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Prostate cancer (PCa) is common in American men with long latent periods, during which the disease is

asymptomatic. Active surveillance is a monitoring strategy commonly used for patients diagnosed with low-

risk PCa who may harbor latent high-risk PCa. The optimal monitoring strategy attempts to minimize

the disutility of testing, while ensuring that the patient is detected at the earliest time when the disease

progresses. Unfortunately, guidelines for the active surveillance of PCa are often one-size-fits-all strategies

that ignore the heterogeneity among multiple patient types. In contrast, personalized strategies based on

partially observable Markov decision process (POMDP) models are challenging to implement in practice

given the large number of possible strategies that can be used. This article presents a two-stage stochastic

programming approach that selects a set of strategies for predefined cardinality based on patients’ disease

risks. The first-stage decision variables include binary variables for the selection of periods at which to test

patients in each strategy and the assignment of multiple patient types to strategies. The objective is to

maximize a weighted reward function that considers the need for cancer detection, missed detection, and

cost of monitoring patients. We discuss the structure and complexity of the model and reformulate a logic-

based Bender’s decomposition formulation that can solve realistic instances to optimality. We present a case

study for the active surveillance of PCa and show that our model results in strategies that vary in intensity

according to patient disease risk. Finally, we show that our model can generate a small number of strategies

that can significantly improve the existing “one-size-fits-all” guideline strategies used in practice.
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1. Introduction

Many chronic diseases have latent periods during which there are no physical symptoms until

the later stages. There are many examples of such diseases, including cardiovascular diseases and

cancer, which together are the leading causes of death in most developed countries. Chronic dis-

eases, such as these, have better treatment options and health outcomes when they are detected

and treated early. For instance, for cancer, a localized tumor may be surgically removed; however,
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if cancer metastasizes, the treatment options are limited to chemotherapy or radiation therapy,

which at best attempt to delay the progression of the disease. For this reason, it is important

to identify the high-risk stages of the disease as soon as possible. However, diagnostic tests and

procedures used to detect latent diseases can be painful, risky, and expensive. Therefore, strategies

for early detection of latent diseases must balance the benefits of early detection with the disutility

of diagnostic testing.

Prostate cancer (PCa) is an informative test case because it has clearly defined stages based on

disease pathology and long latent periods during which the disease is asymptomatic. PCa is also

an important public health challenge because it is the most common cancer in men and the second

leading cause of cancer-related death among men in the U.S. (USCS 2018). Previously, the norm

was to treat all healthy patients diagnosed with PCa using radical prostatectomy (surgical removal

of the prostate gland) or radiation therapy. Recently, evidence has surfaced that low-risk forms

of the disease may not benefit from aggressive treatment (Bill-Axelson et al. 2018). As a result,

the practice is shifting to the use of active surveillance, for men diagnosed with low-risk PCa.

The purpose of surveillance is to minimize overtreatment and subsequent morbidity for men with

indolent disease, while ensuring that men who progress to high-risk disease receive treatment when

appropriate. Early studies suggested that active surveillance has a survival rate similar to that of

immediate treatment for patients who are diagnosed with low-risk PCa (Hamdy et al. 2016). This

is important because active surveillance can delay or avoid treatment via radical prostatectomy or

radiation therapy, which have significant side effects such as sexual dysfunction, incontinence, and

other impacts on a patient’s health status (Guenther et al. 2019).

The fact that PCa is not directly observable, the disease is stochastic, and diagnostic tests are

imperfect and can cause disutility to patients, raises important – and as yet unanswered – questions

about the optimal surveillance strategy. The recent availability of data from multiple long-term

clinical studies has made it possible to estimate stochastic models for the natural history of patients

diagnosed with low-risk PCa (Barnett et al. 2018, Inoue et al. 2018). The approach of Barnett et al.

(2018), based on enumeration over a small list of surveillance strategies, suggested an incentive for

optimizing the strategy.

PCa surveillance is a special case of disease monitoring. For example, PCa during surveillance

only has two latent states, including low- and high-risk stages, the action to perform is either “test”

or “wait,” and the test result is dichotomous in which the chance of a false-positive result is zero (a

complete description of the problem is given in §4). This example could be applied to other disease

contexts in which risk can be dichotomized with respect to decisions about whether and when to

collect information that comes with a cost or burden to patients. Currently, the commonly used

partially observable Markov decision process (POMDP) model (see, for example, Ayer et al. (2012),
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Zhang et al. (2012)) generates a dynamic strategy based on a probability distribution over the set

of core states defining the health status of each patient, and the resulting policies are at odds with

the structure of many contemporary strategies used in medical practice. In contrast, all strategies

endorsed by professional societies that we are aware of prescribe a pre-defined schedule of diagnostic

tests and procedures (see, for example, Lawrentschuk and Klotz (2011)). This endorsement is partly

due to the fact that such strategies are easy to interpret and provide patients with reasonable

expectations in the future. Unfortunately, while such strategies are easy to interpret, they are

“one-size-fits-all” strategies, and lack the personalization of policies based on POMDPs that use

patients’ risks.

In this article, we study a stochastic programming model for the PCa surveillance problem to

design easy-to-implement (static) surveillance strategies that can 1) provide patients with reason-

able expectations, 2) allow coordination of decisions among multiple patient types, and 3) balance

the ease of implementation with the desire for individualized strategies for patients. We describe

the stochastic programming framework that utilizes a black box simulation model based on the

enumeration of sample paths of disease progression and detection. The decisions define a) the

selection of periods at which to test patients for each of a pre-defined number of surveillance strate-

gies, and b) the assignment of patients based on disease risk factors to strategies, to maximize a

cumulative reward function that considers the goals of early detection and the harms of diagnostic

tests and procedures. Figure 1 illustrates the shared decision making process from perspectives of

patients and physicians. We formulate the model as a two-stage stochastic integer program, and we

develop a logic-based Benders decomposition formulation that exploits the structure of the model.

We apply our approach to a case study based on a recently validated stochastic model for the

active surveillance of PCa.

The remainder of this article is organized as follows. Section 2 provides a background on the

active surveillance of PCa to provide a context for the application of our model. Section 3 reviews

the most relevant literature on optimizing latent disease detection problems. A two-stage stochastic

integer programming model is described in Section 4 along with some fundamental properties of

the model. Section 5 compares the stochastic programming model with a benchmark POMDP

approach. Section 6 presents a logic-based Benders decomposition approach. Section 7 provides

numerical results illustrating the performance of our model and evaluates the incremental benefit

of increasing the number of surveillance strategies relative to a one-size-fits-all strategy. Section 8

concludes the article.

2. Background on Active Surveillance for Prostate Cancer

The intent of active surveillance is to monitor patients diagnosed with a low-risk stage of PCa over

time, to detect (possible) progression to a high-risk stage of the disease. Surveillance strategies
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Figure 1 Shared decision making process from the patient and physician perspective

dichotomize risk based on pathological information obtained from biopsies, clinical staging, and

prostate-specific antigen (PSA) tests. Prostate biopsy is the most important method for definitively

detecting PCa progression. The result of a biopsy, known as the Gleason score, is a discrete score

assigned by a pathologist. Patients below the Gleason score threshold are assigned to the low-risk

PCa category, while patients above the threshold are attached to the high-risk category. Definitive

treatments such as radical prostatectomy and radiation therapy are recommended for patients

detected with the high-risk stage of PCa who can tolerate these treatments. Active surveillance

is recommended for patients with low-risk PCa as a means to delay or avoid treatment. In some

cases, elderly patients may not be candidates for such treatments because of the risk of adverse

outcomes.

A sketch of the active surveillance process (Figure 2) illustrates the system dynamics, including

the progression from low- to high-risk PCa, treatment for high-risk cancer upon detection, and

progression from treated PCa or latent high-risk PCa to metastatic PCa. Metastatic cancer fre-

quently leads to PCa mortality. At the same time, patients in any health stage may also die from

other competing diseases, known as all-other-cause mortality, where its probability changes with

patient’s age and it could also differ based on factors such as the presence of chronic diseases (e.g.

diabetes, other types of cancer that may be present). Both low- and high-risk PCa stages are latent

but may be detected via biopsy. Prostate biopsies are invasive tests that involve the insertion of

needles into the patient’s prostate gland to remove tissue samples. The tissue is then evaluated by

a pathologist who reports the Gleason score. The Gleason score ranges from 6 to 10. Patients with

a Gleason score below 7 are generally considered candidates for active surveillance, and those with

a score of 7 or above are typically recommended for radical prostatectomy or radiation therapy.

The true-negative rate of a biopsy (also known as the specificity) is close to 100%; however, the
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Figure 2 Illustration of disease progression and decision making for active surveillance for prostate cancer (PCa)

true-positive rate (also known as the sensitivity) – as estimated from a large cohort study – is

61% (Barnett et al. 2018). Although the specificity of biopsy is nearly perfect, and it is the gold

standard test, it is painful and a source of significant anxiety for patients. In fact, many patients

have poor adherence to active surveillance, citing concerns regarding biopsies (Kinsella et al. 2018).

Therefore, the frequency of biopsies is an important consideration in the effective implementation

of active surveillance. On the other hand, the delay in detecting the high-risk stage of the disease

is also an important consideration that is at odds with the goal of minimizing the use of biopsies.

The PSA test is a commonly used biomarker test for PCa progression. This is a simple blood

test, in which high values or an increasing trend in PSA levels can be regarded as a signal of

PCa progression. However, the test outcome has very poor sensitivity and specificity (Ankerst and

Thompson 2006). Nevertheless, PSA is considered part of the standard practice of care and it often

serves as a trigger for additional biopsies (Bokhorst et al. 2015). Such biopsies are not anticipated

in advance; therefore, we refer to them as “off-schedule” biopsies.

In our model and case study, we focus on the optimizing the schedule of biopsies that defines

the surveillance strategy. Several well-known published strategies have been published (Table 1),

including the Johns Hopkins (JH) strategy (Carter et al. 2007), the University of California,

San Francisco (SF) strategy (Dall’Era et al. 2008), and the University of Toronto (UT) strategy
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Table 1 Well-known published strategies based on institutional studies of active surveillance for prostate cancer

(PCa)

Existing strategy Surveillance plan

Johns Hopkins (JH) Annual biopsy

University of California, San
Francisco (SF)

Biopsy 1 year after diagnosis, then every 2 years

University of Toronto (UT) Biopsy 1 year after diagnosis, then every 3 years

(Van den Bergh 2007). However, the guideline strategies vary significantly, and the best strategy

remains unclear. Moreover, all of the guideline strategies are one-size-fits-all strategies, whereas the

best policy may vary in intensity from one patient to another owing to the heterogeneity among

multiple patient types.

3. Literature Review

Active surveillance for PCa is a latent disease detection problem which involves sequential decisions

about whether and when to use a diagnostic test. The goal is to schedule diagnostic tests to detect

the latent high-risk stage of the disease (e.g., high-risk PCa in our study) as early as possible while

trading off this benefit against the disutility of testing. The risk of metastasis of high-risk disease

promotes frequent testing while the pain, risk of infection and bleeding, and cost of testing suggest

infrequent testing. In this section, we review literature related to latent disease detection problems

and solution approaches. We close this section with a description of the main contributions of this

article to the literature.

3.1. Latent Disease Detection

The latent disease detection problem has been studied mainly in the area of chronic disease moni-

toring and infectious disease control (de Vries et al. 2021, Kamalzadeh et al. 2021, Tunç et al. 2022,

Nenova and Shang 2022). We provide a few representative examples here to illustrate the body

of research in this area. Brandeau et al. (1993) studied an infectious disease control problem to

analyze the cost and benefit of screening women of childbearing age for HIV. The authors proposed

a dynamic compartmental model of the HIV epidemic that incorporates disease transmission and

progression over time. Helm et al. (2015) studied a chronic disease monitoring problem to forecast

and control glaucoma progression. The authors proposed a multivariate state space model of dis-

ease progression based on a Kalman filter to sequentially forecast the likelihood of progression and

determine the next time to test. Bertsimas et al. (2016) proposed a framework to find a decision-

making process that works well under multiple models of latent disease progression and applied

their method to the PCa screening problem.

The above problems are similar in a number of aspects. First, there are multiple latent states,

and at least one of them requires timely treatment. Second, the detection of latent disease relies
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on tests that have measurement errors. Third, decisions are made sequentially based on previous

test outcomes. Finally, the test is costly or harmful, and thus it is a tradeoff between the cost to

test patients and the reward associated with timely treatment.

3.2. POMDP-based Approaches

POMDPs generalize Markov decision processes (MDPs) to the case in which the underlying disease

state is not directly observable and is instead denoted as a probability distribution over the set of

possible states (also known as a belief state) that is updated over time based on observations.

Due to the nature of sequential decision-making, most latent disease detection problems are for-

mulated as POMDP models. Steimle and Denton (2017) reviewed MDP and POMDP models that

have been applied to the prevention, screening, and treatment of chronic diseases such as diabetes,

heart disease, and cancer. In terms of applications of POMDP models in medicine, Hauskrecht and

Fraser (2000) constructed a POMDP framework for the problem of ischemic heart disease manage-

ment. The authors used a hierarchical Bayesian belief network to denote the disease dynamics, and

they exploited regularities and specificity of the problem domain to improve the computational

performance of the POMDP model. Vozikis et al. (2012) also considered an ischemic heart disease

management problem using a POMDP model. The authors proposed a heuristic method to allevi-

ate the computational obstacle of the POMDP model and trade off for speed. Ayer et al. (2012)

formulated a POMDP model to design a personalized mammography screening policy for breast

cancer screening based on the prior screening history and personal risk characteristics of women.

Their POMDP model incorporated age-specific unobservable disease progression and age-specific

mammography test characteristics. Prostate cancer screening has been the focus of much research

using (descriptive) simulation models to evaluate PSA screening of healthy populations (Under-

wood et al. 2012, Mühlberger et al. 2017). From an optimization perspective, Zhang et al. (2012)

formulated the first POMDP model to find an optimal prostate biopsy referral policy that depends

on the patient’s age and belief. However, since they considered disease detection as an endpoint,

and they assumed a single biopsy, their model was a stochastic partially observable stopping time

problem and thus differs from the surveillance setting that may perform multiple biopsies in differ-

ent periods. Sandkç et al. (2013) proposed a POMDP framework for liver transplantation problems

which incorporated waitlist information into the patient’s decision-making. The authors used this

model to assess the loss in expected life days for patients under imperfect information as a price

of privacy, and they concluded that the imperfect information that is typically available is nearly

sufficient to result in a negligible price of privacy. Erenay et al. (2014) formulated a POMDP model

to optimize colonoscopy screening policies for detection of colon cancer that incorporate age, gen-

der, and other risk factors. Otten et al. (2017) extended the POMDP model of Ayer et al. (2012)
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for breast cancer screening by considering multiple risk categories based on the differentiation of

the primary tumor. They suggested different screening strategies for different risk groups.

POMDPs are applicable for general latent disease detection problems, including multiple latent

states, multiple actions, and general transition probabilities such as cases in colonoscopy screening

(Erenay et al. 2014) and breast cancer screening (Otten et al. 2017). However, the POMDP model

may have several drawbacks when applied to PCa surveillance practice which involves two latent

states and multiple patients. First, the POMDP solution is a dynamic strategy depending on a

belief state that needs to be evaluated by a decision support tool based on historical data that

may not be available for all patients. Second, POMDP models are often complex to formulate

coordinating decisions among multiple patient types of heterogeneity. Ignoring this heterogeneity

leads to a tractable model but also comes at a loss in accuracy; on the other hand, incorporating the

coordinating decisions into the state space is associated with exponential increases in computational

complexity. Finally, physicians prefer strategies that are defined a priori because they provide

guidance on future expectations for patients and physicians.

The most related work to ours is that of Chen et al. (2018), which proposed an MDP-inspired

mixed-integer programming (MIP) model for liver cancer screening. They considered an M-switch

strategy (i.e., a strategy that can switch M times during the time of surveillance process). The MIP

model can be solved efficiently, and thus overcomes the computational challenges of the POMDP

model counterpart. However, the MIP model proposed by Chen et al. (2018) is still based on the

Markov assumption. Similar to POMDPs, their model generates an individualized strategy for

each type of patients, and as the number of patients grows, the physician needs to document a

growing number of strategies. Our model differs from Chen et al. (2018) in several aspects: 1)

it can constrain the number of strategies, which is critical for implementation; 2) we develop a

tailored solution approach for our model, while the MIP model in Chen et al. (2018) was solved

using standard MIP solvers.

3.3. Our Contributions

We formulate a stochastic integer programming (SIP) model to optimize the detection of latent

diseases and apply it to active surveillance strategies for PCa. Compared with the aforementioned

literature, the contributions of this article are as follows:

� Our approach generates easy-to-implement strategies (structurally consistent with current

practice) that pre-define a schedule of diagnostic tests, in contrast to the POMDP models commonly

proposed in the literature. Using our model, we demonstrate the relative gains in increasing the

number of strategies for PCa from a single “one-size-fits-all” strategy, ultimately proving that

increasing a smaller number of strategies can achieve significant gains over the one-size-fits-all

strategy.
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� We develop an improved solution approach based on a tailored logic-based Benders decompo-

sition to solve our generic SIP model, and we show that it significantly raises the computational

efficiency compared to the standard methods using a commercial MIP solver.

� We allow for disease models with the possibility for coordinating decisions among multiple

patient types, which would be difficult to address in POMDP models. Moreover, we provide a case

study demonstrating the practical use of the model to determine optimal surveillance strategies

for patients with PCa for the first time.

Table 2 Notation used in the stochastic integer programming model

Notation Description
Parameters

p, k, t, s Index for patient types, periods of PCa progression, periods of treatment (detection),
and surveillance strategies, respectively.

σ True positive rate of the biopsy test.
dpt Recommendation on early discontinuation of surveillance at period t for patient type

p.
ξpk Probability of PCa progression at period k for patient type p.

ξ̂pk Number of patients who are in type p and PCa progress at period k.
π̂pkt Adjusted cost of a biopsy test at period t for patient type p when PCa progressed at

period k.
rpkt Expected lump-sum reward if PCa is treated at period t for patient type p when PCa

progressed at period k.
First-stage decision variables

xst Whether a biopsy is scheduled at period t in strategy s.
yps Whether strategy s is assigned to patient type p.
wpt Whether a biopsy is scheduled at period t for patient type p.

Second-stage decision variables
vpkt Probability of being detected via biopsy at period t for patient type p when PCa

progressed at period k.
upkt Probability of receiving a biopsy test at period t for patient type p when PCa pro-

gressed at period k.
qpkt Probability of being undetected at the beginning of period t for patient type p when

PCa progressed at period k.

4. Stochastic Integer Programming Model

This section describes a stochastic integer programming model for the PCa surveillance strategy

optimization problem with multiple patient types. This model applies to PCa surveillance with

two latent states and biopsy result observations only when no information is updated. The fol-

lowing section will introduce a benchmark model based on POMDP formulation that applies to

problems with more latent states and observations. We then compare the two models regarding

their applications to PCa surveillance practice at the end of §5.
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The surveillance cohort consists of a set of heterogeneous patients of P types, where each patient

type p ∈ P ≡ {1, · · · , P} consists of np patients, which correspond to a unique combination of

patient’s characteristics such as the diagnosis age and the enrollment health condition that may

affect the value of early treatment and the risk of PCa progression, respectively. The notations

used in this model are summarized in Table 2. We denote the probability of an event e by P(e),

the cardinality of a set X by |X |, and the vector or matrix form of a scalar x by x.

The horizon for active surveillance is fixed at T . As with all published guidelines, we discretize

the horizon into a set of periods, T ≡ {1, · · · , T}, indexed by t. For PCa, each period corresponds to

a year, which is the minimum interval between two consecutive biopsies proposed by all published

guidelines. Because patients are treated immediately following a positive test outcome, t can also

index the periods of treatment if we slightly extend set T to be set T + ≡ {1, · · · , T + 1} where

patients at period T + 1 are no longer candidates for standard treatment (i.e., period of no treat-

ment). Moreover, we include the decision to discontinue surveillance when treatment is no longer

beneficial relative to other-cause mortality. We include this decision to ensure that all patients

have the same length of surveillance, T , while some types of patients may discontinue earlier if

surveillance is no longer beneficial. We define dpt ∈ {0,1} such that dp1 ≥ dp2 ≥ · · · ≥ dpT for all p;

dpt = 0 denotes the discontinuation of surveillance at period t and beyond, and dpt = 1 otherwise.

Typically, we estimate t∗ = arg maxt{dpt = 1} as the oldest age for patient type p beyond which the

patient will not benefit from treatment, and t∗ is independent of the first-stage decision variables.

Therefore, dpt can be predetermined based on the patient’s expected life span, and it is regarded

as a parameter in our model.

The maximum time for PCa progression is K. However, the period at which PCa progression

occurs for patients of type p, Kp, is randomly distributed over a discrete set K≡ {0,1, · · · ,K + 1}
indexed by k where Kp =K+1 if PCa does not progress by the end of K periods, and Kp = 0 if PCa

has already progressed at the time of diagnosis (indicating the patient was misdiagnosed, due to a

false-negative result for the diagnostic biopsy). The distribution of Kp is specific to p, because the

patient type is associated with the rate of PCa progression through the classification of patients

for active surveillance. We let ξpk = P(Kp = k) denote the probability of PCa progression at period

k for patient type p. Note that PCa may progress during the surveillance horizon, resulting in k

and t having parallel indices of periods defined for PCa progression and surveillance, respectively,

i.e., k and t share the same definition of the period which corresponds to “one year”, and they are

addable. We assume that K ≥ T since patients may also experience PCa progression after T when

surveillance is no longer recommended for all patient types.

Surveillance strategy is defined as a specified subset of periods in which a biopsy is scheduled.

In contrast to the guideline (one-size-fits-all) strategy, we provide a set of S strategies for the
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surveillance cohort where each strategy s ∈ S ≡ {1, · · · , S} is implemented on a tailored subgroup

of the patient types, aiming to improve the precision of surveillance with a limited number of

strategies. We assume S < P to avoid the triviality of the decision. The strategy design and the

patient type assignment are determined by the following first-stage decision variables:

� xst ∈ {0,1}, which denotes whether a biopsy is scheduled at period t in strategy s (xst = 1), or

not (xst = 0) for all s= 1, · · · , S and t= 1, · · · , T .

� yps ∈ {0,1}, which denotes whether patient type p is assigned to strategy s (yps = 1), or not

(yps = 0) for all p= 1, · · · , P and s= 1, · · · , S.

� wpt =
∑

s∈S xstyps, which is an auxiliary variable introduced for ease of exposition, denoting

whether a biopsy is scheduled at period t for patient type p or not.

In short, the strategy assigned to patient type p is defined as Πp = {t |wpt = 1}.

4.1. Post-progression Parameters and Second-stage Decisions

We make the following two assumptions (Assumptions 1 and 2) to ensure that the period of PCa

progression, Kp, is an exogenous random variable, which is helpful in formulating the problem as

a two-stage stochastic integer program.

Assumption 1. The rates of PCa progression, PCa metastasis, PCa mortality, and other-cause

mortality are independent of biopsy testing.

Several clinical studies such as a study of more than 2,000 patients by Mayo Clinic found that

cancer biopsies do not promote cancer spread (Mayo Clinic 2015), and similar assumptions (i.e.,

clinical tests do not affect the rate of disease progression) are common in the literature on cancer

screening (Zhang et al. 2012, Bertsimas et al. 2016).

Assumption 2. The false-positive rate of the prostate biopsy test is 0.

The false-positive rate is negligible because once cancerous tissue is sampled, it is highly likely to

be correctly diagnosed by a trained pathologist. As a result of Assumption 1, the treatment time

(immediately after the detection) is always after the progression time.

Based on Assumptions 1 and 2, if we observed Kp = k in a priori, then surveillance (and treatment,

if any) do not affect the probability of PCa progression, i.e., ξpk becomes independent of strategy

Πp for all p, implying that the health outcome for a given strategy is decomposable by k. Moreover,

patients will not be treated before PCa progression, and thus the sequence of events leading to

treatment is fixed as “low-risk PCa → high-risk PCa → treated PCa” (see §EC.1.1 in Online

Supplement for illustration).

More specifically, since ξpk is independent of Πp, the patient’s health outcome is purely deter-

mined by the following factors: the patient type (i.e. p), the time of PCa progression (i.e., k), and
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the delay of treatment (i.e., t−k). Therefore, a sample path corresponds to the combination of p, k,

and t (see §EC.1.2 in Online Supplement for illustration). Further, we predetermine the following

sample-path parameters:

� rpkt ∈ R, which is the expected lump-sum reward for patient type p being treated at period

t when PCa progresses at period k (note that the lump-sum reward can equivalently account for

post-treatment states such as metastasis and mortality due to their independence of the strategy).

� πpkt ∈ [0,1], which is the proportion of patient type p staying in surveillance at period t when

PCa progresses at period k (i.e., 1−πpkt is the proportion of patients who stop active surveillance

due to symptomatic diagnosis of metastatic cancer, or death from any cause, including PCas).

Moreover, patients of type p need to pay an instantaneous cost, cp, for the disutility of one biopsy

test. For ease of presentation, let π̂pkt = cpπpkt denote the adjusted cost of a biopsy test incurred on

the patients who stay in surveillance. The test always returns a negative outcome for unprogressed

PCa, and it randomly returns a positive outcome for progressed PCa with probability σ (which is

the true-positive rate of the biopsy test, and 0< σ ≤ 1 because the biopsy test is based on tissue

sampling that could miss the presence of high-risk PCa).

Note that π̂ and r are sample-path values estimated from a clairvoyant’s view of the random

variable Kp. Instead, the surveillance strategy determines the probability corresponding to each

sample path, and the probability of biopsy for the patient, which can be expressed by the following

second-stage decision variables:

� vpkt ∈ R: probability that PCa progression is detected via biopsy and treated at the end of

period t for patient type p when PCa progressed at period k where vpk,T+1 denotes the probability

of undetected PCa at the end of surveillance.

� upkt ∈R: probability that a biopsy test is performed at period t for patient type p when PCa

progressed at period k.

� qpkt = dpt

(
1−∑t−1

t′=k vpkt′
)

: auxiliary variable denoting the probability of being undetected at

the beginning of period t for patient type p when PCa progressed at period k.

Note that the definition of u, v, and q as decision variables could be confusing at first-glance;

however, they represent probabilities that are defined as a function of the first- and second-stage

variables in the second-stage recourse problem.

4.2. Model Formulation

Now, we formulate the complete problem as the following two-stage stochastic integer program

based on the enumeration of all sample paths of PCa progression and detection:

P : max
x,y,w

Q(x,y,w) =
∑

p∈P

∑

k∈K
ξ̂pkQ̃(x,y,w, p, k) (1a)
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s.t.
∑

s∈S
yps = 1,∀p∈P (1b)

−wpt +
∑

s∈S
xstyps = 0,∀p∈P, t∈ T (1c)

xst, yps,wpt ∈ {0,1} (1d)

where ξ̂pk = npξpk denotes the expected number of patients who are of type p and for whom PCa

progresses at period k. We include ξ̂pk in the objective function (1a) because the goal is to maximize

the total expected reward across all patients. Constraint (1b) ensures that each patient type is

assigned to exactly one strategy, and constraint (1c) links xst, yps with wpt which determines

whether a biopsy test is scheduled at period t for patient type p. Moreover, Q̃(x,y,w, p, k) is

the maximum reward associated with p and k, which is determined by the following second-stage

recourse program:

Q̃(x,y,w, p, k) = max
u,v,q

T+1∑

t=k̄

rpktvpkt−
∑

t∈T
π̂pktupkt (2a)

s.t. qpkt + dpt

t−1∑

t′=k

vpkt′ = dpt,∀1≤ t≤ T (2b)

− qpktwpt +upkt = 0,∀1≤ t≤ T (2c)

− qpktwptσ+ vpkt = 0,∀k≤ t≤ T (2d)

vpk,T+1 +
T∑

t′=k

vpkt′ = 1 (2e)

upkt, vpkt, qpkt ≥ 0 (2f)

where k̄ = min(k,T + 1), vpk0 = 0 for all p, k, and the summation
∑t−1

t′=k(·) = 0 if t≤ k. Objective

(2a) determines the reward associated with the detection of high-risk PCa minus the cost associated

with the disutilities of biopsy testing. Constraint (2b) determines the probability of being unde-

tected at the beginning of period t, which requires that PCa is not detected in previous periods,

and that the patient continues surveillance at period t. Constraint (2c) determines the probability

of receiving a biopsy test at period t, which requires that PCa is undetected at the beginning of

period t, and a biopsy is scheduled at period t. Constraint (2d) determines the probability of being

detected via biopsy at period t, which requires that the patient is biopsied and the outcome is

positive. Finally, constraint (2e) determines the probability of undetected PCa at the end of period

T .

Remark 1. P is a stochastic program based on the enumeration of sample paths of PCa pro-

gression and detection, which differs from the traditional sample average approximation based on

sampling the random variables. With straightforward modifications, P can be applied to opti-

mize different criteria, such as minimizing the expected delay of detection of high-risk PCa, and

maximizing the expected survival rate (see §EC.1.3 in Online Supplement for illustration).
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4.3. Model Linearization

We further show that P with a single patient type can be reduced to be a conjunctive normal form

satisfiability problem, which is a well-known example of NP-completeness (see §EC.1.4 in Online

Supplement for the proof). This motivates the methodological developments in the remainder of

this section because there unlikely exists a polynomial-time algorithm for the optimal solution of P.

As we observe, P has nonlinear constraint (1c) in the first-stage program and nonlinear constraints

(2c)-(2d) in the second-stage program. In this subsection, we linearize the model, which is valid

under the following assumption.

Assumption 3. If a patient is in the high-risk PCa stage and has not discontinued surveil-

lance, we assume that treating the patient earlier is at least as good as treating later, i.e., rpkt ≥
dptrpkt′ , ∀t+ 1≤ t′ ≤ T + 1 for all p∈P, k ∈K, k≤ t≤ T.

This assumption is the fundamental underlying reason why treatment is recommended for high-risk

PCa. Using Assumption 3, the second-stage recourse function, Q̃(x,y,w, p, k), is monotonic with

respect to vpkt, which is specified by the following lemma.

Lemma 1. Under Assumption 3, when the first-stage decision variables x, y, and w are fixed,

and dpt = 1, Q̃(x,y,w, p, k) is nondecreasing as vpkt increases for all p∈P, k ∈K, and k≤ t≤ T+1.

Using Lemma 1, we further obtain the following theorem (proofs of all theorems, lemmas, and

propositions are delegated in §EC.2 in Online Supplement):

Theorem 1. Under Assumption 3, vpkt and upkt automatically achieve their upper bound and

lower bounds, respectively, at the optimal solution for P.

Theorem 1 is helpful for binding vpkt and upkt when to linearize the formulation. Specifically,

constraint (2c) can be reformulated as

upkt− qpkt− M̂ptwpt ≥−M̂pt, ∀1≤ t≤ T, (3)

which enforces upkt ≥ qpkt if wpt = 1 and upkt ≥ 0 otherwise, where M̂pt is a sufficiently large number

(which is known as the big-M coefficient), and constraint (2d) can be reformulated as

vpkt−σqpkt ≤ 0, ∀k≤ t≤ T, (4a)

vpkt−Mptwpt ≤ 0, ∀k≤ t≤ T, (4b)

which enforces vpkt ≤ σqpkt if wpt = 1, and vpkt ≤ 0 otherwise, where Mpt is a big-M coefficient. We

further linearize the first-stage program by removing its auxiliary decision variables wpt, and we

present an extensive linearized model of P in §EC.1.5 in Online Supplement.
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4.4. Practical Properties for Surveillance Strategy Assignment

We introduce valid inequalities by assuming that the assignments of patients in each subset of

patient types, P̂, are continuous. Specifically, if patient types p − 1 and p + 1 are assigned to

strategy s, then patient type p must be assigned to the same strategy. This amounts to the following

easy-to-assign constraints:

ypjs + ypj ,s+1 ≥ ypj−1,s, ∀2≤ j ≤ |P̂|, 1≤ s≤ S− 1, (5a)

ypjS ≥ ypj−1,S, ∀2≤ j ≤ |P̂|, (5b)

where pj denotes the j-th patient type in P̂. Constraints (5a) and (5b) naturally break the symmetry

among the assignment decisions, potentially cutting off a large number of equally good solutions.

As a result, constraints (5a)-(5b) can significantly improve the computational efficiency.

Finally, we refer to the linearized model of P (see §EC.1.5 in Online Supplement) combined

with the easy-to-assign constraints (5a)-(5b) as model P̂. In §6, we develop solution methodologies

based on Benders decomposition for model P̂ to solve realistic-scale problem instances efficiently.

5. Comparison Between P and POMDP model
5.1. Introduction to Benchmark POMDP

We consider a discrete-time, finite-horizon POMDP model for surveillance a single patient type,

in which we suppress the use of the subscript p. We present a POMDP model in §5.1.1 that allows

for arbitrary numbers of latent states and observations. Then in §5.1.2, we present a special case of

the POMDP for PCa surveillance with two latent states and biopsy result observations only when

no information is updated.

5.1.1. POMDP formulation: we consider an absorbing state, T, which corresponds to a

post-surveillance state such as “treatment” or “mortality.” During the surveillance, the disease is

in a latent state St ∈S where S is the set of all latent states (e.g., cancer-free, early-stage cancer,

and late-stage cancer). Let bt(St) denote the probability of being in state St, and thus its vector

form bt ≡ {bt(S1), · · · , bt(S|S |)} is the belief state at the beginning of period t. Based on bt, an

action, At, is selected from the set of all candidate actions (e.g., biopsy and wait), A . After taking

At, the disease may transition to T at the end of period t with probability p̄t(T | bt,At); otherwise,

if the disease continues surveillance, the patient receives a routine test that gives an observation,

Ot ∈ O, with probability p̄t(Ot | bt,At), where O is the set of all candidate observations. Based

on Ot, one can update the belief state from bt to bt+1 for the next period according to Bayesian

inference (see §EC.1.6 in Online Supplement).
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Let Vt+1(bt+1) denote the optimal value at period t+1 when the belief state is bt+1, the POMDP

model that aims to maximize the expected value at period t can be formulated as follows:

Vt(bt) = max
At∈A

Rt(bt,At) +λ

(
p̄t(T | bt,At)R̄t(T)

+
(

1− p̄t(T | bt,At)
) ∑

Ot∈O

Vt+1(bt+1)p̄t(Ot | bt,At)

)
, (6)

where λ∈ (0,1] is a discount factor, Rt(bt,At) is the immediate reward if the belief state is bt and

the action chosen is At, and R̄t(T) is the expected lump-sum reward if the disease transition to

the absorbing state at the end of period t after taking At.

5.1.2. POMDP for PCa surveillance: In PCa surveillance, the disease is either in low-

risk (L) or high-risk (H), which constructs the state set as S ≡ {L,H}. Based on a belief state

bt ≡ {bt(L), bt(H)}, the candidate action is either to perform (B) or defer (W) a biopsy, which

constructs the action set as A ≡ {B,W}. Since PCa is treated at the end of period t if the biopsy

result is positive, the patient who continues surveillance in the next period must experience a

negative biopsy result (if At = B) or no result (if At = W). Therefore, the Bayesian inference has

no impact on updating the belief state since |O|= 1 for all At ∈A .

Recall that PCa progression is independent of the surveillance strategy (Assumption 1), the

belief state can be specified as

bt(St) =

{∑t

k=0 ξpk, if St =H,

1−∑t

k=0 ξpk, if St = L.
(7)

Thus, (7) updates the belief state as the cumulative probability of PCa progression up to period

t, where ξpt is the probability of PCa progression at period k. Since |O|= 1, we suppress Ot and

reformulate the POMDP model (6) for the PCa surveillance setting, which we refer to as the

POMDP-surveillance model, as follows:

Vt(bt) = max

{
−dptπ̃pt +λ

(
p̄t(T | bt,B)R̄t(T) + (1− p̄t(T | bt,B))Vt+1(bt+1)

)
, if At =B,

λVt+1(bt+1), if At =W,
(8)

for t= 1, · · · , T̄ , where T̄ = arg maxt∈T {dpt = 1} denotes the recommended discontinuation age for

patient type p. When PCa is biopsied, i.e., At =B, the reward, Rt(bt,B) =−dptπ̃pt where π̃pt is the

weighted cost of a biopsy test at period t, and the probability of detection p̄t(T | bt,B) = bt(H)dptσ

because only high-risk PCa can be detected, and the sensitivity of biopsy is σ. When PCa is

not biopsied, i.e., At = W, it receives no reward and has no chance of detection. The terminal

value VT̄+1(bT̄+1) = R̄T̄+1(T), denoting that all PCa leftovers are untreated. Finally, λ is set to 1,

denoting that the decision maker is risk-neutral.
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5.2. Conditions of Equivalence Between POMDP-surveillance and P

In the POMDP-surveillance model, the belief state update (7) is independent of the action chosen

and the observation seen at each period, which makes its solution equivalent to a static policy in

the sense that all actions can be made at the beginning period because the dynamic information

observed in the following periods has no impact on the decision-making.

In the following theorem, we show that the solution of the POMDP-surveillance model is equiv-

alent to the solution of P under a special case of P when there is only one patient type, and all

parameters π̂pkt, rpkt are independent of k.

Theorem 2. Under a special case of P such that P = 1, π̂pkt and rpkt are independent of k, i.e,

π̂pkt = π̃pt, rpkt =Rt(T), and rpk,T+1 =RT̄+1(T) for all k, the POMDP-surveillance model achieves

the same total expected reward as P under the respective solutions corresponding to any given policy

Π such that

AΠ
t =

{
B, if wΠ

pt = 1,

W, if wΠ
pt = 0,

(9)

for all 1≤ t≤ T̄ , where AΠ
t is the action chosen in the POMDP-surveillance model, and wΠ

pt is the

first-stage decision of P.

Theorem 2 applies to any feasible strategy including the optimal strategy Π∗ that maximizes the

total expected reward. Therefore, the solutions of the POMDP-surveillance model and P are equiv-

alent when P = 1, π̂pkt and rpkt are independent of k, which means that the POMDP-surveillance

model is a special case of P.

5.3. Comparison Between POMDP-surveillance and P

Based on (6) and Theorem 2, we summarize the advantage (A) and disadvantage (D) of P compared

with the POMDP-surveillance model for multiple patient types and multiple states as follows:

� (A). When P ≥ S, multiple patient types share the same surveillance strategy to maintain the

ease of implementation. For P, the number of strategies can be controlled through the assignment

decisions, which results in a factor of P additional decision variables. In contrast, for the POMDP-

surveillance model, the number of strategies can be controlled through coordinating the actions of

multiple patient types (Amato and Oliehoek 2015), which results in a multi-agent POMDP with

a joint belief space of all patient types, and it requires expanding the belief space from |S | to

|S |P . Therefore, as P increases, the belief space of the POMDP-surveillance model is increasing

exponentially with respect to P versus a linear increase with respect to P for P.

� (D). P is suited for dichotomous health conditions (|S |= 2) in clinical settings; however, it is

less straightforward than the POMDP-surveillance model to scale up to account for multiple latent

states. This is because, in P, ξpk only defines the probability of an irreversible state transition from
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low- to high-risk PCa. The model we proposed can be readily extended to left to right Markov

models with more than two states (see §EC.1.7 in Online Supplement); however, extensions to more

general transition dynamics are less straightforward and potentially a topic for future research. On

the other hand, from a practical point of view, dichotomous health conditions are quite common

in clinical settings where surveillance is conducted to detect a change in health status requiring

treatment.

6. Benders Decomposition of P̂

Benders decomposition (Benders 1962) is a well-known technique for solving large-scale SIP models

that often have a special block structure when the uncertainty is denoted by scenarios. A com-

prehensive description of Benders decomposition is provided in Rahmaniani et al. (2017), and van

Ackooij et al. (2017).

Following the standard approach for Benders decomposition, we consider a relaxed master prob-

lem (RMP) of P̂ that determines the first-stage decision variables, x, and y, and sequentially

bound the objective value, η, of RMP by accumulating optimality cuts over iterations until RMP

finds a feasible solution. Specifically, the relaxed master problem is defined as follows:

RMP : max
(x,y)∈X

η

s.t. Fv(η,x,y) (optimality cut)
(10)

where X = {(x,y) | (1b), (5a)-(5b)} defines the feasible region of x,y, and Fv(η,x,y) defines the

set of optimality cuts accumulated up to iteration v.

6.1. Logic-based Optimality Cuts

Traditional Benders decomposition was unable to adequately solve practical problems owing to

the existence of big-M coefficients such as those appearing in (3)-(4), which result in a poor linear

programming (LP) relaxation of the subproblem and weakens the optimality cut. We consider a

logic-based Benders decomposition (LBD) that does not exploit the LP relaxation; thus, it may

help to mitigate the effect of big-M coefficients (Hooker and Ottosson 2003).

First, to implement the logic-based Benders decomposition, we consider a single strategy problem

(SSP) as defined on a given set of patient types, P̂, in which all patients share the same strategy.

Therefore, the first-stage decision variables in SSP are restricted to be determining the periods to

perform biopsies for a single strategy, i.e., xt ∈ {0,1} for all t∈ T . The problem can be formulated

as a mixed-integer program as follows:

SSP : Q̂(P̂) =max
x,v,u

∑

p∈P̂

∑

k∈K
ξ̂pk

[
T+1∑

t=k

rpktvpkt−
∑

t∈T
π̂pktupkt

]
(11a)



A
u
th
or

M
an
u
sc
ri
p
t

This article is protected by copyright. All rights reserved.

Zhang, Denton, and Morgan: Optimization of Active Surveillance Strategies
19

s.t. vpkt + dptσ
t−1∑

t′=k

vpkt′ ≤ dptσ,∀p∈ P̂, k ∈K, k≤ t≤ T, (11b)

∑

k∈K
vpkt ≤Mptxt,∀p∈ P̂,1≤ t≤ T, (11c)

T∑

t=k

vpkt = 1,∀p∈ P̂, k ∈K, (11d)

−upkt−
t−1∑

t′=k

vpkt′ ≤ 1− dpt−xt,∀p∈ P̂, k ∈K,1≤ t≤ T, (11e)

xt ∈ {0,1}, vpkt, upkt ≥ 0. (11f)

Proposition 1. We define δP̂ as the loss of reward from restricting patients in P̂ to share the

same strategy, where

δP̂ =
∑

p∈P̂

Q̂({p})− Q̂(P̂)≥ 0, (12)

where Q̂({p}) is the optimal reward corresponding to a single patient type p.

Proposition 1 implies that an increased number of strategies are always beneficial for the total

reward associated with a given set of patient types. Therefore, the maximum value of the total

expected reward, η̄, is achieved when every patient type has an individual strategy, which can be

determined as follows:

η̄=
∑

p∈P
Q̂({p}). (13)

Based on the incumbent solution of RMP at iteration v, we construct a subset of patients, P̂v
s =

{p∈P | yvps = 1}, corresponding to the patient types who are assigned to strategy s. These patient

types are forced to share the same strategy, which is a restriction that may cause a loss of rewards.

Directly following Proposition 1, the reward loss in strategy s can be determined by the following

constraint:

Q̂(P̂v
s ) + δP̂v

s
≤
∑

p∈P̂v
s

Q̂({p}), if yps = 1 ∀p∈ P̂v
s .

where δP̂v
s

is the loss of reward from restricting patients in P̂v
s as defined in (12). It means that the

loss of reward is enforced if all patient types are assigned to strategy s; otherwise, the constraint

is relaxed. This constraint can be reformulated as follows:

Q̂(P̂v
s ) + δP̂v

s

∑

p∈P̂v
s

yps ≤
∑

p∈P̂v
s

Q̂({p}) + δP̂v
s
(|P̂v

s | − 1). (14)

Constraint (14) can be applied simultaneously to all the strategies. The total reward loss is the
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sum of the losses across all strategies, i.e.,
∑

s∈S δP̂v
s
. Then, we add the following optimality cut to

Fv(η,x,y) at iteration v:

η+
∑

s∈S


δP̂v

s

∑

p∈P̂v
s

yps


≤ η̄+

∑

s∈S

(
δP̂v

s
(|P̂v

s | − 1)
)
. (15)

where η is the objective value of RMP, which is the total expected reward currently equal to
∑

s∈S Q̂(P̂v
s ), and η̄ is the maximum value of the total expected reward defined in (13).

Remark 2. We also consider a standard Bender’s decomposition (SBD) based on a dual LP

relaxation of the subproblem that includes many big-M coefficients. Using a computational study,

we find that the LBD method significantly outperformed the SBD method and a standard branch-

and-cut algorithm. The standard Benders decomposition model and detailed results are provided

in §EC.1.8 in Online Supplement.

7. Case Study of Active Surveillance for Prostate Cancer

In this section, we present a hypothetical case study based on two major surveillance studies

conducted in the United States. We describe how we parameterize our model, and show a series of

numerical results of this case study to demonstrate the benefits of our model solution compared with

previously published surveillance strategies. Finally, we present a sensitivity analysis to establish

the robustness of our conclusions concerning the variation in model parameters.

7.1. Model Parameterization

Our study focuses on QALYs, a commonly used criterion for public health problems (Zhang et al.

2012, Ayer et al. 2012, Erenay et al. 2014). The QALYs are measured on a scale of 0 (death)

to 1 (a year of perfect health). Quality of life adjustments are based on estimates of disutility

associated with the biopsy test, treatment, and metastasis. Specifically, the disutility for biopsy

and initial treatment, enduring disutility for metastasis, and long-term side effects of the treatment

after initial recovery are provided in Table 3.

To estimate the parameters of the stochastic process, we collect data corresponding to transitions

among the five stages of active surveillance for PCa (Figure 2), including PCa progression (from

low- to high-risk PCa), detection (from high-risk to treated PCa), metastasis (from high-risk and

treated to metastatic PCa), and death (from low-risk, high-risk, treated, and metastatic PCa to

mortality). The sensitivity of biopsy, annual metastasis rate from treated and untreated PCa, and

annual death rate from metastatic PCa were drawn from public studies (see Table 3). We estimate

the age-specific death rate due to all-other causes (Table 4) based on the difference between the

death rate due to all diseases (Arias et al. 2016, Table 2) and the death rate due to PCa (USCS

2018).
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Table 3 Summary of parameters used in the case study

Notation Meaning Value Reference

cB
Disutility in the
year of biopsy

0.05 Zhang et al. (2012)

ĉT
Annual disutility
for post-treatment

0.0911(first year),
0.05 (afterwards)

Litwin et al. (2001)
Heijnsdijk et al (2012)

cT
Disutility in the
year of treatment

0.247 Heijnsdijk et al. (2012)

ĉM
Annual disutility
for metastasis

0.4 Heijnsdijk et al. (2012)

σ Sensitivity of biopsy 0.61 Barnett et al. (2018)

ŵ Misclassification rate2
0.044 (JH3cohort),
0.361 (SF4cohort)

Inoue et al. (2018)

w Annual progression rate2
0.024 (JH cohort),
0.06 (SF cohort)

Inoue et al. (2018)

f
Annual metastasis rate
of treated high-risk PCa

0.006
Mayo Clinic Radical
Prostatectomy Registry

e
Annual metastasis rate
of untreated high-risk PCa

0.069 Ghani et al. (2005)

gt
Annual death rate
of metastatic PCa

0.074 (for age<65)
0.070 (for age≥65)

Zhang et al. (2012)

at
Annual death rate
of all-other causes

Age-specific US Life Tables (2012)

1 Litwin et al. (2001) reported that the quality of life recovers to 82.4%, 96.3% and 100% levels of the
baseline at 12, 24, and 36 months, respectively. Based on these ratios, we estimate the disutility
of post-treatment as ĉ1T = ĉ∞T + 1−96.3%

1−82.4% (cT − ĉ∞T ) =0.091 in the first year of post-treatment where
ĉ∞T is the annual disutility when the patient recovers to the baseline, which is estimated as 0.05
(Heijnsdijk et al. 2012).

2 Our estimation is based on biopsy upgrading (i.e., the Gleason score of biopsy upgraded from
6 to 7 or higher) studies from Inoue et al. (2018) that include both the JH cohort and the SF
cohort. For each cohort, we built a respective hidden Markov model to estimate ŵ and w, with the
sensitivity of biopsy testing being estimated as 0.61 (Barnett et al. 2018), based on the maximum
likelihood estimation.

3 JH=Johns Hopkins
4 SF=University of California, San Francisco

Table 4 Age-specific death rate from all-other causes, at

Age 50-54 55-59 60-64 65-69 70-74 75-79 80-84 85-89 90-94 95-99

Value 0.006 0.009 0.013 0.018 0.027 0.043 0.072 0.122 0.200 0.299

7.1.1. Heterogeneity among multiple patient types. We consider the following param-

eters: diagnosis age, Ap, and the cohort where patients are from, Hp, to identify the heterogeneity

among patient types. First, the diagnosis age is an important factor because it influences all-other-

cause mortality which increases as patients age; as all-other-cause mortality increase the relative

benefits of active surveillance for PCa decrease. Second, men in different active surveillance studies

have different risks for PCa progression. Based on empirical studies by Inoue et al. (2018), we

estimate the rate of misclassification at diagnosis, ŵ, and the annual progression rate, w, for both
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the Johns Hopkins (JH) study and the University of California, San Francisco (SF) study cohorts

(Table 3). We distinguish these studies because they show significant differences in risk estimates of

PCa progression; typically, the JH cohort has a lower misclassification rate and lower progression

rate than the SF cohort. This difference mainly contributes to the different eligibility criteria for

enrollment in active surveillance for the two studies (Inoue et al. 2018). Generally, the JH study

had more restrictive clinical criteria for enrollment than the SF study.

Remark 3. This case study is based on the design of PCa surveillance strategies for a hypo-

thetical population based on the SF and JH studies, in order to serve as a plausible example of

the application of model P. The model optimizes the assignment of patient types to surveillance

strategies to maximize overall long-term rewards, where the patients are classified into mutually

exclusive patient types depending on their diagnosis age and a hypothetical label of either “JH

study” or “SF study”. While we present this specific example for illustration purposes, the model

can be generalized to generate surveillance strategies and optimize the assignment for any relevant

choices of patient types a policy maker might define (e.g., based on the patient’s family history,

prognostic genetic tests).

7.2. Parameter Estimation

Once the patient type, progression time, and treatment time are fixed, the disease model can be

decomposed into multiple Markov models corresponding to the disease dynamics model for a given

combination of p, k, and t. We used the Markov process model based on the parameter estimates

in Table 3 to estimate the following model parameters for the stochastic integer program in Section

4 (the results of the parameter estimation are available in §EC.1.9 in Online Supplement):

� The probability of PCa progression at period k for patient type p, ξpk, is estimated based on

the rate of misclassification at diagnosis (ŵ) and the annual progression rate (w) as follows:

ξpk =

{
ŵHp if k= 0,

(1− ŵHp)(1−wHp)k−1wHp if k≥ 1.

where ŵHp and wHp are the misclassification rate and the annual progression rate for cohort Hp,

respectively. Note that patients from the same cohort, even with different diagnosis ages, have the

same ξpk, i.e., ξpk = ξp′k if Hp = Hp′ for all distinct p, p′ ∈P and k ∈K.

� The probability of patient type p staying in active surveillance at period t if PCa progresses

at period k assuming that the patient is not treated, πpkt, can be estimated as follows:

πpkt =





1, if t= 1, k= 0,

1− e, if t= 1, k≥ t,
πpk,t−1

(
1− aAp+t−1

)
, if t≥ 2, k≥ t,

πpk,t−1

(
1− aAp+t−1

)
(1− e), if t≥ 2, k < t.
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Note that patients with the same diagnosis age, even from different cohorts, have the same πpkt,

i.e., πpkt = πp′kt if Ap = Ap′ for all distinct p, p′ ∈P, k ∈K, and t∈ T .

� The expected QALYs if patient type p is treated at period t if PCa progresses at period k,

rpkt, are estimated as follows:

rpkt =
96∑

t′=Ap


 ∑

S∈{L,H,T,M}
vt′(S , t)Pt′(S , p, k, t)


 ,

where {L,H,T,M} are a set of states, denoting for “low-risk,” “high-risk,” “treated,” and “metas-

tastic” PCa, respectively. vt′(S , t) is the unit QALY associated with being in state S at period t′

if the patient is treated at period t; for example, when S = M, vt′(S, t) = 1− ĉM = 1− 0.4 for all

t′. Pt′(S , p, k, t) is the probability of being in state S for patient type p who is treated at period

t when PCa progresses at period k, which is determined by forward induction based on the state

transition probabilities (e, f , gt and at). For example, when t′ > t and S = M, Pt′(M, p, k, t) =

(1− at′)(1− gt′)Pt′−1(M, p, k, t) + (1− at′)fPt′−1(T, p, k, t). Note that patients with the same diag-

nosis age, even from different cohorts, have the same rpkt, i.e., rpkt = rp′kt if Ap = Ap′ for all k ∈K
and t ∈ T +. We assume that the termination age is 95, and let v96(S , t) denote the remaining

expected QALY beyond 95 which is estimated by an infinite horizon Markov process model in the

absence of biopsy testing. Furthermore, we estimate rpk,T+1 by assuming that the patient has never

been treated. Note that we can easily account for history-dependent disutility such as ĉT when

estimating rpkt because there are no further actions given that the time of treatment is fixed at

period t.

� Whether a patient should discontinue surveillance at age Ap + t and beyond (dpt) is estimated

as follows:

dpt =





0, if t≥ 2 and dp,t−1 = 0,

or ∃k such that rpkt− cB < rpk,T+1,

or ∃k, t′ > t such that rpkt < rpkt′ ,

1, otherwise.

Note that we report the estimation of dpt in Figure 4 as a part of our recommendation.

� The cost associated with the disutility of a unit biopsy for patient type p is estimated as

cp = cB for all p∈P.

7.3. Model Validation

In this subsection, we validate the disease model based on estimated parameters from §6.2. Specif-

ically, we run independent simulations for different patient types, predict their outcomes over dif-

ferent periods during and after active surveillance, and compare the model outputs with published

sources on health outcomes.
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We select several health outcome indicators, including 1) the expected time between beginning

surveillance and detection and 2) the PCa-specific mortality (PCSM) rate. We compare the model

outputs with recently published studies on PCa surveillance (Tosoian et al. 2016, Inoue et al.

2018). The results show that our model outputs are well aligned with the outcomes reported in the

literature, suggesting that the disease model can accurately reflect the progression of PCa. More

details on model validation are provided in §EC.1.10 in Online Supplement.

7.4. Analysis of Optimal Surveillance Strategies

For our analysis, we consider patients who are diagnosed among Ap ∈ {50, · · · ,75} year-old, which is

consistent with the US Preventive Services Task Force recommendation (Moyer 2012). We consider

patients from the JH and SF cohorts, i.e., Hp ∈ {JH, SF}. As a result, there are P = 2× 26 = 52

patient types. We consider a weighted sum of rewards across the patient types, where the number

of patients for each type, np, is estimated based on patients enrolled in the JH and SF studies in

1995–2014 as published in Inoue et al. (2018) (see Table ??). We assume that PCa may progress

within 45 years after diagnosis, i.e., k ∈ {0,1, · · · ,46}, where k= 0 means that PCa was misclassified

at diagnosis, and k = 46 means that PCa never progress. Active surveillance may last for t ∈ T =

{1,2, · · · ,11} years, where all patients in the first year of surveillance are scheduled for a biopsy,

known as a confirmatory biopsy which is intended to check for possible misdiagnosis. Our decision

variables are to decide at which years (t= 2, · · · ,11) to perform biopsies in each strategy and the

assignment of patients to strategies.

The benchmarks are the published guideline strategies, as shown in Table 1, including JH,

SF strategies, and the UT strategy, a well-known surveillance strategy in Canada. All guideline

strategies are one-size-fits-all strategies.

We solve multiple instances of model P̂ with S = {1, · · · , S} where the number of strategies, S,

varies from 1 to 52. We let Opt-S denote the optimal solution using S strategies. We choose the

UT strategy as the bottom line because it performs the worst on the JH and SF cohorts in all

the experiments. For each other strategy, we accounted for the gain in expected QALYs per 1,000

patients compared with the UT strategy.

Figure 3 presents the results for the guideline strategies (JH and SF) and the optimal strategies

for various choices of S. When considering a single strategy, both JH and SF strategies perform

better than the UT strategy, by approximately 63 QALYs per 1,000 patients, and the JH strategy

slightly outperforms the SF strategy. The optimal solution with a single strategy, Opt-1, signifi-

cantly improves upon the three guidelines, outperforming the JH strategy by 22 QALYs per 1,000

patients. This improvement is due to the adjustment of the biopsy testing periods compared with

the JH and SF strategies. Specifically, the Opt-1 strategy performs biopsies at years 1-3, 5-6, 8,

10-11 after diagnosis, which is adaptive to the patient’s age.
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Figure 3 The performance comparison between the guideline strategies and the optimal solutions where Opt-S

denotes the optimal solution with S strategies, and the label above each column denotes marginal

QALY gain relative to the column directly to its left (labels with ≤ 2 QALY gain were omitted)

Diagnosis age 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75

Discontinuation 
age

-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 76 76 76 76 76 76 76 77 77 77 77

JH cohort + + + + + + + + + ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

SF cohort + + + + + + + + + + + + + + + + + + + + + + ○ ○ ○ ○

Surveillance
plans

Strategy +: perform biopsies at years of 1-5, 7-8, 10-11 after diagnosis 

Strategy ○: perform biopsies at years of 1, 5, 8 after diagnosis

Figure 4 The optimal model-based solution with two strategies (our recommendation) for the active surveillance

of PCa (Example of implementation: a man with risk profile consistent with the JH cohort, diagnosed

at age 65 would have a surveillance biopsy at age 66, 70, 73, according to strategy o and then transition

to watchful waiting at age 76.)

The performance can be improved further if we allow for two or more strategies; however, benefits

diminish as S increases (Figure 3), while the complexity of implementation increases in S. Figure 4

illustrates the case of two strategies at the bottom of the figure; one strategy has a higher number

of biopsies than the other. The assignment of the high-intensity strategy is inclined towards the SF
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cohort and younger patients because the SF cohort is higher risk, and younger patients have a much

longer time over which progression could occur. Both strategies are static, and the model assigns

each patient type to the two strategies. Note that some elderly patients (diagnosed between 65

and 75 years of age) are recommended to discontinue active surveillance early due to the increased

death rate from all-other causes, which negates the benefits of treatment and surveillance. There

is no universally agreed upon the age at which patients should discontinue active surveillance.

de Carvalho et al. (2017) suggested varying discontinuation ages (from 65 to 82 years) for different

categories of patients, which depends on disease risk, the age at diagnosis, and biopsy frequency.

The only explicit recommendation by the American Society of Clinical Oncology (ASCO) endorsed

that “serial biopsy should not continue past the age of 80” (Chen et al. 2016). Our numerical

results show that patients are recommended to discontinue active surveillance at 76-77 years of

age, depending on their age at diagnosis, which is slightly earlier than the ASCO recommendation.

Thus, our results may help inform public policy decisions regarding when to terminate active

surveillance.

7.5. Sensitivity Analysis

We further conducted a series of one-way sensitivity analyses to validate the robustness of the

recommended solution to the parameter uncertainty. The selected data are allowed to vary within

their ranges, as reported in Table ??. We compare four solutions including the JH strategy, SF

strategy, Opt-2 solution (our recommendation), and a perfect information solution, which is the

optimal solution with two strategies solved with the updated parameters, thus providing an upper

bound of the total expected QALYs. Similar to the results above, we report the gain in expected

QALYs per 1,000 patients compared with the UT strategy in Figure ?? in §EC.1.11 in Online

Supplement. The results indicate the robustness of our claims of increasing QALY gains over

published guidelines to model parameter uncertainty.

8. Conclusion

This article addresses an active surveillance strategy optimization problem that arises in many

diseases, including PCa. The problem involves sequential decisions under uncertainty about latent

health states, which are often formulated as partially observable Markov decision processes

(POMDPs). However, POMDPs are often difficult to solve and become computationally intractable

when multiple patient types need to coordinate their decisions in active surveillance practice. We

present an alternative approach based on a two-stage stochastic nonlinear integer program, which

is more efficient in coordinating decisions among multiple patient types, generating a set of static

strategies, and assigning them to patients of different types. We show that this problem is NP-

complete, providing motivation for our analysis, which supports the relaxation of the stochastic
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nonlinear integer program. Moreover, we develop a customized logic-based Benders decomposition

method that can improve the quality of surveillance strategies.

We conduct a case study based on validated data published in medical journals, and the results

show that our model solution can significantly improve upon the published guideline strategies

used in practice. Finally, we recommend an easy-to-implement solution using two strategies and

provide sensitivity analyses to support the robustness of our claims. Based on our results, we briefly

summarize the following observations:

� Our recommended solution (Opt-2) consistently outperformed all guideline strategies, even

under parameter uncertainty, and it gained 67-141 QALYs per 1,000 patients compared with the

UT strategy. Considering that this solution is similarly easy to implement (static and suitable for all

types of patients), the Opt-2 solution could be a strong competitor to existing guideline strategies.

Compared with the existing strategies, theOpt-2 solution benefits from differentiating between

young and elderly patients with respective biopsy schedules of different intensities. Moreover, the

Opt-2 solution benefits from the optimizing the timing of biopsy in each strategy and the assignment

of patient types to strategies.

� The major sources of parameter uncertainty in performance are the annual metastasis rate

from untreated high-risk PCa, f , and the annual death rate from all-other causes, at. Specifically,

the value of surveillance strategy optimization is more significant for a larger f (i.e., surveillance

optimization is more valuable for more progressive PCa that metastasizes quickly if treatment is

missed) and smaller at (i.e., surveillance optimization is more valuable for younger and healthier

patients who are less likely to die from all-other causes).

� The performance of our recommended solution is already close to that of the perfect solution,

implying that the value of further considering the ambiguity in parameter estimation might be

limited while simultaneously increasing the complexity for physicians and patients.

Our study has some limitations that present opportunities for future research. First, we do

not consider the detection of PCa progression using PSA, digital rectal examination (DRE), and

magnetic resonance imaging (MRI). We choose to omit PSA and DRE from the model for several

reasons: (a) they have very poor accuracy in detecting PCa progression; and (b) PSA and DRE are

often used as dynamic triggers for off-schedule biopsies, whereas we focus on designing a predefined

schedule to provide patients with reasonable expectations in the future. We choose to omit MRI

because MRI-guided prostate biopsy is performed less frequently than is standard biopsy. It is

worthwhile to note that our model can directly apply for the MRI-guided prostate biopsy with

updated parameter estimation. Second, we do not consider the treatment decision for progressive

PCa because only radical prostatectomy data are readily available. However, it is worth noting that

our model parameters, rpkt, are sufficiently flexible to account for specific treatment for different
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types of patients and detection time. Therefore, the treatment decisions can be independently

optimized without any changes to the structure of our model. Third, we only considered parameter

estimates from the Johns Hopkins (JH) and the University of California, San Francisco (SF) cohorts

because of the ready availability of data for these studies; however, the patient distributions may

not be representative of the population distribution for those particular regions. Nevertheless, our

modeling framework can be applied to any population distribution that policymakers might define.

These limitations notwithstanding, our findings and the model and methods we propose lay an

important foundation for future studies of disease surveillance strategies.

Acknowledgments

We thank the Departmental Editor Max Shen, an anonymous associate editor, and two anonymous

referees for their constructive comments that helped improve the paper. This work was supported

by National Natural Science Foundation of China (No. 72001187, 71821002) and the Fundamental

Research Funds for the Central Universities.

References

Amato, Christopher, Frans Oliehoek. 2015. Scalable planning and learning for multiagent POMDPs. Pro-

ceedings of the AAAI Conference on Artificial Intelligence, vol. 29.

Ankerst, Donna Pauler, Ian M Thompson. 2006. Sensitivity and specificity of prostate-specific antigen for

prostate cancer detection with high rates of biopsy verification. Arch Ital Urol Androl 78(4) 125–129.

Arias, Elizabeth, Melonie Heron, Jiaquan Xu. 2016. United States Life Tables, 2012. National Vital Statistics

Reports 65(8) 1–68. URL https://www.cdc.gov/nchs/data/nvsr/nvsr65/nvsr65_08.pdf.

Ayer, Turgay, Oguzhan Alagoz, Natasha K. Stout. 2012. OR Forum-POMDP approach to personalize

mammography screening decisions. Operations Research 60(5) 1019–1034. doi:10.1287/opre.1110.1019.

URL http://pubsonline.informs.org/doi/abs/10.1287/opre.1110.1019.

Barnett, Christine L, Gregory B Auffenberg, Zian Cheng, Fan Yang, Jiachen Wang, John T Wei, David C

Miller, James E Montie, Mufaddal Mamawala, Brian T Denton. 2018. Optimizing active surveillance

strategies to balance the competing goals of early detection of grade progression and minimizing harm

from biopsies. Cancer 124(4) 698–705.

Benders, Jacques F. 1962. Partitioning procedures for solving mixed-variables programming problems.

Numerische Mathematik 4(1) 238–252.

Bertsimas, Dimitris, John Silberholz, Thomas Trikalinos. 2016. Optimal healthcare decision making under

multiple mathematical models: application in prostate cancer screening. Health Care Management Sci-

ence 1–14doi:10.1007/s10729-016-9381-3. URL http://dx.doi.org/10.1007/s10729-016-9381-3.



A
u
th
or

M
an
u
sc
ri
p
t

This article is protected by copyright. All rights reserved.

Zhang, Denton, and Morgan: Optimization of Active Surveillance Strategies
29

Bill-Axelson, Anna, Lars Holmberg, Hans Garmo, Kimmo Taari, Christer Busch, Stig Nordling, Michael
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