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Abstract
Prostate cancer (PCa) is common in American men with long latent periods, during
which the disease is asymptomatic. Active surveillance is a monitoring strategy com-
monly used for patients diagnosed with low-risk PCa who may harbor latent high-risk
PCa. The optimal monitoring strategy attempts to minimize the disutility of test-
ing while ensuring that the patient is detected at the earliest time when the disease
progresses. Unfortunately, guidelines for the active surveillance of PCa are often one-
size-fits-all strategies that ignore the heterogeneity among multiple patient types. In
contrast, personalized strategies based on partially observable Markov decision process
(POMDP) models are challenging to implement in practice given the large number of
possible strategies that can be used. This article presents a two-stage stochastic pro-
gramming approach that selects a set of strategies for predefined cardinality based
on patients’ disease risks. The first-stage decision variables include binary variables
for the selection of periods at which to test patients in each strategy and the assign-
ment of multiple patient types to strategies. The objective is to maximize a weighted
reward function that considers the need for cancer detection, missed detection, and
cost of monitoring patients. We discuss the structure and complexity of the model and
reformulate a logic-based Bender’s decomposition formulation that can solve realistic
instances to optimality. We present a case study for the active surveillance of PCa and
show that our model results in strategies that vary in intensity according to patient dis-
ease risk. Finally, we show that our model can generate a small number of strategies
that can significantly improve the existing “one-size-fits-all” guideline strategies used
in practice.
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1 INTRODUCTION

Many chronic diseases have latent periods during which there
are no physical symptoms until the later stages. There are
many examples of such diseases, including cardiovascular
diseases and cancer, which together are the leading causes
of death in most developed countries. Chronic diseases, such
as these, have better treatment options and health outcomes
when they are detected and treated early. For instance, for
cancer, a localized tumor may be surgically removed; how-
ever, if cancer metastasizes, the treatment options are limited
to chemotherapy or radiation therapy, which at best attempt
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to delay the progression of the disease. For this reason, it
is important to identify the high-risk stages of the disease
as soon as possible. However, diagnostic tests and proce-
dures used to detect latent diseases can be painful, risky, and
expensive. Therefore, strategies for early detection of latent
diseases must balance the benefits of early detection with the
disutility of diagnostic testing.

Prostate cancer (PCa) is an informative test case because
it has clearly defined stages based on disease pathology and
long latent periods during which the disease is asymptomatic.
PCa is also an important public health challenge because it
is the most common cancer in men and the second leading
cause of cancer-related death among men in the United States
(USCS, 2018). Previously, the norm was to treat all healthy
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patients diagnosed with PCa using radical prostatectomy
(surgical removal of the prostate gland) or radiation ther-
apy. Recently, evidence has surfaced that low-risk forms of
the disease may not benefit from aggressive treatment (Bill-
Axelson et al., 2018). As a result, the practice is shifting to the
use of active surveillance, for men diagnosed with low-risk
PCa. The purpose of surveillance is to minimize overtreat-
ment and subsequent morbidity for men with the indolent
disease while ensuring that men who progress to high-risk
disease receive treatment when appropriate. Early studies
suggested that active surveillance has a survival rate similar
to that of immediate treatment for patients who are diagnosed
with low-risk PCa (Hamdy et al., 2016). This is important
because active surveillance can delay or avoid treatment via
radical prostatectomy or radiation therapy, which have sig-
nificant side effects such as sexual dysfunction, incontinence,
and other impacts on a patient’s health status (Guenther et al.,
2019).

The fact that PCa is not directly observable the dis-
ease is stochastic, and diagnostic tests are imperfect, can
cause disutility to patients, and raise important—and as yet
unanswered—questions about the optimal surveillance strat-
egy. The recent availability of data from multiple long-term
clinical studies has made it possible to estimate stochastic
models for the natural history of patients diagnosed with
low-risk PCa (Barnett et al., 2018; Inoue et al., 2018). The
approach of Barnett et al. (2018), based on the enumeration of
a small list of surveillance strategies, suggested an incentive
for optimizing the strategy.

PCa surveillance is a special case of disease monitor-
ing. For example, PCa during surveillance only has two
latent states, including low- and high-risk stages, the action
to perform is either “test” or “wait,” and the test result is
dichotomous in which the chance of a false-positive result
is zero (a complete description of the problem is given in
Section 4). This example could be applied to other disease
contexts in which risk can be dichotomized with respect to
decisions about whether and when to collect information that
comes with a cost or burden to patients. Currently, the com-
monly used partially observable Markov decision process
(POMDP) model (see, e.g., Ayer et al., 2012; Zhang et al.,
2012) generates a dynamic strategy based on a probability
distribution over the set of core states defining the health
status of each patient, and the resulting policies are at odds
with the structure of many contemporary strategies used in
medical practice. In contrast, all strategies endorsed by pro-
fessional societies that we are aware of prescribe a predefined
schedule of diagnostic tests and procedures (see, for example,
Lawrentschuk & Klotz, 2011). This endorsement is partly due
to the fact that such strategies are easy to interpret and provide
patients with reasonable expectations in the future. Unfortu-
nately, while such strategies are easy to interpret, they are
“one-size-fits-all” strategies and lack the personalization of
policies based on POMDPs that use patients’ risks.

In this article, we study a stochastic programming
model for the PCa surveillance problem to design easy-to-
implement (static) surveillance strategies that can 1) provide

patients with reasonable expectations, 2) allow the coordina-
tion of decisions among multiple patient types, and 3) balance
the ease of implementation with the desire for individualized
strategies for patients. We describe the stochastic program-
ming framework that utilizes a black box simulation model
based on the enumeration of sample paths of disease pro-
gression and detection. The decisions define (a) the selection
of periods at which to test patients for each of a predefined
number of surveillance strategies and (b) the assignment of
patients based on disease risk factors to strategies to maxi-
mize a cumulative reward function that considers the goals
of early detection and the harms of diagnostic tests and
procedures. Figure 1 illustrates the shared decision-making
process from perspectives of patients and physicians. We for-
mulate the model as a two-stage stochastic integer program,
and we develop a logic-based Benders decomposition for-
mulation that exploits the structure of the model. We apply
our approach to a case study based on a recently validated
stochastic model for the active surveillance of PCa.

The remainder of this article is organized as follows. Sec-
tion 2 provides a background on the active surveillance of
PCa to provide a context for the application of our model.
Section 3 reviews the most relevant literature on optimiz-
ing latent disease detection problems. A two-stage stochastic
integer programming model is described in Section 4 along
with some fundamental properties of the model. Section 5
compares the stochastic programming model with a bench-
mark POMDP approach. Section 6 presents a logic-based
Benders decomposition (LBD) approach. Section 7 provides
numerical results illustrating the performance of our model
and evaluates the incremental benefit of increasing the num-
ber of surveillance strategies relative to a one-size-fits-all
strategy. Section 8 concludes the article.

2 BACKGROUND ON ACTIVE
SURVEILLANCE FOR PROSTATE CANCER

The intent of active surveillance is to monitor patients diag-
nosed with a low-risk stage of PCa over time, to detect
(possible) progression to a high-risk stage of the disease.
Surveillance strategies dichotomize risk based on patholog-
ical information obtained from biopsies, clinical staging, and
prostate-specific antigen (PSA) tests. Prostate biopsy is the
most important method for definitively detecting PCa pro-
gression. The result of a biopsy, known as the Gleason score,
is a discrete score assigned by a pathologist. Patients below
the Gleason score threshold are assigned to the low-risk PCa
category, while patients above the threshold are attached to
the high-risk category. Definitive treatments such as radi-
cal prostatectomy and radiation therapy are recommended
for patients detected with the high-risk stage of PCa who
can tolerate these treatments. Active surveillance is recom-
mended for patients with low-risk PCa as a means to delay
or avoid treatment. In some cases, elderly patients may not
be candidates for such treatments because of the risk of
adverse outcomes.
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F I G U R E 1 Shared decision-making process from the patient and physician perspectives [Color figure can be viewed at wileyonlinelibrary.com]

F I G U R E 2 Illustration of disease progression and decision-making for active surveillance for PCa [Color figure can be viewed at
wileyonlinelibrary.com]

A sketch of the active surveillance process (Figure 2) illus-
trates the system dynamics, including the progression from
low- to high-risk PCa, treatment for high-risk cancer upon
detection, and progression from treated PCa or latent high-
risk PCa to metastatic PCa. Metastatic cancer frequently
leads to PCa mortality. At the same time, patients in any
health stage may also die from other competing diseases,
known as all-other-cause mortality, where its probability
changes with patient’s age and it could also differ based on
factors such as the presence of chronic diseases (e.g., dia-
betes, other types of cancer that may be present). Both low-
and high-risk PCa stages are latent but may be detected via
biopsy. Prostate biopsies are invasive tests that involve the

insertion of needles into the patient’s prostate gland to remove
tissue samples. The tissue was then evaluated by a patholo-
gist who reports the Gleason score. The Gleason score ranges
from 6 to 10. Patients with a Gleason score below 7 are gener-
ally considered candidates for active surveillance, and those
with a score of 7 or above are typically recommended for
radical prostatectomy or radiation therapy. The true-negative
rate of a biopsy (also known as the specificity) is close to
100%; however, the true-positive rate (also known as the
sensitivity)—as estimated from a large cohort study—is 61%
(Barnett et al., 2018). Although the specificity of biopsy is
nearly perfect, and it is the gold standard test, it is painful
and a source of significant anxiety for patients. In fact, many
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TA B L E 1 Well-known published strategies based on institutional
studies of active surveillance for PCa

Existing strategy Surveillance plan

Johns Hopkins Annual biopsy

University of California,
San Francisco

Biopsy 1 year after diagnosis, then every
2 years

University of Toronto Biopsy 1 year after diagnosis, then every
3 years

patients have poor adherence to active surveillance, citing
concerns regarding biopsies (Kinsella et al., 2018). Therefore,
the frequency of biopsies is an important consideration in the
effective implementation of active surveillance. On the other
hand, the delay in detecting the high-risk stage of the disease
is also an important consideration that is at odds with the goal
of minimizing the use of biopsies.

The PSA test is a commonly used biomarker test for PCa
progression. This is a simple blood test, in which high val-
ues or an increasing trend in PSA levels can be regarded as
a signal of PCa progression. However, the test outcome has
very poor sensitivity and specificity (Ankerst & Thompson,
2006). Nevertheless, PSA is considered part of the standard
practice of care and it often serves as a trigger for addi-
tional biopsies (Bokhorst et al., 2015). Such biopsies are
not anticipated in advance; therefore, we refer to them as
“off-schedule” biopsies.

In our model and case study, we focus on the optimiz-
ing the schedule of biopsies that define the surveillance
strategy. Several well-known strategies have been published
(Table 1), including the Johns Hopkins (JH) strategy (Carter
et al., 2007), the University of California, San Francisco
(SF) strategy (Dall’Era et al., 2008), and the University of
Toronto (UT) strategy (Van den Bergh, 2007). However, the
guideline strategies vary significantly, and the best strategy
remains unclear. Moreover, all of the guideline strategies
are one-size-fits-all strategies, whereas the best policy may
vary in intensity from one patient to another owing to the
heterogeneity among multiple patient types.

3 LITERATURE REVIEW

Active surveillance for PCa is a latent disease detection prob-
lem, which involves sequential decisions about whether and
when to use a diagnostic test. The goal is to schedule diag-
nostic tests to detect the latent high-risk stage of the disease
(e.g., high-risk PCa in our study) as early as possible while
trading off this benefit against the disutility of testing. The
risk of metastasis of high-risk disease promotes frequent test-
ing, while the pain, risk of infection and bleeding, and cost of
testing suggest infrequent testing. In this section, we review
the literature related to latent disease detection problems and
solution approaches. We close this section with a description
of the main contributions of this article to the literature.

3.1 Latent disease detection

The latent disease detection problem has been studied mainly
in the area of chronic disease monitoring and infectious dis-
ease control (de Vries et al., 2021; Kamalzadeh et al., 2021;
Nenova & Shang, 2022; Tunç et al., 2022). We provide a few
representative examples here to illustrate the body of research
in this area. Brandeau et al. (1993) studied an infectious
disease control problem to analyze the cost and benefit of
screening women of childbearing age for the human immun-
odeficiency virus (HIV). The authors proposed a dynamic
compartmental model of the HIV epidemic that incorpo-
rates disease transmission and progression over time. Helm
et al. (2015) studied a chronic disease monitoring problem
to forecast and control glaucoma progression. The authors
proposed a multivariate state-space model of disease pro-
gression based on a Kalman filter to sequentially forecast
the likelihood of progression and determine the next time to
test. Bertsimas et al. (2018) proposed a framework to find
a decision-making process that works well under multiple
models of latent disease progression and applied their method
to the PCa-screening problem.

The above problems are similar in a number of aspects.
First, there are multiple latent states, and at least one of them
requires timely treatment. Second, the detection of the latent
disease relies on tests that have measurement errors. Third,
decisions are made sequentially based on previous test out-
comes. Finally, the test is costly or harmful, and thus it is
a trade-off between the cost to test patients and the reward
associated with timely treatment.

3.2 POMDP-based approaches

POMDPs generalize Markov decision processes (MDPs) to
the case in which the underlying disease state is not directly
observable and is instead denoted as a probability distribution
over the set of possible states (also known as a belief state)
that is updated over time based on observations.

Due to the nature of sequential decision-making, most
latent disease detection problems are formulated as POMDP
models. Steimle and Denton (2017) reviewed MDP and
POMDP models that have been applied to the prevention,
screening, and treatment of chronic diseases such as diabetes,
heart disease, and cancer. In terms of applications of POMDP
models in medicine, Hauskrecht and Fraser (2000) con-
structed a POMDP framework for the problem of ischemic
heart disease management. The authors used a hierarchi-
cal Bayesian belief network to denote the disease dynamics,
and they exploited regularities and specificity of the prob-
lem domain to improve the computational performance of
the POMDP model. Vozikis et al. (2012) also considered an
ischemic heart disease management problem using a POMDP
model. The authors proposed a heuristic method to alleviate
the computational obstacle of the POMDP model and trade-
off for speed. Ayer et al. (2012) formulated a POMDP model
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to design a personalized mammography screening policy for
breast cancer screening based on the prior screening history
and personal risk characteristics of women. Their POMDP
model incorporated age-specific unobservable disease pro-
gression and age-specific mammography test characteristics.
PCa screening has been the focus of much research using
(descriptive) simulation models to evaluate PSA screening
of healthy populations (Mühlberger et al., 2017; Underwood
et al., 2012). From an optimization perspective, Zhang et al.
(2012) formulated the first POMDP model to find an optimal
prostate biopsy referral policy that depends on the patient’s
age and belief. However, since they considered disease detec-
tion as an endpoint, and they assumed a single biopsy, their
model was a stochastic partially observable stopping time
problem and thus differs from the surveillance setting that
may perform multiple biopsies in different periods. Sandkç
et al. (2013) proposed a POMDP framework for liver trans-
plantation problems that incorporated wait list information
into the patient’s decision-making. The authors used this
model to assess the loss in expected life days for patients
under imperfect information as a price of privacy, and they
concluded that the imperfect information that is typically
available is nearly sufficient to result in a negligible price
of privacy. Erenay et al. (2014) formulated a POMDP model
to optimize colonoscopy screening policies for detection of
colon cancer that incorporate age, gender, and other risk
factors. Otten et al. (2017) extended the POMDP model of
Ayer et al. (2012) for breast cancer screening by considering
multiple risk categories based on the differentiation of the pri-
mary tumor. They suggested different screening strategies for
different risk groups.

POMDPs are applicable for general latent disease detec-
tion problems, including multiple latent states, multiple
actions, and general transition probabilities such as cases in
colonoscopy screening (Erenay et al., 2014) and breast cancer
screening (Otten et al., 2017). However, the POMDP model
may have several drawbacks when applied to PCa surveil-
lance practice, which involves two latent states and multiple
patients. First, the POMDP solution is a dynamic strategy
depending on a belief state that needs to be evaluated by a
decision support tool based on historical data that may not be
available for all patients. Second, POMDP models are often
complex to formulate coordinating decisions among multi-
ple patient types of heterogeneity. Ignoring this heterogeneity
leads to a tractable model but also comes at a loss in accuracy;
on the other hand, incorporating the coordinating decisions
into the state space is associated with exponential increases in
computational complexity. Finally, physicians prefer strate-
gies that are defined a priori because they provide guidance
on future expectations for patients and physicians.

The most related work to ours is that of Q. Chen et al.
(2018), who proposed an MDP-inspired mixed-integer pro-
gramming (MIP) model for liver cancer screening. They
considered an M-switch strategy (i.e., a strategy that can
switch M times during the time of the surveillance process).
The MIP model can be solved efficiently, and thus over-
comes the computational challenges of the POMDP model

counterpart. However, the MIP model proposed by Q. Chen
et al. (2018) is still based on the Markov assumption. Similar
to POMDPs, their model generates an individualized strategy
for each type of patient, and as the number of patients grows,
the physician needs to document a growing number of strate-
gies. Our model differs from Q. Chen et al. (2018) in several
aspects: (1) it can constrain the number of strategies, which
is critical for implementation; and (2) we develop a tailored
solution approach for our model, while the MIP model in Q.
Chen et al. (2018) was solved using standard MIP solvers.

3.3 Our contributions

We formulate a stochastic integer programming (SIP) model
to optimize the detection of latent diseases and apply it to
active surveillance strategies for PCa. Compared with the
aforementioned literature, the contributions of this article are
as follows:

∙ Our approach generates easy-to-implement strategies
(structurally consistent with current practice) that predefine
a schedule of diagnostic tests, in contrast to the POMDP
models commonly proposed in the literature. Using our
model, we demonstrate the relative gains in increasing the
number of strategies for PCa from a single “one-size-fits-
all” strategy, ultimately proving that increasing a smaller
number of strategies can achieve significant gains over the
one-size-fits-all strategy.

∙ We develop an improved solution approach based on a tai-
lored LBD to solve our generic SIP model, and we show
that it significantly raises the computational efficiency
compared to the standard methods using a commercial MIP
solver.

∙ We allow for disease models with the possibility of coor-
dinating decisions among multiple patient types, which
would be difficult to address in POMDP models. Moreover,
we provide a case study demonstrating the practical use of
the model to determine optimal surveillance strategies for
patients with PCa for the first time.

4 STOCHASTIC INTEGER
PROGRAMMING MODEL

This section describes a SIP model for the PCa surveillance
strategy optimization problem with multiple patient types.
This model applies to PCa surveillance with two latent states
and biopsy result observations only when no information
is updated. The following section will introduce a bench-
mark model based on the POMDP formulation that applies to
problems with more latent states and observations. We then
compare the two models regarding their applications to PCa
surveillance practice at the end of Section 5.

The surveillance cohort consists of a set of heteroge-
neous patients of P types, where each patient type p ∈  ≡

{1, … ,P} consists of np patients, which correspond to a
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TA B L E 2 Notation used in the stochastic integer programming model

Notation Description

Parameters

p, k, t, s Index for patient types, periods of PCa progression,
periods of treatment (detection), and surveillance
strategies, respectively

𝜎 True positive rate of the biopsy test

dpt Recommendation on early discontinuation of
surveillance at period t for patient type p

𝜉pk Probability of PCa progression at period k for patient
type p

�̂�pk Number of patients who are in type p and PCa progress
at period k

�̂�pkt Adjusted cost of a biopsy test at period t for patient type
p when PCa progressed at period k

rpkt Expected lump-sum reward if PCa is treated at period t
for patient type p when PCa progressed at period k

First-stage decision variables

xst Whether a biopsy is scheduled at period t in strategy s

yps Whether strategy s is assigned to patient type p

wpt Whether a biopsy is scheduled at period t for patient
type p

Second-stage decision variables

vpkt Probability of being detected via biopsy at period t for
patient type p when PCa progressed at period k

upkt Probability of receiving a biopsy test at period t for
patient type p when PCa progressed at period k.

qpkt Probability of being undetected at the beginning of
period t for patient type p when PCa progressed at
period k

unique combination of patient’s characteristics such as the
diagnosis age and the enrollment health condition that may
affect the value of early treatment and the risk of PCa pro-
gression, respectively. The notations used in this model are
summarized in Table 2. We denote the probability of an event
e by ℙ(e), the cardinality of a set  by ||, and the vector or
matrix form of a scalar x by x.

The horizon for active surveillance is fixed at T . As with
all published guidelines, we discretize the horizon into a
set of periods,  ≡ {1, … ,T}, indexed by t. For PCa, each
period corresponds to a year, which is the minimum interval
between two consecutive biopsies proposed by all published
guidelines. Because patients are treated immediately follow-
ing a positive test outcome, t can also index the periods
of treatment if we slightly extend set  to be set  + ≡

{1, … ,T + 1}, where patients at period T + 1 are no longer
candidates for standard treatment (i.e., period of no treat-
ment). Moreover, we include the decision to discontinue
surveillance when treatment is no longer beneficial relative
to other-cause mortality. We include this decision to ensure
that all patients have the same length of surveillance, T , while
some types of patients may discontinue earlier if surveil-
lance is no longer beneficial. We define dpt ∈ {0, 1} such that
dp1 ≥ dp2 ≥ ⋯ ≥ dpT for all p; dpt = 0 denotes the discon-

tinuation of surveillance at period t and beyond, and dpt = 1
otherwise. Typically, we estimate t∗ = arg maxt{dpt = 1} as
the oldest age for patient type p beyond which the patient will
not benefit from treatment, and t∗ is independent of the first-
stage decision variables. Therefore, dpt can be predetermined
based on the patient’s expected life span, and it is regarded as
a parameter in our model.

The maximum time for PCa progression is K. However,
the period at which PCa progression occurs for patients of
type p, 𝖪p, is randomly distributed over a discrete set  ≡

{0, 1, … ,K + 1} indexed by k, where 𝖪p = K + 1 if PCa does
not progress by the end of K periods, and 𝖪p = 0 if PCa has
already progressed at the time of diagnosis (indicating that
the patient was misdiagnosed, due to a false-negative result
for the diagnostic biopsy). The distribution of 𝖪p is specific to
p, because the patient type is associated with the rate of PCa
progression through the classification of patients for active
surveillance. We let 𝜉pk = ℙ(𝖪p = k) denote the probability
of PCa progression at period k for patient type p. Note that
PCa may progress during the surveillance horizon, result-
ing in k and t having parallel indices of periods defined for
PCa progression and surveillance, respectively, that is, k and
t share the same definition of the period which corresponds
to “one year,” and they are addable. We assume that K ≥ T
since patients may also experience PCa progression after T
when surveillance is no longer recommended for all patient
types.

A surveillance strategy is defined as a specified subset
of periods in which a biopsy is scheduled. In contrast to
the guideline (one-size-fits-all) strategy, we provide a set of
S strategies for the surveillance cohort where each strategy
s ∈  ≡ {1, … , S} is implemented on a tailored subgroup of
the patient types, aiming to improve the precision of surveil-
lance with a limited number of strategies. We assume S < P
to avoid the triviality of the decision. The strategy design and
the patient type assignment are determined by the following
first-stage decision variables:

∙ xst ∈ {0, 1}, which denotes whether a biopsy is scheduled
at period t in strategy s (xst = 1), or not (xst = 0) for all
s = 1, … , S and t = 1, … ,T .

∙ yps ∈ {0, 1}, which denotes whether patient type p is
assigned to strategy s (yps = 1), or not (yps = 0) for all
p = 1, … ,P and s = 1, … , S.

∙ wpt =
∑

s∈ xstyps, which is an auxiliary variable intro-
duced for ease of exposition, denoting whether a biopsy
is scheduled at period t for patient type p or not.

In short, the strategy assigned to patient type p is defined
as Πp = {t ∣ wpt = 1}.

4.1 Postprogression parameters and
second-stage decisions

We make the following two assumptions (Assumptions 1 and
2) to ensure that the period of PCa progression, 𝖪p, is an
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exogenous random variable, which is helpful in formulating
the problem as a two-stage stochastic integer program.

Assumption 1. The rates of PCa progression, PCa metasta-
sis, PCa mortality, and other-cause mortality are independent
of biopsy testing.

Several clinical studies such as a study of more than 2000
patients by the Mayo Clinic found that cancer biopsies do
not promote cancer spread (Mayo Clinic, 2015), and similar
assumptions (i.e., clinical tests do not affect the rate of disease
progression) are common in the literature on cancer screening
(Bertsimas et al., 2018; Zhang et al., 2012).

Assumption 2. The false-positive rate of the prostate biopsy
test is 0.

The false-positive rate is negligible because once can-
cerous tissue is sampled, it is highly likely to be correctly
diagnosed by a trained pathologist. As a result of Assumption
1, the treatment time (immediately after detection) is always
after the progression time.

Based on Assumptions 1 and 2, if we observed 𝖪p = k
in a priori, then surveillance (and treatment, if any) does
not affect the probability of PCa progression, that is, 𝜉pk
becomes independent of strategy Πp for all p, implying
that the health outcome for a given strategy is decompos-
able by k. Moreover, patients will not be treated before PCa
progression, and thus the sequence of events leading to treat-
ment is fixed as “low-risk PCa → high-risk PCa → treated
PCa” (see Section EC.1.1 in the Supporting Information for
illustration).

More specifically, since 𝜉pk is independent of Πp, the
patient’s health outcome is purely determined by the fol-
lowing factors: the patient type (i.e., p), the time of PCa
progression (i.e., k), and the delay of treatment (i.e., t − k).
Therefore, a sample path corresponds to the combination of
p, k, and t (see Section EC.1.2 in the Supporting Informa-
tion for illustration). Further, we predetermine the following
sample-path parameters:

∙ rpkt ∈ ℝ, which is the expected lump sum reward for
patient type p being treated at period t when PCa pro-
gresses at period k (note that the lump sum reward
can equivalently account for posttreatment states such as
metastasis and mortality due to their independence of the
strategy).

∙ 𝜋pkt ∈ [0, 1], which is the proportion of patient type p
staying in surveillance at period t when PCa progresses
at period k (i.e., 1 − 𝜋pkt is the proportion of patients
who stop active surveillance due to symptomatic diagno-
sis of metastatic cancer, or death from any cause, including
PCas).

Moreover, patients of type p need to pay an instantaneous
cost, cp, for the disutility of one biopsy test. For ease of
presentation, let �̂�pkt = cp𝜋pkt denote the adjusted cost of a

biopsy test incurred on the patients who stay in surveillance.
The test always returns a negative outcome for unprogressed
PCa, and it randomly returns a positive outcome for pro-
gressed PCa with probability 𝜎 (which is the true-positive
rate of the biopsy test, and 0 < 𝜎 ≤ 1 because the biopsy test
is based on tissue sampling that could miss the presence of
high-risk PCa).

Note that �̂� and r are sample-path values estimated from
a clairvoyant’s view of the random variable 𝖪p. Instead,
the surveillance strategy determines the probability corre-
sponding to each sample path, and the probability of biopsy
for the patient, which can be expressed by the following
second-stage decision variables:

∙ vpkt ∈ [0, 1]: the probability that PCa progression is
detected via biopsy and treated at the end of period t for
patient type p when PCa progressed at period k where
vpk,T+1 denotes the probability of undetected PCa at the
end of surveillance.

∙ upkt ∈ [0, 1]: the probability that a biopsy test is performed
at period t for patient type p when PCa progressed at period
k.

∙ qpkt = dpt(1 −
∑t−1

t′=k vpkt′ ): an auxiliary variable denoting
the probability of being undetected at the beginning of
period t for patient type p when PCa progressed at period
k.

Note that the definition of u, v, and q as decision variables
could be confusing at first glance; however, they represent
probabilities that are defined as a function of the first- and
second-stage variables in the second-stage recourse problem.

4.2 Model formulation

Now, we formulate the complete problem as the follow-
ing two-stage stochastic integer program based on the
enumeration of all sample paths of PCa progression and
detection:

P : max
x,y,w

Q(x, y,w) =
∑
p∈

∑
k∈

�̂�pkQ̃(x, y,w, p, k), (1a)

s.t.
∑
s∈

yps = 1, ∀p ∈  , (1b)

− wpt +
∑
s∈

xstyps = 0, ∀p ∈  , t ∈  , (1c)

xst, yps,wpt ∈ {0, 1}, (1d)

where �̂�pk = np𝜉pk denotes the expected number of patients
who are of type p and for whom PCa progresses at period k.
We include �̂�pk in the objective function (1a) because the goal
is to maximize the total expected reward across all patients.
Constraint (1b) ensures that each patient type is assigned to
exactly one strategy, and constraint (1c) links xst, yps with wpt
which determines whether a biopsy test is scheduled at period
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t for patient type p. Moreover, Q̃(x, y,w, p, k) is the maximum
reward associated with p and k, which is determined by the
following second-stage recourse program:

Q̃(x, y,w, p, k) = max
u,v,q

T+1∑
t=k̄

rpktvpkt −
∑
t∈

�̂�pktupkt, (2a)

s.t. qpkt + dpt

t−1∑
t′=k

vpkt′ = dpt, ∀1 ≤ t ≤ T , (2b)

− qpktwpt + upkt = 0, ∀1 ≤ t ≤ T , (2c)

− qpktwpt𝜎 + vpkt = 0, ∀k ≤ t ≤ T , (2d)

vpk,T+1 +

T∑
t′=k

vpkt′ = 1, (2e)

upkt, vpkt, qpkt ≥ 0, (2f)

where k̄ = min (k,T + 1), vpk0 = 0 for all p, k, and the sum-

mation
∑t−1

t′=k(⋅) = 0 if t ≤ k. Objective (2a) determines the
reward associated with the detection of high-risk PCa minus
the cost associated with the disutilities of biopsy testing. Con-
straint (2b) determines the probability of being undetected
at the beginning of period t, which requires that PCa is not
detected in previous periods and that the patient continues
surveillance at period t. Constraint (2c) determines the prob-
ability of receiving a biopsy test at period t, which requires
that PCa is undetected at the beginning of period t, and a
biopsy is scheduled at period t. Constraint (2d) determines
the probability of being detected via biopsy at period t, which
requires that the patient is biopsied and the outcome is pos-
itive. Finally, constraint (2e) determines the probability of
undetected PCa at the end of period T .

Remark 1. P is a stochastic program based on the enumera-
tion of sample paths of PCa progression and detection, which
differs from the traditional sample average approximation
based on sampling the random variables. With straightfor-
ward modifications, P can be applied to optimize different
criteria, such as minimizing the expected delay of detec-
tion of high-risk PCa and maximizing the expected survival
rate (see Section EC.1.3 in the Supporting Information for
illustration).

4.3 Model linearization

We further show that P with a single patient type can be
reduced to be a conjunctive normal form satisfiability prob-
lem, which is a well-known example of NP-completeness
(see Section EC.1.4 in the Supporting Information for the
proof). This motivates the methodological developments in
the remainder of this section because there unlikely exists
a polynomial-time algorithm for the optimal solution of P.

As we observe, P has nonlinear constraint (1c) in the first-
stage program and nonlinear constraints (2c) and (2d) in the
second-stage program. In this subsection, we linearize the
model, which is valid under the following assumption.

Assumption 3. If a patient is in the high-risk PCa stage and
has not discontinued surveillance, we assume that treating the
patient earlier is at least as good as treating later, that is, rpkt ≥

dptrpkt′ , ∀t + 1 ≤ t′ ≤ T + 1 for all p ∈  , k ∈ , k ≤ t ≤ T .

This assumption is the fundamental underlying reason why
treatment is recommended for high-risk PCa. Using Assump-
tion 3, the second-stage recourse function, Q̃(x, y,w, p, k),
is monotonic with respect to vpkt, which is specified by the
following lemma.

Lemma 1. Under Assumption 3, when the first-stage decision
variables x, y, and w are fixed, and dpt = 1, Q̃(x, y,w, p, k)
is nondecreasing as vpkt increases for all p ∈  , k ∈ , and
k ≤ t ≤ T + 1.

Using Lemma 1, we further obtain the following theo-
rem (proofs of all theorems, lemmas, and propositions are
relegated in Section EC.2 in the Supporting Information):

Theorem 1. Under Assumption 3, vpkt and upkt automatically
achieve their upper bound and lower bounds, respectively, at
the optimal solution for P.

Theorem 1 is helpful for binding vpkt and upkt when to
linearize the formulation. Specifically, constraint (2c) can be
reformulated as

upkt − qpkt − M̂ptwpt ≥ −M̂pt, ∀1 ≤ t ≤ T , (3)

which enforces upkt ≥ qpkt if wpt = 1 and upkt ≥ 0 other-
wise, where M̂pt is a sufficiently large number (which is
known as the big-M coefficient), and constraint (2d) can be
reformulated as

vpkt − 𝜎qpkt ≤ 0, ∀k ≤ t ≤ T , (4a)

vpkt − Mptwpt ≤ 0, ∀k ≤ t ≤ T , (4b)

which enforces vpkt ≤ 𝜎qpkt if wpt = 1, and vpkt ≤ 0 other-
wise, where Mpt is a big-M coefficient. We further linearize
the first-stage program by removing its auxiliary decision
variables wpt, and we present an extensive linearized model
of P in Section EC.1.5 in the Supporting Information.

4.4 Practical properties for surveillance
strategy assignment

We introduce valid inequalities by assuming that the assign-
ments of patients in each subset of patient types, ̂ , are
continuous. Specifically, if patient types p − 1 and p + 1 are
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assigned to strategy s, then patient type p must be assigned to
the same strategy. This results in the following easy-to-assign
constraints:

ypjs + ypj,s+1 ≥ ypj−1,s, ∀2 ≤ j ≤ |̂|, 1 ≤ s ≤ S − 1, (5a)

ypjS ≥ ypj−1,S, ∀2 ≤ j ≤ |̂|, (5b)

where pj denotes the jth patient type in ̂ . Constraints (5a)
and (5b) naturally break the symmetry among the assignment
decisions, potentially cutting off a large number of equally
good solutions. As a result, constraints (5a) and (5b) can
significantly improve the computational efficiency.

Finally, we refer to the linearized model of P (see
Section EC.1.5 in the Supporting Information) combined
with the easy-to-assign constraints (5a) and (5b) as model
P̂. In Section 6, we develop solution methodologies based
on Benders decomposition for model P̂ to efficiently solve
realistic-scale problem instances.

5 COMPARISON BETWEEN THE P
AND POMDP MODEL

5.1 Introduction to benchmark POMDP

We consider a discrete-time, finite-horizon POMDP model
for surveillance of a single-patient type, in which we sup-
press the use of the subscript p. We present a POMDP model
in Section 5.1.1 that allows for arbitrary numbers of latent
states and observations. Then in Section 5.1.2, we present a
special case of the POMDP for PCa surveillance with two
latent states and biopsy result observations only when no
information is updated.

5.1.1 POMDP formulation

We consider an absorbing state, 𝖳, which corresponds to
a postsurveillance state such as “treatment” or “mortality.”
During the surveillance, the disease is in a latent state St ∈ 𝒮,
where 𝒮 is the set of all latent states (e.g., cancer-free, early-
stage cancer, and late-stage cancer). Let bt(St) denote the
probability of being in state St, and thus its vector form
bt ≡ {bt(S1), … , bt(S|𝒮|)} is the belief state at the beginning
of period t. Based on bt, an action, At, is selected from the set
of all candidate actions (e.g., biopsy and wait), 𝒜. After tak-
ing At, the disease may transition to 𝖳 at the end of period t
with probability p̄t(𝖳 ∣ bt,At); otherwise, if the disease con-
tinues surveillance, the patient receives a routine test that
gives an observation, Ot ∈ 𝒪, with probability p̄t(Ot ∣ bt,At),
where 𝒪 is the set of all candidate observations. Based on Ot,
one can update the belief state from bt to bt+1 for the next
period according to Bayesian inference (see Section EC.1.6
in the Supporting Information).

Let Vt+1(bt+1) denote the optimal value at period t + 1
when the belief state is bt+1. The POMDP model that aims

to maximize the expected value at period t can be formulated
as follows:

Vt(bt) = max
At∈𝒜

Rt(bt,At) + 𝜆

(
p̄t(𝖳 ∣ bt,At)R̄t(𝖳)

+ (1 − p̄t(𝖳 ∣ bt,At))
∑

Ot∈𝒪

Vt+1(bt+1)p̄t(Ot ∣ bt,At)

)
,

(6)

where 𝜆 ∈ (0, 1] is a discount factor, Rt(bt,At) is the imme-
diate reward if the belief state is bt and the action chosen is
At, and R̄t(𝖳) is the expected lump sum reward if the disease
transitions to the absorbing state at the end of period t after
taking At.

5.1.2 POMDP for PCa surveillance

In PCa surveillance, the disease is either at low risk (𝖫) or
high risk (𝖧), which constructs the state set as 𝒮 ≡ {𝖫, 𝖧}.
Based on a belief state bt ≡ {bt(𝖫), bt(𝖧)}, the candidate
action is either to perform (𝖡) or defer (𝖶) a biopsy, which
constructs the action set as 𝒜 ≡ {𝖡,𝖶}. Since PCa is treated
at the end of period t if the biopsy result is positive, the
patient who continues surveillance in the next period must
experience a negative biopsy result (if At = 𝖡) or no result (if
At = 𝖶). Therefore, the Bayesian inference has no impact on
updating the belief state since |𝒪| = 1 for all At ∈ 𝒜.

Recall that PCa progression is independent of the surveil-
lance strategy (Assumption 1), the belief state can be
specified as

bt(St) =

⎧⎪⎪⎨⎪⎪⎩

t∑
k=0

𝜉pk, if St = 𝖧,

1 −

t∑
k=0

𝜉pk, if St = 𝖫.

(7)

Thus, (7) updates the belief state as the cumulative probability
of PCa progression up to period t, where 𝜉pt is the probability
of PCa progression at period k. Since |𝒪| = 1, we suppress Ot
and reformulate the POMDP model (6) for the PCa surveil-
lance setting, which we refer to as the POMDP-surveillance
model, as follows:

Vt(bt) = max

⎧⎪⎨⎪⎩
−dpt�̃�pt + 𝜆

(
p̄t(𝖳 ∣ bt, 𝖡)R̄t(𝖳)

+ (1 − p̄t(𝖳 ∣ bt, 𝖡))Vt+1(bt+1)
)
, if At = 𝖡,

𝜆Vt+1(bt+1), if At = 𝖶,

(8)

for t = 1, … , T̄ , where T̄ = arg maxt∈ {dpt = 1} denotes the
recommended discontinuation age for patient type p. When
PCa is biopsied, that is, At = 𝖡, the reward, Rt(bt, 𝖡) =
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−dpt�̃�pt where �̃�pt is the weighted cost of a biopsy test
at period t, and the probability of detection p̄t(𝖳 ∣ bt, 𝖡) =
bt(𝖧)dpt𝜎 because only high-risk PCa can be detected, and the
sensitivity of biopsy is 𝜎. When PCa is not biopsied, that is,
At = 𝖶, it receives no reward and has no chance of detection.
The terminal value VT̄+1(bT̄+1) = R̄T̄+1(𝖳), denoting that all
PCa leftovers are untreated. Finally, 𝜆 is set to 1, denoting
that the decision-maker is risk-neutral.

5.2 Conditions of equivalence between
POMDP-surveillance and P

In the POMDP-surveillance model, the belief state update (7)
is independent of the action chosen and the observation seen
at each period, which makes its solution equivalent to a static
policy in the sense that all actions can be made at the begin-
ning period because the dynamic information observed in the
following periods has no impact on the decision-making.

In the following theorem, we show that the solution of the
POMDP-surveillance model is equivalent to the solution of P
under a special case of P when there is only one patient type,
and all parameters �̂�pkt, rpkt are independent of k.

Theorem 2. Under a special case of P such that P = 1, �̂�pkt
and rpkt are independent of k, that is, �̂�pkt = �̃�pt, rpkt = Rt(𝖳),
and rpk,T+1 = RT̄+1(𝖳) for all k, the POMDP-surveillance
model achieves the same total expected reward as P under
the respective solutions corresponding to any given policy Π
such that

AΠ
t =

⎧⎪⎨⎪⎩
𝖡, if wΠ

pt = 1,

𝖶, if wΠ
pt = 0,

(9)

for all 1 ≤ t ≤ T̄, where AΠ
t is the action chosen in

the POMDP-surveillance model, and wΠ
pt is the first-stage

decision of P.

Theorem 2 applies to any feasible strategy including the
optimal strategy Π∗ that maximizes the total expected reward.
Therefore, the solutions of the POMDP-surveillance model
and P are equivalent when P = 1, �̂�pkt and rpkt are indepen-
dent of k, which means that the POMDP-surveillance model
is a special case of P.

5.3 Comparison between
POMDP-surveillance and P

Based on (6) and Theorem 2, we summarize the advantage
(A) and disadvantage (D) of P compared with the POMDP-
surveillance model for multiple patient types and multiple
states as follows:

∙ (A). When P ≥ S, multiple patient types share the same
surveillance strategy to maintain the ease of implemen-
tation. For P, the number of strategies can be controlled
by the assignment decisions, which results in a factor
of P additional decision variables. In contrast, for the
POMDP-surveillance model, the number of strategies can
be controlled through coordinating the actions of multiple
patient types (Amato & Oliehoek, 2015), which results in a
multiagent POMDP with a joint belief space of all patient
types, and it requires expanding the belief space from |𝒮|
to |𝒮|P. Therefore, as P increases, the belief space of the
POMDP-surveillance model increases exponentially with
respect to P versus a linear increase with respect to P for
P.

∙ (D). P is suited for dichotomous health conditions (|𝒮| =
2) in clinical settings; however, it is less straightforward
than the POMDP-surveillance model to scale up to account
for multiple latent states. This is because, in P, 𝜉pk only
defines the probability of an irreversible state transition
from low- to high-risk PCa. The model we proposed can
be readily extended to the left to right Markov models
with more than two states (see Section EC.1.7 in the Sup-
porting Information); however, extensions to more general
transition dynamics are less straightforward and poten-
tially a topic for future research. On the other hand, from
a practical point of view, dichotomous health conditions
are quite common in clinical settings where surveillance
is conducted to detect a change in health status requiring
treatment.

6 BENDERS DECOMPOSITION OF P̂

Benders decomposition (Benders, 1962) is a well-known
technique for solving large-scale SIP models that often have
a special block structure when the uncertainty is denoted by
scenarios. A comprehensive description of Benders decom-
position is provided in Rahmaniani et al. (2017) and van
Ackooij et al. (2017).

Following the standard approach for Benders decomposi-
tion, we consider a relaxed master problem (RMP) of P̂ that
determines the first-stage decision variables, x, and y, and
sequentially bound the objective value, 𝜂, of RMP by accu-
mulating optimality cuts over iterations until RMP finds a
feasible solution. Specifically, the relaxed master problem is
defined as follows:

RMP : max
(x,y)∈

𝜂

s.t. v(𝜂, x, y) (optimality cut)

, (10)

where  = {(x, y) ∣ (1b), (5a) and (5b)} defines the feasible
region of x, y, and v(𝜂, x, y) defines the set of optimality cuts
accumulated up to iteration v.
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6.1 Logic-based optimality cuts

Traditional Benders decomposition was unable to adequately
solve practical problems owing to the existence of big-M
coefficients such as those appearing in (3) and (4), which
result in a poor linear programming (LP) relaxation of the
subproblem and weaken the optimality cut. We consider a
LBD that does not exploit the LP relaxation; thus, it may
help to mitigate the effect of big-M coefficients (Hooker &
Ottosson, 2003).

First, to implement the LBD, we consider a single-strategy
problem (SSP) as defined on a given set of patient types,
̂ , in which all patients share the same strategy. Therefore,
the first-stage decision variables in SSP are restricted to be
determining the periods to perform biopsies for a single strat-
egy, that is, xt ∈ {0, 1} for all t ∈  . The problem can be
formulated as a mixed-integer program as follows:

SSP : Q̂(̂) =max
x,v,u

∑
p∈̂

∑
k∈

�̂�pk

[
T+1∑
t=k

rpktvpkt −
∑
t∈

�̂�pktupkt

]
,

(11a)

s.t. vpkt + dpt𝜎

t−1∑
t′=k

vpkt′ ≤ dpt𝜎, ∀p ∈ ̂ , k ∈ , k ≤ t ≤ T ,

(11b)∑
k∈

vpkt ≤ Mptxt, ∀p ∈ ̂ , 1 ≤ t ≤ T , (11c)

T∑
t=k

vpkt = 1, ∀p ∈ ̂ , k ∈ , (11d)

− upkt −

t−1∑
t′=k

vpkt′ ≤ 1 − dpt − xt, ∀p ∈ ̂ , k ∈ , 1 ≤ t ≤ T ,

(11e)

xt ∈ {0, 1}, vpkt, upkt ≥ 0. (11f)

Proposition 1. We define 𝛿
̂

as the loss of reward from

restricting patients in ̂ to share the same strategy, where

𝛿
̂
=

∑
p∈̂

Q̂({p}) − Q̂(̂) ≥ 0, (12)

where Q̂({p}) is the optimal reward corresponding to a single
patient type p.

Proposition 1 implies that an increased number of strate-
gies are always beneficial for the total reward associated with
a given set of patient types. Therefore, the maximum value of
the total expected reward, 𝜂, is achieved when every patient
type has an individual strategy, which can be determined as
follows:

𝜂 =
∑
p∈

Q̂({p}). (13)

Based on the incumbent solution of RMP at iteration v, we
construct a subset of patients, ̂v

s = {p ∈  ∣ yv
ps = 1}, cor-

responding to the patient types who are assigned to strategy
s. These patient types are forced to share the same strat-
egy, which is a restriction that may cause a loss of rewards.
Directly following Proposition 1, the reward loss in strategy
s can be determined by the following constraint:

Q̂(̂v
s ) + 𝛿

̂v
s
≤

∑
p∈̂v

s

Q̂({p}), if yps = 1 ∀p ∈ ̂v
s , (14)

where 𝛿
̂v

s
is the loss of reward from restricting patients in ̂v

s
as defined in (12). It means that the loss of reward is enforced
if all patient types are assigned to strategy s; otherwise, the
constraint is relaxed. This constraint can be reformulated as
follows:

Q̂(̂v
s ) + 𝛿

̂v
s

∑
p∈̂v

s

yps ≤
∑

p∈̂v
s

Q̂({p}) + 𝛿
̂v

s
(|̂v

s | − 1). (15)

Constraint (15) can be applied simultaneously to all the
strategies. The total reward loss is the sum of the losses across
all strategies, that is,

∑
s∈ 𝛿

̂v
s
. Then, we add the following

optimality cut to v(𝜂, x, y) at iteration v:

𝜂 +
∑
s∈

⎛⎜⎜⎝𝛿̂v
s

∑
p∈̂v

s

yps

⎞⎟⎟⎠ ≤ 𝜂 +
∑
s∈

(
𝛿
̂v

s
(|̂v

s | − 1)
)
, (16)

where 𝜂 is the objective value of RMP, which is the total
expected reward currently equal to

∑
s∈ Q̂(̂v

s ), and 𝜂 is the
maximum value of the total expected reward defined in (13).

Remark 2. We also consider a standard Bender’s decomposi-
tion (SBD) based on a dual LP relaxation of the subproblem
that includes many big-M coefficients. Using a computa-
tional study, we find that the LBD method significantly
outperformed the SBD method and a standard branch-and-cut
algorithm. The SBD model and detailed results are provided
in Section EC.1.8 in the Supporting Information.

7 CASE STUDY OF ACTIVE
SURVEILLANCE FOR PROSTATE CANCER

In this section, we present a hypothetical case study based
on two major surveillance studies conducted in the United
States. We describe how we parameterize our model and
show a series of numerical results of this case study to
demonstrate the benefits of our model solution compared
with previously published surveillance strategies. Finally, we
present a sensitivity analysis to establish the robustness of our
conclusions concerning the variation in model parameters.
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TA B L E 3 Summary of parameters used in the case study

Notation Meaning Value Reference

cB Disutility in the year of biopsy 0.05 Zhang et al. (2012)

ĉT Annual disutility for posttreatment 0.091a (first year), 0.05 (afterwards) Litwin et al. (2001) Heijnsdijk et al (2012)

cT Disutility in the year of treatment 0.247 Heijnsdijk et al. (2012)

ĉM Annual disutility for metastasis 0.4 Heijnsdijk et al. (2012)

𝜎 Sensitivity of biopsy 0.61 Barnett et al. (2018)

ŵ Misclassification rateb 0.044 (JHc cohort), 0.361 (SFd cohort) Inoue et al. (2018)

w Annual progression rateb 0.024 (JH cohort), 0.06 (SF cohort) Inoue et al. (2018)

f Annual metastasis rate of treated high-risk PCa 0.006 Mayo Clinic Radical Prostatectomy Registry

e Annual metastasis rate of untreated high-risk PCa 0.069 Ghani et al. (2005)

gt Annual death rate of metastatic PCa 0.074 (for age<65) 0.070 (for age≥65) Zhang et al. (2012)

at Annual death rate of all-other causes Age-specific US Life Tables (2012)

aLitwin et al. (2001) reported that the quality of life recovers to 82.4%, 96.3%, and 100% levels of the baseline at 12, 24, and 36 months, respectively. Based on these ratios, we

estimate the disutility of posttreatment as ĉ1
T = ĉ∞T +

1−96.3%

1−82.4%
(cT − ĉ∞T ) = 0.091 in the first year of posttreatment where ĉ∞T is the annual disutility when the patient recovers to the

baseline, which is estimated as 0.05 (Heijnsdijk et al., 2012).
bOur estimation is based on biopsy upgrading (i.e., the Gleason score of biopsy upgraded from 6 to 7 or higher) studies from Inoue et al. (2018) that include both the JH cohort and
the SF cohort. For each cohort, we built a respective hidden Markov model to estimate ŵ and w, with the sensitivity of biopsy testing being estimated as 0.61 (Barnett et al., 2018),
based on the maximum likelihood estimation.
cJH = Johns Hopkins.
dSF = University of California, San Francisco.

TA B L E 4 Age-specific death rate from all-other causes, at

Age 50–54 55–59 60–64 65–69 70–74 75–79 80–84 85–89 90–94 95–99

Value 0.006 0.009 0.013 0.018 0.027 0.043 0.072 0.122 0.200 0.299

7.1 Model parameterization

Our study focuses on quality adjusted life years (QALYs), a
commonly used criterion for public health problems (Ayer
et al., 2012; Erenay et al., 2014; Zhang et al., 2012). The
QALYs are measured on a scale of 0 (death) to 1 (a year of
perfect health). The quality of life adjustments is based on
estimates of disutility associated with the biopsy test, treat-
ment, and metastasis. Specifically, the disutility for biopsy
and initial treatment, enduring disutility for metastasis, and
long-term side effects of the treatment after initial recovery
are provided in Table 3.

To estimate the parameters of the stochastic process, we
collected data corresponding to transitions among the five
stages of active surveillance for PCa (Figure 2), including
PCa progression (from low- to high-risk PCa), detection
(from high-risk to treated PCa), metastasis (from high-risk
and treated to metastatic PCa), and death (from low-risk,
high-risk, treated, and metastatic PCa to mortality). The sen-
sitivity of biopsy, annual metastasis rate from treated and
untreated PCa, and the annual death rate from metastatic PCa
were drawn from public studies (see Table 3). We estimated
the age-specific death rate due to all-other causes (Table 4)
based on the difference between the death rate due to all dis-
eases (Arias et al., 2016, Table 2) and the death rate due to
PCa (USCS, 2018).

7.1.1 Heterogeneity among multiple patient
types

We consider the following parameters: diagnosis age, 𝙰p,
and the cohort where patients are from, 𝙷p, to identify the
heterogeneity among patient types. First, the diagnosis age
is an important factor because it influences all-other-cause
mortality which increases as patients age; as all-other-cause
mortality increases the relative benefits of active surveil-
lance for PCa decrease. Second, men in different active
surveillance studies have different risks for PCa progression.
Based on empirical studies by Inoue et al. (2018), we esti-
mate the rate of misclassification at diagnosis, ŵ, and the
annual progression rate, w, for both the JH study and the SF
study cohorts (Table 3). We distinguish these studies because
they show significant differences in risk estimates of PCa
progression; typically, the JH cohort has a lower misclassi-
fication rate and lower progression rate than the SF cohort.
This difference mainly contributes to the different eligibil-
ity criteria for enrollment in active surveillance for the two
studies (Inoue et al., 2018). Generally, the JH study had
more restrictive clinical criteria for enrollment than the SF
study.

Remark 3. This case study is based on the design of PCa
surveillance strategies for a hypothetical population based
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on the SF and JH studies, in order to serve as a plausible
example of the application of model P. The model optimizes
the assignment of patient types to surveillance strategies to
maximize overall long-term rewards, where the patients are
classified into mutually exclusive patient types depending on
their diagnosis age and a hypothetical label of either the “JH
study” or “SF study.” While we present this specific exam-
ple for illustration purposes, the model can be generalized to
generate surveillance strategies and optimize the assignment
for any relevant choices of patient types a policymaker might
define (e.g., based on the patient’s family history, prognostic
genetic tests).

7.2 Parameter estimation

Once the patient type, progression time, and treatment time
are fixed, the disease model can be decomposed into multiple
Markov models corresponding to the disease dynamics model
for a given combination of p, k, and t. We used the Markov
process model based on the parameter estimates in Table 3
to estimate the following model parameters for the stochas-
tic integer program in Section 4 (the results of the parameter
estimation are available in Section EC.1.9 in the Supporting
Information):

∙ The probability of PCa progression at period k for patient
type p, 𝜉pk, is estimated based on the rate of misclassifica-
tion at diagnosis (ŵ) and the annual progression rate (w) as
follows:

𝜉pk =

⎧⎪⎨⎪⎩
ŵ𝙷p

if k = 0,

(1 − ŵ𝙷p
)(1 − w𝙷p

)k−1w𝙷p
if k ≥ 1.

(17)

where ŵ𝙷p
and w𝙷p

are the misclassification rate and the
annual progression rate for cohort 𝙷p, respectively. Note
that patients from the same cohort, even with different
diagnosis ages, have the same 𝜉pk, that is, 𝜉pk = 𝜉p′k if
𝙷p = 𝙷p′ for all distinct p, p′ ∈  and k ∈ .

∙ The probability of patient type p staying in active surveil-
lance at period t if PCa progresses at period k assuming that
the patient is not treated, 𝜋pkt, can be estimated as follows:

𝜋pkt =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

1, if t = 1, k = 0,

1 − e, if t = 1, k ≥ t,

𝜋pk,t−1

(
1 − a𝙰p+t−1

)
, if t ≥ 2, k ≥ t,

𝜋pk,t−1

(
1 − a𝙰p+t−1

)
(1 − e), if t ≥ 2, k < t.

(18)

Note that patients with the same diagnosis age, even from
different cohorts, have the same 𝜋pkt, that is, 𝜋pkt = 𝜋p′kt if
𝙰p = 𝙰p′ for all distinct p, p′ ∈  , k ∈ , and t ∈  .

∙ The expected QALYs if patient type p is treated at period
t if PCa progresses at period k, rpkt, are estimated as
follows:

rpkt =

96∑
t′=𝙰p

[ ∑
S∈{𝖫,𝖧,𝖳,𝖬}

vt′ (S, t)ℙt′ (S, p, k, t)

]
, (19)

where {𝖫, 𝖧, 𝖳,𝖬} are a set of states, denoting “low-risk,”
“high-risk,” “treated,” and “metastatic” PCa, respectively.
vt′ (S, t) is the unit QALY associated with being in state
S at period t′ if the patient is treated at period t; for
example, when S = 𝖬, vt′ (S, t) = 1 − ĉM = 1 − 0.4 for
all t′. ℙt′ (S, p, k, t) is the probability of being in state
S for patient type p who is treated at period t when
PCa progresses at period k, which is determined by
forward induction based on the state transition proba-
bilities (e, f , gt, and at). For example, when t′ > t and
S = 𝖬, ℙt′ (𝖬, p, k, t) = (1 − at′ )(1 − gt′ )ℙt′−1(𝖬, p, k, t) +
(1 − at′ )fℙt′−1(𝖳, p, k, t). Note that patients with the same
diagnosis age, even from different cohorts, have the same
rpkt, that is, rpkt = rp′kt if 𝙰p = 𝙰p′ for all k ∈  and
t ∈  +. We assume that the termination age is 95, and
let v96(S, t) denote the remaining expected QALY beyond
95 which is estimated by an infinite horizon Markov
process model in the absence of biopsy testing. Further-
more, we estimate rpk,T+1 by assuming that the patient
has never been treated. Note that we can easily account
for history-dependent disutility such as ĉT when estimat-
ing rpkt because there are no further actions given that the
time of treatment is fixed at period t.

∙ Whether a patient should discontinue surveillance at age
𝙰p + t and beyond (dpt) is estimated as follows:

dpt =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

0, if t ≥ 2 and dp,t−1 = 0,

or ∃k such that rpkt − cB < rpk,T+1,

or ∃k, t′ > t such that rpkt < rpkt′ ,

1, otherwise.

(20)

Note that we report the estimation of dpt in Figure 4 as a
part of our recommendation.

∙ The cost associated with the disutility of a unit biopsy for
patient type p is estimated as cp = cB for all p ∈  .

7.3 Model validation

In this subsection, we validate the disease model based on
estimated parameters from Section 6.2. Specifically, we run
independent simulations for different patient types, predict
their outcomes over different periods during and after active
surveillance, and compare the model outputs with published
sources on health outcomes.

We selected several health outcome indicators, including
(1) the expected time between the beginning of surveillance
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F I G U R E 3 The performance comparison between the guideline
strategies and the optimal solutions where Opt-S denotes the optimal
solution with S strategies, and the label above each column denotes marginal
QALY gain relative to the column directly to its left (labels with ≤ 2 QALY
gain were omitted) [Color figure can be viewed at wileyonlinelibrary.com]

and detection and (2) the PCa-specific mortality rate. We
compared the model outputs with recently published stud-
ies on PCa surveillance (Inoue et al., 2018; Tosoian et al.,
2016). The results show that our model outputs are well
aligned with the outcomes reported in the literature, sug-
gesting that the disease model can accurately reflect the
progression of PCa. More details on model validation are
provided in Section EC.1.10 in the Supporting Information.

7.4 Analysis of optimal surveillance
strategies

For our analysis, we consider patients who are diagnosed
among 𝙰p ∈ {50, … , 75} year-old, which is consistent with
the U.S. Preventive Services Task Force recommendation
(Moyer, 2012). We consider patients from the JH and SF
cohorts, that is, 𝙷p ∈ {JH, SF}. As a result, there are P =
2 × 26 = 52 patient types. We consider a weighted sum of
rewards across the patient types, where the number of patients
for each type, np, is estimated based on patients enrolled in
the JH and SF studies in 1995–2014 as published in Inoue
et al. (2018) (see Table EC.2 in the Supporting Informa-
tion). We assume that PCa may progress within 45 years
after diagnosis, that is, k ∈ {0, 1, … , 46}, where k = 0 means
that PCa was misclassified at diagnosis, and k = 46 means
that PCa never progresses. Active surveillance may last for
t ∈  = {1, 2, … , 11} years, where all patients in the first
year of surveillance are scheduled for a biopsy, known as a
confirmatory biopsy, which is intended to check for possible
misdiagnosis. Our decision variables are to decide at which
years (t = 2, … , 11) to perform biopsies in each strategy and
the assignment of patients to strategies.

The benchmarks are the published guideline strategies, as
shown in Table 1, including JH, SF strategies, and the UT

strategy, a well-known surveillance strategy in Canada. All
guideline strategies are one-size-fits-all strategies.

We solve multiple instances of model P̂ with  = {1, … , S}
where the number of strategies, S, varies from 1 to 52. We
let Opt-S denote the optimal solution using S strategies.
We choose the UT strategy as the bottom line because it
performs the worst on the JH and SF cohorts in all the exper-
iments. For each other strategy, we accounted for the gain in
expected QALYs per 1000 patients compared with the UT
strategy.

Figure 3 presents the results for the guideline strategies
(JH and SF) and the optimal strategies for various choices
of S. When considering a single strategy, both JH and SF
strategies perform better than the UT strategy, by approx-
imately 63 QALYs per 1000 patients, and the JH strategy
slightly outperforms the SF strategy. The optimal solution
with a single strategy, Opt-1, significantly improves upon the
three guidelines, outperforming the JH strategy by 22 QALYs
per 1000 patients. This improvement is due to the adjust-
ment of the biopsy-testing periods compared with the JH and
SF strategies. Specifically, the Opt-1 strategy performs biop-
sies at years 1–3, 5–6, 8, and 10–11 after diagnosis, which is
adaptive to the patient’s age.

The performance can be improved further if we allow
for two or more strategies; however, benefits diminish as S
increases (Figure 3), while the complexity of implementation
increases in S. Figure 4 illustrates the case of two strate-
gies at the bottom of the figure: one strategy has a higher
number of biopsies than the other. The assignment of the
high-intensity strategy is inclined towards the SF cohort and
younger patients because the SF cohort is at a higher risk, and
younger patients have a much longer time over which pro-
gression could occur. Both strategies are static, and the model
assigns each patient type to the two strategies. Note that some
elderly patients (diagnosed between 65 and 75 years of age)
are recommended to discontinue active surveillance early
due to the increased death rate from all-other causes, which
negates the benefits of treatment and surveillance. There is no
universally agreed upon age at which patients should discon-
tinue active surveillance. de Carvalho et al. (2017) suggested
varying discontinuation ages (from 65 to 82 years) for differ-
ent categories of patients, which depends on disease risk, the
age at diagnosis, and biopsy frequency. The only explicit rec-
ommendation by the American Society of Clinical Oncology
(ASCO) endorsed that “serial biopsy should not continue past
the age of 80” (R. C. Chen et al., 2016). Our numerical results
show that patients are recommended to discontinue active
surveillance at 76–77 years of age, depending on their age
at diagnosis, which is slightly earlier than the ASCO recom-
mendation. Thus, our results may help inform public policy
decisions regarding when to terminate active surveillance.

7.5 Sensitivity analysis

We further conducted a series of one-way sensitivity analy-
ses to validate the robustness of the recommended solution
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F I G U R E 4 The optimal model-based solution with two strategies (our recommendation) for the active surveillance of PCa (example of implementation:
a man with a risk profile consistent with the JH cohort, diagnosed at age 65 would have a surveillance biopsy at age 66, 70, 73, according to strategy o and
then transition to watchful waiting at age 76.) [Color figure can be viewed at wileyonlinelibrary.com]

to the parameter uncertainty. The selected data are allowed to
vary within their ranges, as reported in Table EC.5 in the Sup-
porting Information. We compare four solutions including the
JH strategy, SF strategy, Opt-2 solution (our recommenda-
tion), and a perfect information solution, which is the optimal
solution with two strategies solved with the updated param-
eters, thus providing an upper bound of the total expected
QALYs. Similar to the results above, we report the gain in
expected QALYs per 1000 patients compared with the UT
strategy in Figure EC.6 in the Supporting Information. The
results indicate the robustness of our claims of increasing
QALY gains over published guidelines to model parameter
uncertainty.

8 CONCLUSION

This article addresses an active surveillance strategy opti-
mization problem that arises in many diseases, including
PCa. The problem involves sequential decisions under uncer-
tainty about latent health states, which are often formulated as
POMDPs. However, POMDPs are often difficult to solve and
become computationally intractable when multiple patient
types need to coordinate their decisions in active surveil-
lance practice. We present an alternative approach based
on a two-stage stochastic nonlinear integer program, which
is more efficient in coordinating decisions among multi-
ple patient types, generating a set of static strategies, and
assigning them to patients of different types. We show that
this problem is NP-complete, providing motivation for our
analysis, which supports the relaxation of the stochastic non-
linear integer program. Moreover, we develop a customized
LBD method that can improve the quality of surveillance
strategies.

We conduct a case study based on validated data published
in medical journals, and the results show that our model
solution can significantly improve upon the published guide-
line strategies used in practice. Finally, we recommend an
easy-to-implement solution using two strategies and provide
sensitivity analyses to support the robustness of our claims.

Based on our results, we briefly summarize the following
observations:

∙ Our recommended solution (Opt-2) consistently outper-
formed all guideline strategies, even under parameter
uncertainty, and it gained 67–141 QALYs per 1000 patients
compared with the UT strategy. Considering that this solu-
tion is similarly easy to implement (static and suitable for
all types of patients), the Opt-2 solution could be a strong
competitor to existing guideline strategies. Compared with
the existing strategies, theOpt-2 solution benefits from
differentiating between young and elderly patients with
respective biopsy schedules of different intensities. More-
over, the Opt-2 solution benefits from optimizing the
timing of biopsy in each strategy and the assignment of
patient types to strategies.

∙ The major sources of parameter uncertainty in perfor-
mance are the annual metastasis rate from untreated
high-risk PCa, f , and the annual death rate from all-other
causes, at. Specifically, the value of surveillance strategy
optimization is more significant for a larger f (i.e., surveil-
lance optimization is more valuable for more progressive
PCa that metastasizes quickly if treatment is missed) and
smaller at (i.e., surveillance optimization is more valuable
for younger and healthier patients who are less likely to die
from all-other causes).

∙ The performance of our recommended solution is already
close to that of the perfect solution, implying that the value
of further considering the ambiguity in parameter estima-
tion might be limited while simultaneously increasing the
complexity for physicians and patients.

Our study has some limitations that present opportunities
for future research. First, we do not consider the detection
of PCa progression using PSA, digital rectal examination
(DRE), and magnetic resonance imaging (MRI). We choose
to omit PSA and DRE from the model for several reasons: (a)
they have very poor accuracy in detecting PCa progression;
and (b) PSA and DRE are often used as dynamic triggers
for off-schedule biopsies, whereas we focus on designing
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a predefined schedule to provide patients with reasonable
expectations in the future. We choose to omit MRI because
MRI-guided prostate biopsy is performed less frequently than
a standard biopsy. It is worthwhile to note that our model can
be directly applied to the MRI-guided prostate biopsy with
updated parameter estimation. Second, we do not consider
the treatment decision for progressive PCa because only rad-
ical prostatectomy data are readily available. However, it is
worth noting that our model parameters, rpkt, are sufficiently
flexible to account for specific treatment for different types
of patients and detection time. Therefore, the treatment deci-
sions can be independently optimized without any changes to
the structure of our model. Third, we only considered param-
eter estimates from the JH and the SF cohorts because of
the ready availability of data for these studies; however, the
patient distributions may not be representative of the popu-
lation distribution for those particular regions. Nevertheless,
our modeling framework can be applied to any population
distribution that policymakers might define. These limitations
notwithstanding, our findings and the model and methods
we propose lay an important foundation for future studies of
disease surveillance strategies.
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