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Online Supplement to “Optimization of Active Surveillance
Strategies for Heterogeneous Patients with Prostate Cancer”

EC.1. Additional Model Description
EC.1.1. Illustration for the fixed sequence of events leading to treatment

Under Assumption 2, the patient will not be treated before PCa progression. This is true because

the false-positive rate is 0. Accordingly, the sequence of events can be illustrated in Figure EC.1

where all patients start from the low-risk PCa (latent state), transition to the high-risk PCa (latent

state) at period k (0≤ k ≤K), and then transition to the treated PCa (terminal state) at period

t (k ≤ t ≤ T ). The transition from high-risk PCa to other states, including metastatic PCa and

mortality, is independent of the strategy (Assumptions 1-2), and thus it can be implicitly accounted

in the post-treatment parameters rpkt and πpkt.
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Figure EC.1 The fixed sequence of PCa evolution of each patient type with PCa progression at period k (k≤K)

and treatment at period t (k≤ t≤ T ) where other randomness are denoteed by dotted arcs.

EC.1.2. Illustration for predetermined outcome for a fixed combination of p, k, and
t

Under Assumptions 1-2, the expected reward is independent of the surveillance strategy if p, k,

and t are fixed. This is true because: 1) the sequence of events leading to treatment is fixed as
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“low-risk PCa→ high-risk PCa→ treated PCa,” and 2) the transition probabilities related to PCa

progression, metastasis, and mortality are independent of the biopsy testing (Assumption 1). As a

result, the patient’s health outcome is unchanged no matter how many biopsy tests are performed

before treatment, and thus the expected reward is independent of the surveillance strategy.

EC.1.3. Modification of P to account for other criteria

P can be straightforwardly modified to optimize different criteria, including but not limited to, the

following:

� Delay of detection: to reduce the delay of detection, we set rpkt =
∑T

v=k π̂pkv −
∑t−1

v=k π̂pkv for

all p ∈ P, k ∈ K, and k ≤ t ≤ T . Under this setting, earlier detection is always better than later

detection. Further, we set dpt = 1 for all p∈P, t∈ T , and cp is the unit cost to test patient type p

compared with one-year delay of treatment.

� Survival rate measurement: to improve the patient’s survival rate, let rpkt denote the rate of

survival within a certain period, e.g., 10 years after diagnosis, for patient type p treated at period t

(or missed treatment if t= T +1) when PCa progresses at period k. Under this setting, the survival

rate will be nondecreasing for earlier treatment, and thus dpt = 1 for all p∈P, t∈ T . Let cp denote

the unit cost to test patient type p compared with 1% improvement of the survival rate.

� Cost-effectiveness measurement: to improve the cost-effectiveness, we set rpkt as a net monetary

benefit criterion as rpkt = q̂pkt − ĉpkt/κp where q̂pkt is the extra QALY gained by treating patient

type p at period t compared with “no treatment,” ĉpkt is the cost associated with the treatment,

and κp is a weight factor meaning the equivalent amount of money the patient is willing to pay for

increasing one QALY. We set dpt = 0 if treatment is not cost-effective at period t for patient type

p and we set cp = q̃p + c̃p/κp where q̃p is the instantaneous disutility of QALYs for patient type p,

and c̃p is the cost of one-time biopsy test for patient type p.

EC.1.4. Proof of NP-completeness of P

We show that the surveillance strategy optimization problem as defined by P is NP-complete even

if P = 1. We prove the NP-completeness using reduction from the 3-CNF satisfiability problem.

Definition: A boolean formula is in 3-conjunctive normal form, or 3-CNF, if it is expressed as

conjunctions (by AND) of clauses, where each clause is the disjunction (by OR) of exactly three

distinct literals over a set of boolean variables x. For example, the following is a 3-CNF formula

with two clauses,

(x11 ∨x12 ∨x13)∧ (x21 ∨x22 ∨x23),

and the above formula is satisfiable if
∑3

j=1 xij ≥ 1,∀i= 1,2. The 3-CNF satisfiability problem is

to validate whether a given 3-CNF formula is satisfiable.
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We construct the surveillance strategy optimization problem as follows: P = {1}, T =

{1, · · · , τ, · · · ,2τ, · · · ,3τ,3τ + 1}, K= T ∪ {0}, cp = 0, σ= 100%, and

ξ̂pk =

{
1/τ, if k− 1 is dividable by 3

0, otherwise
, rpkt =

{
ε, if k≤ t≤ k+ 2, and t≤ 3τ

0, otherwise
,

for all p ∈ P, k ∈ K, and k ≤ t ≤ T , where τ is a positive integer, and ε is a positive constant.

The maximum reward of P is ε, which is achieved if and only if all progressed PCa is detected via

biopsy and treated within the first three periods after progression, i.e., t∈ {k, k+ 1, k+ 2}. When

σ= 100%, this solution requires that the following boolean formula,

(x1 ∨x2 ∨x3)∧ (x4 ∨x5 ∨x6)∧ · · · ∧ (x3τ−2 ∨x3τ−1 ∨x3τ ),

be a feasible 3-CNF, which completes the proof. �

EC.1.5. Extensive linearized model of P

The following is a linearized reformulation of P that considers xst, yps as the first-stage decision

variables, and upkt and v̂pkst as the second-stage decision variables (note that vpkt is extended to

be v̂pkst in this subsection to capture the dependency of the probability of detected PCa on the

strategy, and vpkt =
∑

s∈S v̂pkst). Since the second-stage program is purely dependent of xst and

yps, we present the model reformulation as a single mixed-integer program as follows:

MIP : max
x,y,u,v̂

∑
p∈P

∑
k∈K

ξ̂pk

[
T+1∑
t=k

∑
s∈S

rpktv̂pkst−
∑
t∈T

π̂pktupkt

]
(EC.1a)

s.t. (1b), and

v̂pkst + dptσ
t−1∑
t′=k

v̂pkst′ ≤ dptσ, ∀p∈P, k ∈K, s∈ S, k≤ t≤ T, (EC.1b)

K+1∑
k=t

v̂pkst ≤Mptxst, ∀p∈P, s∈ S,1≤ t≤ T, (EC.1c)

∑
k∈K

T∑
t=k

v̂pkst ≤ M̂pyps, ∀p∈P, s∈ S, (EC.1d)

T+1∑
t=k

v̂pkst ≤ yps, ∀p∈P, k ∈K, s∈ S, (EC.1e)

−upkt−
t−1∑
t′=k

v̂pkst′ ≤ 2− dpt−xst− yps, ∀p∈P, k ∈K, s∈ S,1≤ t≤ T, (EC.1f)

xst, yps ∈ {0,1}, upkt, v̂pkst ≥ 0.

where (EC.1a) is the total expected reward that combines (1a) and (2a). (EC.1b)-(EC.1e) reformu-

late (2b) and (4a)-(4b) which jointly determine the upper bound of v̂pkst, where (EC.1b) enforces



ec4 e-companion to Zhang, Denton, and Morgan: Optimization of Active Surveillance Strategies

v̂pkst ≤ dptσ(1−
∑t−1

t′=k v̂pkst′) which is the maximum probability of being detected at period t if the

biopsy is performed, and (EC.1c)-(EC.1e) enforce v̂pkst ≤ 0 if xst = 0 or yps = 0. (EC.1f) reformu-

lates (3) that determines the lower bound of upkt, i.e., upkt ≥ 1−
∑t−1

t′=k v̂pkst′ when dpt = 1, xst = 1,

yps = 1, and upkt ≥ 0, otherwise. The reformulation can be shown as follows:

When xst + yps + dpt ≤ 2, (EC.1f) always holds because the left-hand side is non-positive and the

right-hand side is non-negative.

When xst + yps + dpt = 3, i.e., xst = 1, yps = 1, and dpt = 1, we have qpkt = dpt

(
1−

∑t−1

t′=k vpkt′
)

=

1−
∑t−1

t′=k v̂pkst, and wpt = xstyps = 1, under which (EC.1f) can be rewritten as:

−upkt + qpkt ≤ 1−wpt, ∀p∈P, k ∈K,1≤ t≤ T

which is equivalent to (3) when we set the bigM coefficient, M̂pt, as 1.

EC.1.6. Updating bt+1 using Bayesian inference

Let q̄t(O | S ,A) denotes the probability of making observation O at period t when the action

chosen is A and the state is S . Let p̄t(S
′ | S ,A) denote the transition probability from S to

S ′ under action A. Therefore, the probability of transitioning to the absorbing state, p̄t(T |

bt,At) =
∑

St∈S p̄t(T | St,At)bt(St). The probability of making an observation Ot, p̄t(Ot | bt,At) =∑
St∈S q̄t(Ot | St,At)bt(St). Then, the belief state in period t+ 1 is updated as follows:

bt+1(St+1) =
∑
St∈S

p̄t(St+1 | St,At)b̂t(St), ∀St+1 ∈S , (EC.2)

where b̂t(St) is the updated belief state at the end of period t after observing Ot, which can be

determined according to Bayesian inference as follows:

b̂t(St) =
q̄t(Ot | St,At)bt(St)∑

S
′
t∈S

q̄t(Ot | S ′t ,At)bt(S
′
t )
, ∀St ∈S . (EC.3)

EC.1.7. Extension of P to left to right Markov models with multiple latent states

We present a simple extension of P to left to right Markov models with more than two states,

in which the progression among states is sequential and irreversible (which do arise in cancer

surveillance and probably other areas). We let L denote a set of latent states indexed by l =

0,1, · · · ,L, where L is the total number of latent states. To formulate the model extension, we need

to make additional assumptions as follows:

Assumption EC.1. The progression among latent states in L is independent of the biopsy test-

ing.
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Assumption EC.2. All latent states are ordinal, where l= 1 is the least severe state and l=L is

the most severe state. Moreover, there exists a definitive classifier l̃ for L such that states l̃≤ l≤L
require treatment upon detection, and states 0 ≤ l ≤ l̃ − 1 are nonmalignant and do not require

treatment.

We expand the notation of ξ̂pk, π̂pkt, rpkt, vpkt, upkt, and qpkt to be l-dependent as ξ̂lpk, π̂
l
pkt, r

l
pkt,

vlpkt, u
l
pkt, and qlpkt, respectively. Based on Assumptions 1-2 and 4-5, the model extension (EP)

accounting for multiple latent states can be formulated as the following two-stage SIP:

EP : max
x,y,w

Q(x,y,w) =
∑
p∈P

∑
k∈K

∑
l∈L

ξ̂lpkQ̃(x,y,w, p, k, l) (EC.4a)

s.t. (1b), (1c), and ,

xst, yps,wpt ∈ {0,1}.

where Q̃(x,y,w, p, k, l) is the maximum reward associated with p, k, and l, which is determined

by the following second-stage recourse program:

Q̃(x,y,w, p, k, l) = max
u,v,q

T+1∑
t=k̄

rlpktv
l
pkt−

∑
t∈T

π̂lpktu
l
pkt (EC.5a)

s.t. qlpkt + dpt

t−1∑
t′=k

vlpkt′ = dpt,∀1≤ t≤ T,0≤ l≤L, (EC.5b)

−qlpktwpt +ulpkt = 0,∀1≤ t≤ T,0≤ l≤L, (EC.5c)

vlpkt = 0,∀k≤ t≤ T,0≤ l≤ l̃− 1, (EC.5d)

−qlpktwptσ+ vlpkt = 0,∀k≤ t≤ T, l̃≤ l≤L (EC.5e)

vlpk,T+1 +
T∑
t′=k

vlpkt′ = 1,∀0≤ l≤L, (EC.5f)

ulpkt, v
l
pkt, q

l
pkt ≥ 0.

EC.1.8. Standard Benders decomposition of P̂ and computational results

Standard Benders decomposition. Following the standard approach for Benders decompo-

sition, we use the dual subproblem (DSP) of P̂ to determine the expected reward for a given

solution (x,y), and generates the following optimality cut to Fv(η,x,y):

η≤
∑
p∈P

∑
k∈K

∑
s∈S

t−1∑
t=k

dptσᾱpkst +
∑
p∈P

∑
s∈S

∑
t∈T

Mptβ̄pstxst +
∑
p∈P

∑
s∈S

M̂pγ̄psyps

+
∑
p∈P

∑
k∈K

∑
s∈S

θ̄pksyps +
∑
p∈P

∑
k∈K

∑
s∈S

∑
t∈T

(2− dpt−xst− yps) χ̄pkst
(EC.6)

where ᾱ, β̄, γ̄, θ̄, and χ̄ are incumbent optimal solutions of the following dual subproblem:

DSP: min
α,β,γ,θ,χ

∑
p∈P

∑
k∈K

∑
s∈S

t−1∑
t=k

dptσαpkst +
∑
p∈P

∑
s∈S

∑
t∈T

Mptxstβpst +
∑
p∈P

∑
s∈S

M̂pypsγps
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+
∑
p∈P

∑
k∈K

∑
s∈S

θpksyps +
∑
p∈P

∑
k∈K

∑
s∈S

∑
t∈T

(2− dpt−xst− yps)χpkst (EC.7a)

s.t. αpkst +σ
T∑

t′=t+1

dpt′αpkst′ +βpst + γps + θpks−
T∑

t′=t+1

χpkst′ ≥ rpktξ̂pk,

∀p∈P, k ∈K, s∈ S, k≤ t≤ T, (EC.7b)∑
s∈S

θpks ≥ rpk,T+1ξ̂pk, ∀p∈P, k ∈K, (EC.7c)

−
∑
s∈S

χpkst ≥−π̂pktξ̂pk, ∀p∈P, k ∈K, t∈ T , (EC.7d)

αpkst, βpst, γps, θpks, χpkst ≥ 0, (EC.7e)

where αpkst, βpst, γps, θpks, and χpkst are dual variables of the subproblem of P̂, corresponding to

constraints (EC.1b)-(EC.1f), respectively, when the first-stage decisions x,y are fixed.

Computational settings and results. Our main purpose is to investigate the computational

performance of different approaches, including the extensive formulation (B&C), the standard

Benders decomposition (SBD), and the logic-based Benders decomposition (LBD). We tested the

approaches on 80 instances that were classified into eight categories depending on the number of

patient types, P ∈ {40,50}, and the number of strategies, S ∈ {2,5}, and the distribution type

of the reward parameters corresponding to deterministically sampled rpkt and randomly sampled

rpkt, respectively. Moreover, we set T =K = 10, and ε be a random variable following a standard

uniform distribution, UNIF(0,1). rpkt was generated as follows:

� Deterministic r: set rpkt = T + 1 + t− k for all p∈P, k ∈K, k≤ t≤ T + 1,

� Random r: initialize rP,1,T+1 = 0, and then iteratively sample other rpkts as follows: rpkt =

rp,k,t+1 + ε and rpk,T+1 = rp,k−1,T+1 + ε for all p∈P, 2≤ k≤K + 1, and k≤ t≤ T .

Similarly, we set πpk1 = 1, and iteratively sample πpkt as follows:

πpkt =

{
πpk,t−1 + 0.2ε

T
if t < k,

πpk,t−1 + 0.5ε
T

if t≥ k,

for all p ∈ P, k ∈ K, and t = 2, · · · , T . We set ξ̂p0 = ε and iteratively sample ξ̂pk =

ε
(

1−
∑

k′∈K|k′<k ξ̂pk′
)

for all p∈P and k= 2, · · · ,K.

All algorithms were implemented in Microsoft Visual Studio.NET 2017 linking with the CPLEX

12.8 callable library. Experiments were conducted on an Intel Core i7-9700 PC with processors

running at 3.00 GHz and 16 GB memory under Windows 10. All algorithms were stopped when

either they obtained the optimal solution (concerning a relative gap ≤ 0.01%) or the computation

time reached a maximum of 3,600 seconds.

We report the average and maximum solution times and optimality gaps across ten instances in

Table EC.1. The main results are summarized as follows:
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Table EC.1 Computational performance of the extensive formulation (B&C) method, the standard Benders

decomposition (SBD) method, and the logic-based Benders decomposition (LBD) method (CPU time limit is

3,600 seconds)

Deterministically sampled r Randomly sampled r
Solution time

(CPU seconds)
Optimality

gap, %
Solution time

(CPU seconds)
Optimality

gap, %
P S Method Avg Max Avg Max Avg Max Avg Max
40 2 B&C 818 2424 0.00 0.00 1429 2178 0.00 0.00

SBD 4 5 0.00 0.00 3600 3600 0.12 0.21
LBD 4 4 0.00 0.00 37 51 0.00 0.00

5 B&C 3601 3602 16.81 22.57 3601 3602 5.58 6.80
SBD 6 9 0.00 0.00 3600 3601 0.10 0.19
LBD 5 9 0.00 0.00 3216 3601 0.01 0.03

50 2 B&C 1634 3601 0.18 1.77 2238 3601 0.10 0.42
SBD 6 7 0.00 0.00 3399 3600 0.07 0.16
LBD 6 7 0.00 0.00 80 99 0.00 0.00

5 B&C 3601 3601 17.12 21.13 3601 3601 5.92 7.15
SBD 7 8 0.00 0.00 3390 3601 0.10 0.16
LBD 6 8 0.00 0.00 3311 3603 0.02 0.04

� The LBD method was 208% and 110% faster than the SBD and B&C methods, respectively,

which demonstrates that the logic-based Benders decomposition formulation helped significantly

in reducing the computational complexity compared with the original formulation.

� For instances unsolved to optimality within the time limit, the maximum optimality gap was

22.57%, 0.21%, and 0.04% for the B&C, SBD, and LBD methods, respectively. The value of the

logic-based Benders decomposition is particularly significant for active surveillance practice because

it has a large fixed reward associated with no surveillance due to the low progression rate to high-

risk PCa, which is the fundamental motivation for surveillance instead of immediate treatment.

Therefore, the optimality gap is often minimal, but the relative term corresponds to a large absolute

difference by public health standards. In such a situation, the LBD method is beneficial to analyze

the structure of the optimal solution and improve the overall performance in a large population.

EC.1.9. Results of parameter estimation in the case study

The total expected reward is a weighted sum of rewards across all patient types, where the number

of patients for each type (np) is estimated based on enrolled patients in the timeframe 1995–2014

as published in Inoue et al. (2018). See Table EC.2 for the number of patients for each patient

type. The other parameters including πpkt and rpkt are estimated based on a Markov process model

as shown in Figure EC.2. For the ease of readability, we use figures to highlight the representative

πpkt and rpkt under different k and t. The results of parameter estimation are given in order:

� Estimation of the probability of PCa progression at period k for patient type p, ξpk, is illus-

trated in Figure EC.3.
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� Estimation of the probability of patient type p staying in active surveillance at period t when

PCa progresses at period k and the patient is not treated, πpkt, is illustrated in Figure EC.4.

� Estimation of the expected QALYs if patient type p is treated at period t, rpkt, for 1≤ t≤ T ,

or not treated, rpk,T+1, when PCa progresses at period k, which is illustrated in Figure EC.5.

Table EC.2 Number of enrolled patients in each type among 1,000 patients (Inoue et al. 2018, Table 2)

50≤ Ap ≤ 59 60≤ Ap ≤ 69 70≤ Ap ≤ 75
JH 7.1 27.2 12.2
SF 20.5 30.7 12

C P T M D

1, if t’=k
0, o.w.

at’

at’

at’

at’

(1-at’)gt’(1-at’)f 

(1-at’)e

1, if t’=t
0, o.w.

Figure EC.2 Simplified Markov process model of PCa progression based on Figure 2 for fixed p, k, and t where

nodes C, P, T, M, and D denote the states of “Low-risk PCa”, “High-risk PCa”, “Treatment for

High-risk PCa”, “Metastasis from PCa”, and “Mortality” which combines “Other-cause mortality”

and “PCa mortality”, respectively, arcs denote the transition probabilities.
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Figure EC.3 Estimation of ξpk for patients from the JH and SF cohorts, respectively, where ξp,K+1 = 1−
∑45

k=1 ξpk

is the probability of unprogressed PCa at the end of K periods.



e-companion to Zhang, Denton, and Morgan: Optimization of Active Surveillance Strategies ec9

2 4 6 8 10
0.4

0.6

0.8

1
Ap = 50

t

π pk
t

 
2 4 6 8 10

0.2

0.4

0.6

0.8

1
Ap = 60

t

π pk
t

 

2 4 6 8 10
0.2

0.4

0.6

0.8

1
Ap = 70

t

π pk
t

 
2 4 6 8 10

0.2

0.4

0.6

0.8

1
Ap = 75

t

π pk
t

 

k=0
k=4
k=8
k>11

k=0
k=4
k=8
k>11

k=0
k=4
k=8
k>11

k=0
k=4
k=8
k>11

Figure EC.4 Probability of patients staying in surveillance at period t, πpkt
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Figure EC.5 The expected reward associated with being treated at period t, rpkt, where t= 12 (T + 1) denotes

being missed of treatment
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EC.1.10. Results of model validation

Our main purpose is to validate the disease model by comparing the model outputs to published

sources on PCa outcomes in this subsection. Specifically, we compared the following indicators of

PCa outcomes:

� Expected time between beginning surveillance and being detected via biopsy for progressed

PCa, which we refer to as the expected time to detection,

� PCa specific mortality (PCSM) rate.

In terms of the expected time to detection, Inoue et al. (2018) reported their estimated outcomes

(with the title “time to upgrading”) based on men diagnosed at 60 years old in the JH and the SF

cohorts. We compare the model outputs with their outcomes. The results are summarized in Table

EC.3, which show that the two outcomes are closely matched with a small difference (≤6.0% in the

worst case across all comparisons) in both JH and SF cohorts and under different strategies. This

result means that the disease model accurately reflects PCa disease progression. We also reported

more model-based estimates of the expected time to detection in Table EC.4 corresponding to men

diagnosed at different ages and under different surveillance strategies.

In terms of the PCSM rate, Tosoian et al. (2016) estimated that the PCSM rate was between 0%

and 1.5% in the intermediate-term (5–10 years) while our estimate was between 0.2% and 1.0% in

5-10 years under different strategies on men with various diagnosis ages. However, comprehensive

assessments of the post surveillance outcomes across multiple cohorts are currently lacking. We

also report more model-based estimates of post surveillance outcomes such as the PCSM rate and

the life expectancy in Table EC.4 for future comparison.

Table EC.3 Comparing our model outputs to Inoue et al. (2018) in terms of the expected time to detection

under surveillance strategies that biopsy every 1 or 2 years up to 11 years for men diagnosed at 60 years old

Cohort
Number of years
between biopsies

Expected time to detection
(years) by Inoue et al. (2018)

Expected time to detection
(years) by our model

Mean SD Mean SD

JH 1 5.18 3.22 5.16 3.23
2 5.58 3.41 5.66 3.36

SF 1 3.64 2.92 3.42 2.94
2 3.92 3.14 3.85 3.18
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Table EC.4 Model-based estimates of the expected time to detection, the PCa specific mortality rate, and the

life expectancy under surveillance strategies that biopsy every 1 or 2 or 3 years up to 11 years for men diagnosed

at different ages

Cohort
Number of years
between biopsies

Expected time to
detection (years)

PCa specific
mortality, %

Life
expectancy

Mean SD 5 years 10 years 15 years (years)

Men diagnosed at 50 years old
JH 1 5.25 3.25 0.2 0.5 1.0 28.2

2 5.76 3.37 0.3 0.8 1.5 28.0
3 5.70 3.24 0.3 1.0 1.9 27.8

SF 1 3.49 2.99 1.5 2.9 4.4 27.1
2 3.94 3.22 1.8 3.6 5.6 26.8
3 3.96 3.19 1.9 4.2 6.6 26.4

Men diagnosed at 60 years old
JH 1 5.16 3.23 0.2 0.5 0.9 20.7

2 5.66 3.36 0.3 0.7 1.3 20.6
3 5.61 3.24 0.3 0.9 1.7 20.5

SF 1 3.42 2.94 1.5 2.7 4.0 20.1
2 3.85 3.18 1.7 3.4 5.0 19.9
3 3.88 3.16 1.8 3.9 5.9 19.7

Men diagnosed at 70 years old
JH 1 4.94 3.18 0.2 0.4 0.7 13.7

2 5.41 3.32 0.2 0.6 1.0 13.7
3 5.39 3.22 0.3 0.8 1.3 13.6

SF 1 3.25 2.83 1.3 2.4 3.3 13.4
2 3.65 3.07 1.5 3.0 4.1 13.3
3 3.69 3.08 1.7 3.4 4.8 13.3

EC.1.11. Results of sensitivity analysis

We conducted a series of one-way sensitivity analyses based on varying selected data (Table EC.5).

The results of the sensitivity analysis are presented in Figure EC.6 (page 47).

Table EC.5 Summary of data for one-way sensitivity analysis

Data Range Reference
Sensitivity of biopsy, σ 0.582 - 0.688 Barnett et al. (2018)
Disutility in the year of biopsy, cB ± 20%
Misclassification rate for the JH cohort, ŵ(JH) ± 20%
Misclassification rate for the SF cohort, ŵ(SF) ± 20%
Annual progression rate for the JH cohort, w(JH) ± 20%
Annual progression rate for the SF cohort, w(SF) ± 20%
Annual metastasis rate from treated high-risk PCa, e ± 20%
Annual metastasis rate from untreated high-risk PCa, f ± 20%
Annual death rate from all-other causes, at ± 95% CI US Life Tables (2012)



ec12 e-companion to Zhang, Denton, and Morgan: Optimization of Active Surveillance Strategies

EC.2. Technical Proofs
EC.2.1. Proof of Lemma 1

Proof: let δ(x) denote the change in x. Suppose t≥ k and the patient is undetected, then he will

be detected among periods {t, · · · , T} or remain undetected at period T + 1. According to (2e), as

vpkt increases (i.e., δ(vpkt)> 0), the following equation always holds for all p∈P and k ∈K:

δ(vpkt) +
T+1∑
t′=t

δ(vpkt′) = 0.

According to Assumption 3, rpkt ≥ dptrpkt′ , ∀t+ 1≤ t′ ≤ T + 1, and thus

rpktδ(vpkt) +
T+1∑
t′=t

rpkvδ(vpkv)

≥ rpkt

(
δ(vpkt) +

T+1∑
t′=t

rpkvδ(vpkt′)

)
≥ 0

(EC.8)

for all p∈P, k ∈K, and k≤ t≤ T when dpt = 1. Moreover, as vpkt increases, qpkt′ is nonincreasing

for all t+ 1≤ t′ ≤ T when dpt′ = 1 because of the following transformation:

qpk,t+1 = 1−
t−1∑
t′=k

vpkt′ − vpkt

= qpkt− (qpktwptσ)

= qpkt (1−wptσ)

where the first equation is from (2b) and the second equation is from (2d) when dpt = dp,t+1 = 1.

We further have upk,t′ is nonincreasing for all t+ 1≤ t′ ≤ T according to (2c). Therefore, as vpkt

increases, Q̃(x,y,w, p, k) is nondecreasing for all p ∈ P, k ∈K, and k ≤ t≤ T when dpt = 1, which

completes the proof. �

EC.2.2. Proof of Theorem 1

Proof: the proof is straightforward because:

� When dpt = 0, vpkt is enforced to be zero according to (2b) and (2d),

� When dpt = 1, vpkt will achieve its upper bound value to maximize Q̃(x,y,w, p, k) (Lemma 1),

which completes the proof. �

EC.2.3. Proof of Theorem 2

Proof. We consider ξpk = ξ̂pk in this proof because there is only one patient type. Let ∆V Π
t denote

the expected reward received at period t in the POMDP-surveillance model under policy Π, and

thus it can be determined according to (6) as follows:

∆V Π
t =


(
Rt(bt,A

Π
t ) + p̄t(T | bt,AΠ

t )R̄t(T)
)∏t−1

t′=1

(
1− p̄t′(T | bt′ ,AΠ

t′)
)
, if 1≤ t≤ T̄

R̄T̄+1(T)
∏t−1

t′=1

(
1− p̄t′(T | bt′ ,AΠ

t′)
)
, if t= T̄ + 1.

(EC.9)
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where Rt(bt,B) = −dptπ̃pt, Rt(bt,W) = 0, p̄t(T | bt,W) = 0 for all bt according to (8). The belief

state bt is independent of Π and it is specified as (7). Let ∆QΠ
t denote the expected reward received

by one patient at period t in P under policy Π, and it can be determined according to (1a), and

(2a)-(2e) as follows:

∆QΠ
t =


∑

k≤t ξpkrpktv
Π
pkt−

∑
k∈K ξpkπ̂pktu

Π
pkt, if 1≤ t≤ T̄ ,

0, if T̄ + 1≤ t≤ T,∑
k∈K ξpk

(
1−

∑T

t′=k v
Π
pkt′

)
rpk,T+1, if t= T + 1,

(EC.10)

where vΠ
pkt and uΠ

pkt are the second stage decision of P under policy Π. In the following proof, we

show that ∆QΠ
t = ∆V Π

t for all 1≤ t≤ T̄ in Step 1, and ∆QΠ
T+1 = ∆V Π

T̄+1
in Step 2.

Step 1: we prove that ∆QΠ
t = ∆V Π

t for all 1 ≤ t ≤ T̄ . According to (EC.10), we reformulate

∆QΠ
t as follows:

∆QΠ
t =

∑
k≤t

ξpkrpktq
Π
pktw

Π
ptσ−

∑
k∈K

ξpkπ̂pktq
Π
pktw

Π
pt (EC.11a)

=
∑
k∈K

ξpkq
Π
pkt

[
−wΠ

ptπ̃pt + 1{k≤t}w
Π
ptσR̄t(T)

]
(EC.11b)

=
∑
k∈K

ξpkq
Π
pkt

[
Rt(bt,A

Π
t ) + p̄t(T | bt,AΠ

t )R̄t(T)
]

(EC.11c)

=
[
Rt(bt,A

Π
t ) + p̄t(T | bt,AΠ

t )R̄t(T)
] t−1∏
t′=1

(
1− p̄t′(T | bt′ ,AΠ

t′)
)

(EC.11d)

where 1{x} returns 1 if x is true and 0 otherwise. (EC.11a) is according to upkt = qpktwpt (2c) and

vpkt = qpktwptσ (2d). (EC.11b) is according to the conditions that π̂pkt = π̃pt and rpkt =Rt(T) for

all k. (EC.11c) is according to the definitions of Rt(bt,A
Π
t ) and p̄t(T | bt,AΠ

t )R̄t. The last equation,

(EC.11d), is according to Lemma EC.1, which is given following this proof.

Step 2: we prove that ∆QΠ
T+1 = ∆V Π

T̄+1
. According to (2b), (2d), and dpt = 0, we have vΠ

pkt = 0 for

all T̄ + 1≤ t≤ T , and thus,
∑T

t′=k v
Π
pkt′ =

∑T̄

t′=k v
Π
pkt′ . Further,

∑
k∈K ξpk

(
1−

∑T

t′=k v
Π
pkt′

)
rpk,T+1 =∑

k∈K ξpk

(
1−

∑T̄

t′=k v
Π
pkt′

)
RT̄+1(T) =

∏t−1

t′=1

(
1− p̄t′(T | bt′ ,AΠ

t′)
)
RT̄+1(T).

Combining the steps 1-2, the POMDP-surveillance model and P achieve the same expected reward

in every period of the surveillance, and thus they achieve the same total expected reward under

policy Π, which completes the proof. �

Lemma EC.1. The total probability of undetected PCa in surveillance at period t is equivalent

to the following probability in the POMDP-surveillance model:

∑
k∈K

qΠ
pktξpk =

t−1∏
t′=1

(
1− p̄t′(T | bt′ ,AΠ

t′)
)
, ∀1≤ t≤ T̄ .
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Proof. Recall that p̄t(T | bt,W) = 0, and dpt = 1 for all 1≤ t≤ T̄ , we then prove this lemma using

induction by the following two steps:

Step 1: According to (2b),
∑

k∈K qpk1ξpk =
∑

k∈K dp1ξpk = 1, and thus, Lemma EC.1 is true.

Step 2: Given Lemma EC.1 is true for t, we prove that it holds for t+ 1.

According to (2b),
∑

k∈K q
Π
pktξpk can be rewritten as follows:

∑
k∈K

qΠ
pktξpk =

∑
k∈K

(
1−

t∑
t′=k

vΠ
pkt′

)
ξpk

=
∑
k∈K

(
1−

t−1∑
t′=k

vΠ
pkt′ − vΠ

pkt

)
ξpk

=
∑
k∈K

(
qΠ
pkt− 1{k≤t}q

Π
pktw

Π
ptσ
)
ξpk

=
∑
k∈K

qΠ
pktξpk

(
1− 1{k≤t}w

Π
ptσ
)

where 1{x} returns 1 if x is true and 0 otherwise. Observe that 1{k≤t}w
Π
ptσ is probability of newly

detected PCa at period t, and thus, 1{k≤t}w
Π
ptσ= p̄t(T | bt,AΠ

t ) for all k. Moreover,
∑

k∈K q
Π
pktξpk is

equal to
∏t−1

t′=1

(
1− p̄t′(T | bt′ ,AΠ

t′)
)

by induction at period t. We can further rewrite
∑

k∈K q
Π
pktξpk

as follows: ∑
k∈K

qΠ
pktξpk =

(
1− p̄t(T | bt,AΠ

t )
) t−1∏
t′=1

(
1− p̄t′(T | bt′ ,AΠ

t′)
)

=
t∏

t′=1

(
1− p̄t′(T | bt′ ,AΠ

t′)
)

Therefore, Lemma EC.1 is true for t+ 1, which completes the proof. �

EC.2.4. Proof of Proposition 1

Proof: let x∗P̂ denote the optimal solution that maximizes Q̂(P̂). Then, xp = x∗P̂ is a feasible solution

to Q̂({p}) for all p ∈ P̂, and they achieve the same reward with Q̂(P̂). Therefore,
∑

p∈P̂ Q̂({p})≥

Q̂(P̂). �
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Figure EC.6 One-way sensitivity analyses of gain in expected QALYs compared with the UT strategy, where the

baseline gain is 120 QALYs based on parameters in Table 3, and the x-axis is ordered by increasing

gains of the Opt-2 solution


