance of the prediction model and decreased the likelihood 
of ICU teams being truly unaware of impending deteriora-
tion. Although this issue was partially mitigated through the 
exclusion of deterioration events occurring within 24 h of 
transport from the operating room and ICU handover, this 
limited algorithm generalizability, which was unable to be 
explored further due to the need for at least 24 h of ICU 
data to compute predictions. Future studies considering 
additional data sources, robust to nonrandom missingness, 
resolving artifacts manifesting within ICU waveforms and 
the electronic health record, and capable of handling com-
plex unstructured data are necessary to improve predictive 
performance. Additionally, although the tensor decomposi-
tion technique used in this study represents a resourceful 
method for handling high-dimensional physiologic wave-
form data, the modeling of complex interactions between 
waveform features performed by the technique—improving 
model performance while mitigating potential overfitting—
was at the expense of a nearly total lack of explainability to 
clinicians observing such waveforms.

Finally, although incorporation of physiologic wave-
form data led to improved prediction model performance, 
it remains unclear (1) how such data should be presented 
to an ICU team burdened with competing priorities, (2) 
how an ICU team should act on an algorithm prediction, 
and (3) whether a clinical treatment may lead to improved 
outcomes.

Conclusions

We report a 12% incidence of postoperative hemodynamic 
deterioration for patients receiving postcardiac surgery ICU 
care and demonstrate the value of physiologic waveforms 
routinely available in the ICU setting for improving clinical 
prediction model performance. For the clinical utility of 
such models to be fully realized, future studies are needed 
to improve model robustness to data set shift, to externally 
validate single-center findings, and to assess the feasibility 
and utility of deployment in real time.
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Appendix 2: Postoperative Deterioration Event Definitions

Deterioration Event Type Description

Low cardiac index New-onset decrease in cardiac index of less than 2.0 l min˗1 m˗2 with either no previous cardiac index measurement within 48 h 
or previous cardiac index measurement within 48 h of 2.0 l min˗1 m˗2 or more

Sustained hypotension New-onset decrease in mean arterial pressure less than 55 mmHg for 120 min or longer; for cases in which multiple sources of 
mean arterial pressure were monitored (e.g., invasive arterial pressure monitors, noninvasive blood pressure  
measurements), the highest mean arterial pressure measurement available within a 60-min period was used

Epinephrine bolus Intravenous administration of 1 mg or more of epinephrine
New inotrope infusion New inotrope infusion (epinephrine, milrinone, dobutamine, or dopamine) initiated
New vasopressor infusion New centrally administered vasopressor infusion (norepinephrine, vasopressin) initiated
Inotrope infusion rate escalation Existing inotrope infusion rate previously above prespecified initial infusion-specific threshold (see below) and subsequently 

increased by 100% or more
Infusion-specific minimum initial thresholds:
•Epinephrine: 0.02 µg kg˗1 min˗1

•Milrinone: 0.250 µg kg˗1 min˗1

•Dobutamine: 2.0 µg kg˗1 min˗1

•Dopamine: 2.5 µg kg˗1 min˗1

Vasopressor infusion rate 
escalation

Existing vasopressor infusion rate previously above prespecified initial infusion-specific threshold (see below) and subsequently 
increased by 100% or more

Infusion-specific minimum initial thresholds:
•Vasopressin: 2 units/h
•Norepinephrine: 0.10 µg kg˗1 min˗1

Mortality Postoperative death of patient not currently receiving comfort care or end-of-life care measures

Events occurring after a decision to pursue patient comfort care or end-of-life care goals, as adjudicated by chart review by intensive care unit physicians, were excluded from analysis.
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