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A. Proof of main results

In this section, we give the proofs of our main results stated in Zhu, Wang and Samworth (2021),
hereafter referred to as the main text. Auxiliary lemmas, together with their proofs, are deferred to
Section B.

We define two linear maps D, F : R¥*?4 — R¥*d guch that for any A = (Ayj) € R4 we have
[D(A)]ij :== Aijlg—jy and F(A) := A —D(A). In other words, D(A) and F(A) correspond to the
diagonal and off-diagonal parts of A respectively. For j € [d], let e; € R? denote the standard basis
vector along the jth coordinate axis and let 14 denote the all-one vector in R¢. Moreover, for a,b > 0,
we write a < b if there exists a universal constant C' > 0 such that a < Cb, and, where a and b may
depend on an additional variable z, say, we write a <, b if there exists C' > 0, depending only on z,
such that a < Cb.
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PROOF (OF THEOREM 1). To simplify notation, we write Vi = in this proof. Since y; =

Viu; + z;, we have that

1 2
Iy illes < 11V acwill, + 1zillv, = illy, + [12:llp, < 2+ 1), (1)

Moreover, since max;e(q) [|y1)lly, < M 1/2 by Lemma 1, it follows from van der Vaart and Wellner
(1996, Lemma 2.2.2) that there exist a universal constant C' > 0 such thatf

HHYzHOOHwQ < {CM log d}l/z. (2)

Recall that ¥, = (¥i1, - - -, Jiq) denotes the ith row of Y. Define A; := F(y;y, ) and B, := D(y:y, ).
We have the following decomposition:
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1In van der Vaart and Wellner (1996), the ¥o-norm of a random variable is defined slightly differently as
| X, = inf{a : Ee(X/a)* < 2}. Tt can be shown (Vershynin, 2012, Lemma 5.5) that these two norms are
equivalent.
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We regard G as a perturbed version of (p?/p?)Ey. Applying Yu, Wang and Samworth (2015,
Theorem 2), we have

L(Vk,Vg)
OKV2R2 || 1 & 1 o (p p2>
2P N A-EA)+ =S (B, —EB)+ (2 - \p(z
i || R S L
< — | | —= A, —EA,; +||— B; — EB;) + - —1|D(X . 3
w2 M+ g 2B c-1)pey| ) ©

We will control the expectation of the three terms on the right-hand side of (3) separately. Define
pi = d 7t Z?Zl wij. For notational simplicity, we write P’ and E’ respectively for the probability
and expectation conditional on (py,...,p,). Also, let ﬁgm = E/(wjwiz) and j)f?’) = B (wijiwigwis) (if
d = 2, then f)f?’) := 0). For the first term, we apply a symmetrisation argument. Let {A}" ; denote
copies of {A;}? , that are independent of {u;,z;,w;}", let {€}" ; be independent Rademacher

random variables that are independent of {u;,z;,w;, A7}, and write E* for expectation conditional
on {u;,z;,w;}" ;. Then by Jensen’s inequality,

n n n

1 1
B o Yo a-Eay| =8| LS a-wan| <g| (A )
=E e (A; — AF < 2E €A, 4
= Z ( . e Z . (4)
Since A; =¥y, — D(¥:y, ), we have that
El{@?j”il”2 yzg | Yz} pz y’L] Zt#g yzt’ lfj = k’

E{(A)jk | yi} = B —
Setimy E0Tindi | yit = 5 iy Doigliky Vi T # ke

For two symmetric matrices A,B € R%? we write A < B if B — A is positive semidefinite.
Writing y; —+ := yi — yit€, we then have

E'(A? | yi) = )Zynyz Lyt B <Z YiYitY; —t)

t=1
~(3
OIS vy + 5 = 50 LD (Zy@ i)
t=1
Notice that
d

S vicyi = (viv! —viery! — yayie] +viee]) = (d—2)yiy] +D(yiy)).
= t=1

Therefore,

E'(A? | yi) = yil 2 {3 (d = 2)yiyd + ((d = )P = (d— 2)pP) D(yiyi )}

< dllyil 2% {6 yiy! +5PDlyiy]))}-

Now, observe that ||A;|lop < dpillyill%, so for ¢ > 2,

E' (A7) < E'{ (dp;|lyill%)?2E (A? | yi) } < 50 2E [yl 222 {5 vy + 5 Dlyivi)}].
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By the Cauchy—Schwarz inequality, we therefore have that

1/

C1q—2(3 . 2 1g—2~2
I (et AL oo < @557 [B(Iyill ™) sup B{GTya) '} 4+ a5 R B2
veSd-t

< a5 2 5P (g — )7 (CM log )T ™8R + 57 (20)7(CM log )}
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|
%{3260MRT2;3§3%1 logd + €*p\>d(C'M log d)?} (4eC Mpdlog d) '~
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|
5O Mdlog d{Rr5{" + b M log d} (4eCMpidlog )",

where C’ > 0 is a universal constant, the second inequality uses (1) and (2) and the penultimate
bound uses Stirling’s inequality.

Let p := 4eCMd(max; p;)logd and o? := C’Mn_ldlogdZ?zl{RTzfof:s) +]3§2)M10g d}. Then by
Tropp (2012, Theorem 6.2), we obtain that
—nt2/2>

P >t) <2d
< op )‘ eXp<02+pt

Consequently, for tg := 2on~1/2 logl/2 d + 4pn~'log d, we have
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Given (4), integrating the left-hand side of the above inequality over (p;)7_; yields
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< (Eo2)Y/210g'?2d  Eplogd
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op nl/2p? np

< \/ Md{Rr?p + Mlogd}log?d Mdlog? dlogn. -

np? np

where the first inequality uses Jensen’s inequality and the second inequality uses Lemma 4.
For the second sum on the right-hand side of (3), we have by van der Vaart and Wellner (1996,
Lemma 2.2.2) again that

Ji5m o
" =1
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1
L3k - wiy

max

op iy jeld|n i=1 Y1
log d ||~ Mlogd
S Z({Jzzl - ]Egzzl) S )
" =1 Y1 \/ﬁ

where the final inequality uses Lemma 2 and the fact that ||g% — E@?1||¢1 < H?A/%le + Eg% < 2M.
Now by the Cauchy—Schwarz inequality,

~ n 9 n 2 1/2
p p 1
E||l— B; - EB; <El= |E[ |- B; - EB;
21..2 1/2
< i+ 1 \M*log~d SMlogd’ (6)
p?  ndp? n pv/n

which is dominated by the bound in (5).
Finally, for the third term on the right-hand side of (3), we have by the Cauchy—Schwarz inequality

again that
p M
EH (p = 1>D(2y)
p

<
~ /ndp

, (7)
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which is also dominated by the bound in (5). Substituting (5), (6) and (7) into (3) establishes (5) in
the main text.

If we regard M and 7 as constants and if n > dlog? dlog? n/(Ap+logd), then the second term in
the curly bracket of the right-hand side of (5) in the main text is dominated up to a constant by the
first term, and claim (6) in the main text follows immediately.

PROOF (OF THEOREM 2). Without loss of generality, we may assume that d > 50 and that d
is even, and write d = 2h for some h € N. By the Gilbert—Varshamov lemma (see, e.g. Massart,
2007, Lemma 4.7), there exist W C {0,1}" such that log|W| > h/16 and for any distinct pair of
vectors w,w’ € W, their Hamming distance, denoted by dy(w,w’), is at least h/4. Let v € [0,7/2]
be a real number to be specified later. Recall also that the Kronecker product of two matrices
A = (A;j) € R4*4 and B = (B;;) € Rh1*% s defined as the block matrix

AHB te A1d2B
A®B:= : .. : c Rdld’lxdzdé.
AdllB AdldzB
To each w € W, we can associate a distribution Py € P, 4(A1, p) such that U is a random vector (nx1

random matrix) with independent N (0, A1) entries, Z is an n X d random matrix with independent
N(0,1) entries, and

v ] cos Y cos Y a1
Vl—Vl,w = \/E{W(g) (sin’y) +(1h*W)® <—sinfy>} €S .

Fixing distinct w,w' € W, we write v = (vj)jciq) = Viw and v/ = (v})je(q = Viw and let
Qw and Q- denote respectively the marginal distribution of (y;,w;) under Py and Pys. Define
S:={j €d] : wi; =1} and also set Vs := (vjljecs)) el € R? and v = (vilgjesy)jela) € RY. Then
the Kullback—Leibler divergencel from Py to Py is given by

dQw
KL(Py, Py) = KL(QY", QS) = nKL(Qw, Qw') = nEq,, {EQW <10g dg ‘ w1> }
= nEKL(Ng(0,Is+ Mvsvg), Na(0,I; + M vsvg)), (8)

where the final expectation is over the marginal distribution of S under P,. We partition S =
So U S14 U S1—, where Sy := {j € S : jis odd}, Si4 := {j € S: jis even and v; = }} and Si— :=
{j € S:jis even and v; # v}}. Since by construction we always have ||[vslls = [[¥Vg|l2, we can apply
Lemma 5 to obtain
M([vslls = (vs, v5)?)
KL(N(0,I;4+ M\Mvsve), N(0, Iy 4+ \vg(vg) 1)) = 2 MR-
( ( S) ( S( S') )) 2(1+A1HVS”%)

o 9 9 2
N Vs, Vs + Vi) (Vs, ve — Vi) M (Xjes,us, 205) (Cjes, 205

- 2max{1, \1||vs|3} B 2max{1l, A\ Zjesv?}
< min{Zh)\j(S’o x S1_|sin?ycos?y 4 |S14 x S1_|sin? ), M#SIHZ’Y}
Substituting the above bound into (8), we have
KL(Py, Py') < 2nX1pmin{1, A p} sin? 5. 9)
On the other hand, since dy(w,w’) > h/4, we also have
sin?Q(v,v)=1—-(v'v)2=1- <1 - 2dH(w";LV/) Sin27>2 > %SiDQ 7. (10)

IRecall that for two distributions P; and P, defined on the same measurable space (X,.A) and such that
P, is absolutely continuous with respect to Ps, the Kullback-Leibler divergence from P, to P; is given by
KL(Py, Pp) := [ log 45 dP;.
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By (9), (10) and Fano’s inequality (Yu, 1997, Lemma 3),

inf sup EpL(v,v) > inf max Ep, L(V, V)
V. PeP,.a,1(A1,D) v wew
1 . log 2 + 2nA1pmin{1, A\;p} sin? v
> ——=siny| 1 — .
2v2 log W]
We now choose v € [0,7/2] such that sin?~y = min{%,l}. Since d > 50, we obtain

log |W| > d/32 > 2log 2. Therefore,

~ 1 . . 1 d 1, A 1
inf sup EpL(v,v) > sin~y > mm{ max( 5 1p)’ },
v Pepn,d,l()\lyp) 8 2 200A]_ np 8\/§
as desired.
PROOF (OF PROPOSITION 1). For notational simplicity, we write Vi = {7&?) and \AIS,K =

(VK)S for any S C [d], and let W € OF*XK be the solution to the Procrustes problem for Vg
and R, so that W = argmingcgrxx |[Vk — RO|r and |[Vk — RW|a,0o = T(Vk,R) (see the dis-
cussion around (7) in the main text). For i € Z, let EZ-T € RX denote the ith row of L. For any i € Z,
we have y; 7. = y; 7, and
YVige —Yige = Vaex (V5 kV7.6) 'V kYig — Yige

=V xk(V5 kV.x) 'V kREWWITE — Ry TE;

= {\/J%K({/}ivK{/.j“K)fl{f}“K(R%W — i\fﬂ,K)WilI‘fz‘ + (vjic,K — RJI_CW)W*I‘EZ-.
Thus
w0 € VAV e k2500 [REW = Vg, kll2s00lITill2 + |V g2 10 = Rize W 200 | T4l |2

< A[TL|2(1 + 0:Vd|| V|20 )

1/2
<an@u(t ) (/K + aVa)

1Yi,7¢ — ¥i,ze

!/

C
< mAal(F)pﬁK =:m,

say, where C’ > 0 depends only on o, and ¢;. Note that the inequality above holds for all 7 € Z. Writing
E := Y — Y for convenience, we have found that ||E||, < m. Let L, € Q"*(—K) R, € Q¥*(4=K) pe
the orthogonal complements of L € O"*X and R € Q%X respectively, so that (L,L;) € Q™" and
(R,R) € 0%™? We wish to apply Cai and Zhang (2018a, Theorem 1). To this end, note that

Ku?m||Q°
[LTER|op = sup (Ls)TE(RE) < Ll sucl Rllp ool B < 21
steSK-1 vnd
Hence, writing o := o (I' + LTER), we have by Weyl’s inequality that
Ku?m|Q° Ku?m| Q€
pemy_ KEPIE  Kimee]

Vnd Vnd

Now, writing [ := HLI\?RlHop = |L]ER|lop, we have
B < [Ellop < [[El[p < m/[|€2°1.
In addition, by Cauchy—Schwarz and Jensen’s inequality,
IL"Ellop = sup (Ls) Bt < Ll sup [By
K—-1 te K-1

seSE~
teSi!

1 — c
< u(En)' 223 T myfllwsll < pm(K[199)1)".
=1
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Similarly,
IERlop < pm (K |[Q°[|1)"/>.
. . ciox(T)
Hence there exists ¢; > 0, depending only on o, such that whenever A < Ko pioy (D)’ we have
2 2 : T2 2 U%((I‘)
a” — 3% —min(|L"E[5,, [ER|5,) > 5 and o, <20k(T).

Now let Y = LTRT be an SVD of Y. We can now apply Cai and Zhang (2018a, Theorem 1) to
deduce that for such ¢,

o | LTE]lop + B ER .o, Smp(K )12
sinO(R, R)||op < : <
Ismn &R Rllor < S50 im(LTEIZ,, [ERE,) o5 (D)
1 73/2 3 el N\ 1/2
_ SR (I9°0\ 2,
UK(F) n

say. Similarly,
| ER|lop + AL Ellop

— f? — min(|[LTE[3,, [ER/3,)

op’

| sin O(L, L) [lop < = < KA.

We are now in a position to show contraction in terms of two-to-infinity norm. By Cape, Tang and
Priebe (2018, Theorem 3.7),

N 2IR.R]ETLL |ls5y0c  2|RIR]E'L L] lo5e0, . . =
T(R,R) < sin©®(L,L
( ) UK(F) O'K(F) H ( )”Op
+[|sin O(R,R) 2, IR |20 = T1 + T + T, (11)

say. Note that

HRLRIHoo—wo < HIdHoo—>oo + HRRTHoo—wo =1+ sup HRRTVHOO

IVl <1
<1+ sup |Rl2seclRTv]2 <14+ VEp
[vll2<vd
Hence,
o< 20t VEpR)|[E'LL 250 <20+ VEpR)|ETL|250
1> >~
ok (T) ok (T)
<20+ VEp)pVKm| Q151 _ K?utor (T)]|2°] 1514
- \/HO'K(I‘) ~ naK(I‘) ’
Moreover,
7 < 20 VER BT soond _ 2004+ VERm]| Q75 54
- ok (T) - ok (T)
1/2
_ K230y (I)||€2¢y/3 5 A
~ Vvnok(T)
Finally,
K\ /2
Ts < pk?A? <d> .
Write 12
_ Ko (D)),

Vnog(T)
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for simplicity, so that x <,. p3(d/K)Y?n. Given that T( (out) ,Vg) = T(fi, R), substituting the
bounds for 17, T, T3 into (11) yields that

c 1/2 1/2 1/2
< (out) ||Q H1—>1 Gd 2A 7 i 2A LA
T(Vik ", Vk) S {u n(n t e At )

F)M4 d\1/? 2ok (T)
<pd W o (D) TALN < or(T) |
=1 {K201(I‘)+ FAK ~ K25,(T)

r

as desired.

PRrROOF (OF THEOREM 3). We prove this result by induction on ¢. The case t = 0 is true by
definition of A, so suppose that the conclusion holds for some ¢ € {0} U [niter — 1]. We make the
following two claims:

(a) Tt —
(b) The error is further contracted by refinement, i.e. T( vty , Vi) < p’T(\Afﬁ?, V).

To prove claim (a), similarly to the proof of Proposition 1, let W € Qf*X be the solution to the

Procrustes problem for \A/'g? and V. Notice that for each i € [n], by Weyl’s inequality and the

inductive hypothesis,
\JK((‘A’%))%) — ok (VK)7)| = o (V) 2) — ok (Vi) 7, W)
< H {/(t) j. — (VK jWH
< |j‘1/2T( VK) < |j|1/2 tA
Now, for i € Z,
ok (Vi) 7) 2 ok ((V)z) — ok (Vi) z) — ok (Vi) 2)
> (o7 4+ e — VAA) (| il /d) 2.
On the other hand, if i € Z¢ and ||w;|[1 > K, then

ox (V7)) <ok (Vr)z) + ok (Vi) 7) — ok (Vi)
< (07" — e+ VAA) (7| /d) 2.

Hence, if we choose ¢; < €, then VdA < e, so for i € Z,

() > (57)

moreover, for ¢ € Z€,
(1) “_7Z| 1/2
((VK) ) <da*) ’

Claim (a) follows. As for claim (b), note that V(Hl) = refine(K, \7&?, Qzrw,(Ya)zw). Taking
c1,C > 0 from Proposition 1, and reducing c; if necessary so that ¢; < ¢, we may apply this proposition
to deduce that whenever

; vt caox(l) |
() TV Vi) < el

N CK2pto (D)[|Q% |11
(i) p:= o (D)|Z] <L
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we have T(V%H), Vi) < pT(V K ,V k). But the conditions (i) and (ii) are ensured by the inductive
hypothesis and our assumptions, so the conclusion follows.

It is convenient to prove Proposition 2 before Theorem 4.

PROOF (OF PROPOSITION 2). In this proof, we use the shorthand Dy, := diag(u) for v € R?. We
represent G under the orthonormal basis (V, V_g) as follows:

- T T T

VI.GVx VI GV g J\ Vg
Define B
VIGVk 0 \2
G :_<vK,v_K( K 0 )( K )
) 0 VI, GV g \ar

In the sequel, we regard G as a corrupted version of G* with the off-diagonal blocks VIT(GV_ x and
VIKGVK as perturbations. We have

IVEKGV_kr = IVK(G = By)V_i|r < [[VK(G ~EG)|r

We control the right-hand side through a concentration inequality, and for k € [K] let vj denote the
kth column of V. For any j € [d] and k € [K],

vi (G —E%G)e ka Viyi o W —EL(3:5] o W)le;
fZ{yz D, WD, y; — E?(3, D,, WD, ¥;) }
fZ{gWNTD W, — E (5,5 Dv,W;) }, (12)

where ij denotes the jth column of W.
Note that
T T
V|| ;
IV Viully, + v zilly, <2

lyilly; < sup
ves™t  NTVES Vv + 1

Thus for any vector a € R?, we have by Lemma 1 that
1/2

i (@ yi) g, < 20yijlls 2" yilly, < 47(Ma'Sya)

For i € [n], let a; := wijVVj o vi ow;. Now for any q > 2,

~ - q
En‘yij(W;kayi)‘q = En\yijajyi\q < (4q7\/Ma;.'—Eyai>

16¢772 12K MR — -2
< W'y (472 KMRIW, [3/0) " 37 Whwaws
t=1

- d

- 8e2q! 2>’ KM R
- d

d
— q—2 —_—
<4e7u\/KMR||Wj||%/d> S Wiwiws,
t=1

where the penultimate inequality uses the fact that ||a;||3 < K ,U,QHWJH% /d, and the last inequality is
due to Stirling’s approximation.
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Hence,
1 =0~ o a8 QTP K MR — -2 L I W2 wiw;
5 2 B W] Dy 3l < ; (4em\/KMRHWng/d) ) P iainii
=1 t=1 i=1
8e?q!T? i’ KMR — —2
- S (demyu [ MRIW,3/d) W .

Thus by (12) and Bernstein’s inequality (Boucheron, Lugosi and Massart, 2013, Theorem 2.10), we
have that for any & > 0,

1/2 AT 1/2 A7

n n

By a union bound over (j, k) € [d] x [K], for any £ > 1,

MR\'2(€V2|W|*log"?d  ¢|W|rlogd
d nl/2 * n

< 2Kd~ED, (14)

PQ{||VIT<C~}V_K|F > 8eKw<

Now we provide a condition under which )\min(V}r(CN-}VK) > ||IVEI KGV, K |lop, which ensures that
Vi is the top K eigenspace of G*. Note that

Amin(VEGVE) > A +1— |[VE(G = Zy)Vilop > Ak + 1 — |G = Sy lop
and
HVIKGV—KHOP <1+ HG - z)y”op'
This implies that if A > 4[|G — 3y |lop, then
Amin(VEGVE) — [VIGV _kllop > Ak /2. (15)

In the following, we derive an exponential tail bound for G — yllop = G — EQGHOP. Let A; =

yiy; o W and note that IlA; ||Op < ||y1|]2 ||W||Op Recalling the definition of the matrix absolute
value§, for any v = (vq,...,v4)| € S ! and any integer ¢ > 2, we have

E? (v A7) <EX([|A]2 v AR) <EX{(IWloplly:[12)" v (i) o W)*v}
= |W25*E%{|ly;| 27 ?v Dy, WDy, Dy, WDy, v}
= |W|% EQ{||yZH2q 2 tr(D2 WDy, vv' Dy, W)}
= ||Wr\g;2sz-jE“{yfj||yiuzéq—2> (W, Dy3:)°}.
j=1
Now, for each j € [d], and q > 2,
E{y2 lyi| 2972 (W] Dy§,)?} = E2 [y ||y |2 {(W; 0 v owy) Tyi}?]
< (Egf) " H{E(Ilyil302) } 'SR [W; 0 v 0 w3
d
< MR7T*{8(q — 2)CM log d}?2 Z(Utwtjwit)Qa
t=1

§This is defined formally just before Lemma 3.



10 Ziwei Zhu, Tengyao Wang and Richard J. Samworth

where the last inequality is due to the fact that H Hyi||oon2 < (CMlogd)'/? by (2). Therefore,

n d n
STER(vIAY) € MRr{8(q — 2)OM||Woplogd} > Y~ N wijwiw? W
i=1 Jit=1 =1

—~ d —~
= nMR7*{8(q — 2)CM|W|oplogd} > 3~ v2Wy,
jit=1

—~ = -2
< qInMR7T2|[W T |[1 (8¢CM||W ||op log d)* ™,
where HWTH]__)]_ = sup”qu:lHVA\/fTqu = ||WH1_>1. Since the above inequality holds for all v € S,
we have
n
> _ET(Adl)
i=1

By a version of the Matrix Bernstein inequality for non-central absolute moments, which we give as
Lemma 3, there exists a universal constant C; > 0 such that for any & > 1,

~ ~ MR72|W||i51€logd\'? | M||W|lgpé log® d
PQ{HG_EQGHOP > C1<< Rre[Wl151€ 0gd> + [W{lop€ log >}§ Ad—E1) (16)

—~ —~ -2
< gInMRT?[W|121 (8¢C M ||W ||op log d) ™~
op

n n

Now let

~ ~ A
A= P VEGV) = VTGV il > 5},

From (15) and (16), we deduce that for any £ > 1, if

211Nk 1/2 W 2
Ag > 401{ (MRT HWH1_>1§10gd> 4 M||W{|op€ log d}’

- - (17)

then P?(A°) < IP’Q{Hé = yllop = Ax/4} < 4d=€-1) . The desired result follows immediately by
combining this with (14) and applying Yu, Wang and Samworth (2015, Theorem 2).

PROOF (OF THEOREM 4). Let E := G — E2G = G — ¥,. By Cape, Tang and Priebe (2018,
Theorem 3.7), when Ag > 2||E||op, we have that
T(Vk, Vi) <200 | Vog VILEVEV oo
+ 20NV k VILEV Vg2 seol sin®O(Vi, V) lop
+ 20NV VIEy Vo Ve llaooll sin OV, Vi) llop
+sinO(Vie, Vi) 2| Vic | 22500
=T +Tr+T5+ T}
Note that if A\x satisfies (17) for some & > 1, then P(|E|lop > Ar/4) < 4d~E~D. In fact, since
[Wllop < [[W||r, there exists cprr > 0 such that (10) in the main text implies (17), which, together

with (16) ensures that P2(||E|op > A\r/2) < 4d— 1.
To bound 17, we have

IV_k VI LEVEV 2500 < IVEkV klloosoo IEVEV 2500

< (14 Kp)max sup ejTEVKu, (18)
J€ld] uesx-1

where the second inequality is due to the fact that

HV—KV——FKHOO—WO < HIdHoo—>oo + HVKV;—{”oo—mo <1+ HVKHOO—><>OHVI—|;”OO—>OO

<1 K2V aoe - 2V llase < 14 K
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We use a covering argument to bound the supremum term. Let N (1/2) be a 1/2-net of the Euclidean
sphere SK~1 i.e., for any u € SK~1, there exists a point 7(u) € N (1/2) such that |[u—7(u)|]2 < 1/2.
Note that for any u € SK-1,

TEV v,

1
e;rEVKu = ejTEVKW(u) + ejTEVK(u —7(u)) < max ejTEVKv + 5 SuD e;

veNk(1/2) veSK-1
which further implies that

sup e; TEViku<2 max e EVgu 19
sk K weNw(1/2) 2N (19)

We then argue similarly as in (13), with V gu taking the role of vy, there (since ||V gul|oo < u(K/d)'/?)
to obtain that for any £ > 0 and u € Nx(1/2),

1/2 /+1/2 1/2 o
IP’Q{|e;'rEVKu\ > 25/267u<K]§[R) <£ ”W I + (SHWJHQ)} <ef,

n1/2 n -

By Vershynin (2012, Lemma 5.2), [Nk (1/2)| < 5%. Hence, by (18), (19) and a union bound, we have
for any £ > log5 that

1/2 Sonl/2 s
pafp o 2Peru(t Kp) (KMR\'Y? (€2 [W (oo | &IW oo\ _ o ioss ¢
T Ak d nl/2 n = '
Next we bound T5. Note that
HV—KV——FKEV—KVIK||2—>OO < ”V—KV——FKHOO—mOHEH?—mo < (1 + KM)||E||2—>OO-

For j, k € [d], let Zjj, := {i : wijwir = 1} and njy, := |Z;z| = n/Wjy. Then
1 n
Ejk = E Zgzggzkwjk - [E G = Z YiiYik — ]
=1 ZEIJk

By applying both parts of Lemma 1, for any ¢ € [n] and j,k € [d], we have that |ly;jyixlly, <
2||Yij o || Yik ||y < 2M. Applying Bernstein’s inequality (Boucheron, Lugosi and Massart, 2013, The-
orem 2.10) yields that for any & > 0,

92 1/2
Pﬂ{\Ejk! > 26M<< 5WJ’f> 5WJ’“>} <2e7¢.
n n

Therefore, a union bound with (7, k) € [d] x [d] yields that

4/2eM(1 + K 26 [ Wllsossoo N /2 €W ll200 -
K n n

Now we bound 7T5. We have that

. QHV—KVIKHQ—WO
= e

2{1 + (K /d)'/?}
AK

5inO(Vic, Vic)|lop < 5in O(Vi, Vic)|lop-

Finally, Ty satisfies
pkK/?
Ty < 7z
Since || sin O(V, Vi)lop < min{L(VK, Vi), 1}, combining our bounds for {7 };*:1 yields that there
exists Cprr > 0 such that for any £ > 2,

H sin @(VK,VK) 2

5p-

_ KuC KR/ (&2 \W| L €W
Q KpCm o7oe 2200
P {T(VK,VK) > Y { (VK,VKH‘M( d ) }( nl/2 + n >

K1/2 4 — L e
+M<d1/2 v >L(VK’VK)}§‘Z€ 285 4 2d2e ¢ + 4d (D),

11
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It therefore follows from Proposition 2 in the main text, which applies because condition (10) in the
main text for a suitable ¢/, implies (11) in the main text, together with the facts that |[W]|; <

AW |oosoo and |[W||p < d/2|W||z—00, that the first conclusion of the theorem holds. The second
conclusion then follows immediately.

PROOF (OF PROPOSITION 3). As an abbreviation, we write Vg := V%n)

B0 .= (V]  V7.x)'V] Bz € RE*K Note that

. For any i € [n], define

02d|V 7 1 Ballop _ o2d(IV 7 xBallop + I1E7I3,)
| Ti] - | Til

K(log K)/2||=
< ol(k1+R2)|B2, +af/<a1u ( gd132 1Zllop

1B lop <

=: M.

Now define Y :=Y — (ﬁ(l)OTul, .. ,ﬁ(”)OTun)TOTV]T{, and let E:=Y — Y. For any i € [n], we
have
eig. = (¥i —¥:)7. = V7,kOBYO ;.

Now, for i € [n], define 1; := (Ix — OB@WOT)u,;. Then

eige = (Vi —¥i)ge = Varx (V5 kV7.6) "'V kyig — Ve
=V x(Vy kV7.x) 'V, x(Vix —E7)0 " w; — Ve 4
= (Vaex — Ve xkBY = Ve O + Ve xOBD)O Ty,
=Es:(Ix —BY)0 "w; = E,.0"q,

Now, by Weyl’s inequality, we have that

By Theorem 1.4 of Wang (2016), there exists O € OK*K guch that

ox(Y) = ox(Y) - |[BPO uy,...,B™MO u,)||, = ok (Y) - M||Y]p.
< : {Z(Ilu BIBD 2, + W13/ Z
= 1 7 — Ty
ox(Y) — M|[Y|g ? 2

1/2
2
)
i€[n]

< oy L S huliBe uoP)m (Z|uz| =g 12

i€[n] i€[n]
8{M + iy 2 (14 M)||Eop
- c— M )

VPt — VOl

)}

)1/2 c ( d )1/2}7 we have M < C/2 Thus

When H‘—'HOP < mm{( Y dpkqi02 \ Klog K

0'2(l€1+1€2)

IV = ViOllop < VR — VOl

16||= low KO\ 172
S‘CHOP{GE(M+ﬁ2)HEH°p+U»2<"51HK<Ogd > N 1/2<1+§>}7

as required.

PROOF (OF COROLLARY 1). Under the p-homogeneous MCAR missingness mechanism, we have
for any i € [n] that

[

T — T —_1 — —_—T1 = _—
E(V‘Z’K.:ji) =pVigE =—(p/2)OE'E and IE(.:.\Z.:.Z.) = pE
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For j € [d], let v;r € RX and SJ-T € RE denote the jth rows of Vi and Z respectively. Then

V}“KEJZ, = 2?21 wijng;r, and for ¢ = 2,3,...,
2 2 1/2 a—2
peK|&llz [ (K =
E((wijv;€; €v])"?) < pllv;ll3)1€; 15Tk < — = n =) Bl i

Similarly,

2 2 1/2 q—2
oy PEKIEIB S (N2
E((wigv]vig])"") = =2 n( ) 1Bl Ik

Applying Corollary 3 therefore gives that for every ¢ > 0 and i € [n],

—t2/32
P(HV;KEZ + gOETE / )

>t) <8Kexp ( — =
op ) pAK| B /d + p(K/d) /2| El|opt /3

Thus, for any 6 € (0, 1], with probability at least 1 — 6/3, we have

pK log(24K/9)
V3. kB llop < ||~Hop+22\|~||op 7 : (20)
In addition, :.j_. = Z] 1"‘)70535]’ and ]E((wUSJST)q) =< p||£j||§qIK for ¢ = 2,3,.... Applying
Lemma 3 yields that for all ¢ > 0 and i € [n],
—2/32
p(|EhE0 —pEE],, = 1) < 4K exp < ! )
P2 5ll& 113 + 1= 113,/3

—12/32
§4Kexp< _2_2/ =3 )
pH:‘HFH:‘Hop + ||:‘”opt/3

Thus, for any § € (0, 1], with probability at least 1 — §/3, we have
_ 12 _
1Bz, < 22K |E]I3, log(12K/9). (21)
By the multiplicative Chernoff bound, when dp > 8log(3/d), we have
P(|Ji| < dp/2) < e~%/8 < §/3. (22)

On the other hand, we have by the usual Bernstein’s inequality that

> (L= pIElE +1) < o 2 )
—D)|IElF < d =
P =) T 161+ 213 t/3

P(|Z2 ¢ I3

—t2/2
<o i o/CZ +IEI3 t/<303>>’

where the last step uses the fact that |E]|200 < ||Elop/Cx. Thus, for any § € (0, 1], with probability
at least 1 — 0/3, we have that

oo EI2, 10g(3/0)

= 2 =
< K(1-p)IEls, + 5 {K(1 -p) log(3/6)}'/?|1EI[3, +

7 =02
< {2}((1 —p)+ 302 log(3/5)}ll=llop

Combining (20), (21) and (22) with a union bound, we see that in Proposition 3, if we take

K1 %K|]._.||Oplog(24nK/6) Ky = 44Kl/?||u|y log(12nK/5)
p
7log(3n/4)

=2K(1—
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then the conditions (12) of that proposition hold simultaneously with probability at least 1 — 4.
Moreover, since ||E[lop < p/ (44K log(24nK/§)), we have k3 < k1 < 1, and hence condition (13) of
Proposition 3 is also satisfied. Therefore, by Proposition 3, we have

~ N 16 _ 80 o~ N
IVE"™ = ViOllop < = (3r11K02 + 265 [Bllop < — 5 *[VE” ~ VicOllop,
— 1—p)t/2 :
where we used the fact that ||Z||op < 22\/5#[(2520;1)%(24”[(/5) in the final bound.

B. Auxiliary lemmas used in Section A

LEMMA 1. Let X and Y be two sub-Gaussian random variables. Then we have HXH%,}2 < 1X2 1y,
and | XY [y, < 2[[ X[y, [[Y [l -

PRrROOF. For any x > 0, let [z] :=inf{z € N: z > z}. According to the definitions of the 1;-norm
and o-norm, we have that

p\2/p 2p/21\ \ To/37
E(]XP) < sup {E(X )}

<1 X2y »
sup » < [ Xy,

X|%2. =sup
X%, = su

where the penultimate inequality is due to Jensen’s inequality and the last inequality is due to the
fact that p > [p/2]. For the second inequality,

(E|XY[P)/P (E| X |27)1/2p) (E|Y |2P)Y/ (2P)
—— < 2sup
p pEN \/% \/%
<y (E|X|2P)1/(2p) (E|Y[29)1/(29)
su su
ST V3 gen V2

[ XYy, = sup
peN

< 20Xy, Y Ml

as required.

LEMMA 2. If X1,..., Xy are independent centred random variables with max;ecp, || Xilly, < oo,
then there exists a universal constant C' > 0 such that

n n 1/2
x| < c(Z uxinil) |
i=1 Y1 =1

PROOF. Write K; := || X;||y, and K := (K7,...,K,)". From Vershynin (2012, Lemma 5.15), there
exist universal constants ¢1,Cy > 0 such that for |¢| < ¢1/[|K]||oo,

Eexp{tZXi} = [[Eexp{tX:} < exp{C1#*|K||5}.
i—1

i=1

Setting ¢t = min{Cl_l/2HKH2_1,clHKHgol} in the above expression, the right-hand side is bounded
above by e. The desired result follows from the fact that (5.15) and (5.16) in Vershynin (2012) are
two definitions that yield equivalent 1-norms.

The following lemma provides a variant of the existing matrix Bernstein inequality (Tropp, 2012,
Theorem 6.2). The primary difference is that we impose non-central absolute moment inequalities,
as opposed to central moment inequalities. We believe that this inequality may be of independent
interest, with applications beyond the scope of this paper. To state the result, for any symmetric
matrix A € R? with eigendecomposition Qdiag(py, ..., uqs)Q', where Q € 0%, we define its
matriz absolute value as |A| := Qdiag(|p1], ..., |ua))Q".
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LEMMA 3 (A MATRIX BERNSTEIN INEQUALITY WITH NON-CENTRAL MOMENT CONDITIONS). Let
{Xi}icn) be independent symmetric d x d random matrices. Assume that

|
E(‘Xl’q) = %Rq_QAzZ forq: 273747-“

for some R > 0 and deterministic d-dimensional symmetric matrices {A;}ic|n)- Define the variance

parameter
n
o= E A?
i=1

op
Then for each t > 0,

n

P[Amax{Z(Xi — EXi)} > t] < 4dexp<;2ti/?]’§t>.

i=1

Proor. Let 5(1,...,)2”,61, ..., €, be independent random matrices and variables, independent
of (Xi,...,X,), satisfying X; < X; and ¢ ~ U({—1,1}) for i € [n]. Write S, := S" (X, —
EX;) and S, = Zle(f(z — EX;). Given Xy,...,X,, let v, = vi(Xy,...,X,) be a leading unit-
length eigenvector of S,,. Let vi,..., Vg4 denote orthonormal eigenvectors of X; with corresponding
eigenvalues fiy, ..., fig; fix v.€ 8471, and let w; := (\7ij)2 for j € [d]. Since E?:l wj = 1, we have by
Jensen’s inequality that for ¢ € {2,3,...},

d
Z wifij

j=1

_ g 4 _
v X v|? = < ij‘lﬁjlq = v |Xy[%v.

j=1

We deduce that E{(VTXiV)i} < E{]v—rf(ivﬂ} < %!Rq_QVTA?V for ¢ € [n], so by Bernstein’s in-
equality (Boucheron, Lugosi and Massart, 2013, Corollary 2.11),

P(v,S,v >t/2 | X X,) < ex ~t*/8 <ex —#*/8
x OnVx 1y--5An) S €XP VIZ?:1AZZV*+RZL/ > exp o2+ Rt)

We may assume that the right-hand side of the above inequality is at most 1/2, since otherwise the
lemma is trivially true. Therefore,

P{Amax(Sn) >t} =P(v] S,vi > 1) < 2B{P(v]S,v. <t/2| Xy,..., X)L y7s,v. 51 }
= 2]P’(v;r§nv* <t/2 and v S, v, > t) < 2P(v, (Sn — Sp)vy > t/2)

< 2P [Amax{i (X — )Mci)} > t/2] < 4IP{)\maX <i qu) > t/4}, (23)

i=1 i=1
where we have used the fact that €;(X; — )N(Z) 2 X; — )N(Z for all 7 in the penultimate inequality.

Since E(e;X;) = 0 and E{(&;X;)?} =< E(|X;|?) =< %!Rq_zAZZ for ¢ € {2,3,...}, applying the matrix
Bernstein inequality (Tropp, 2012, Theorem 6.2) to the sequence {€;X;};c[,) yields

= —12/32
P{Amax (Z eiXi> > t/4} < dexp(a2 —}—Rt)'
i=1

We attain the conclusion by combining the above inequality with (23).

LEMMA 4. Let Xy,...,X,, be independent Bin(d,p) random variables and let p; := X;/d. When
dp>1 and n > 2, we have
Emax p; < 10plogn.

i€[n]
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PROOF. By Bernstein’s inequality (van der Vaart and Wellner, 1996, Lemma 2.2.9) and a union
bound,

]P’(maxA~> +t><nex <—dt2>
wem =P SO\ T e3) )

Setting to := 2+/pd—1logn + 3%1 log n, we have

o0

. 2 / 4

EmaXp¢=p+to+/ n{e " /(4p)+e_3dt/4}dt§p+to+ lp%-f < 10plogn,
ic[n] to d 3d

where we have used logn > log2 and 1/d < p in the final inequality.

The following lemma controls the Kullback—Leibler divergence between two centred multivariate
normal distributions.

LEMMA 5. Suppose that 8,1 € R? and |92 = ||B|l2. Let 1 :=I;+ BB and Ty := Iy +nn'.

e Il - (" )"
Nz —(n' B
KL(Ng(0,%1), Ng(0,%9)) = ———————.
( ) 2(1+[Inl13)
PRrROOF. Since ||n|l2 = [|B]|2, the matrices ¥; and 32 share the same set of eigenvalues. Hence

det X1 = det 35 and we have

1 1
KL(N4(0, 1), Ng(0,%5)) = §{tr(25121) —d} = §{tr((1d +nn" ) I, +688")) —d}.
Now, by the Sherman—Morrison formula,

o'
1+ ]2

(5~ i) oo+ o90) -

(nmﬁ— Inl WTﬂ)g);llnH%—(nTB)z
o131+ nl3 21+ [n]2)

Ig+nn') ' =14
and thus we have

KL (Na(0, 1), Na(0,%5)) =

as required.

Theorem 4 and Proposition 2 in the main text exhibit bounds on 7(Vg, Vi) and L(Vg, Vi)
given a deterministic observation scheme. The following lemma derives probabilistic bounds for various
norms of W.

LEMMA 6. Let Q = (w;;) € {0,1}"*¢ have independent and identically distributed rows, and write
pik = E(wijwix) for j,k € [d]. Define W = (W) € [0,00]7 by Wy, == 1/pjk, and let W =
ik)ikela be defined as in (9). en there exists an event of probability at least 1 — ) . e~ ""Pik
Wik)j ke e defined Then th f probabil least 1= 3y ciq € "/
on which each of the following inequalities holds:

(i) H‘EHoo—mo < 2[Wl|oomoo = 2max;eq) Zke[d] 1/pjk;
(i) (Wil <2[Willy =237, rerq 1/pjks

S 1/2
(i) [Wlle < 21 Wle = 2(5 e 1/23)

. e 1/2
() [[Wll2-s00 < 2 Wilasoo = 2maxjeqa (Lper 1/p%)

PROOF. Define the event

= W Wi < 2%,
A { e W /Wy <2}
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For j,k € [d], write Pji :== n~! > " | wjjwix. Then by a union bound and the multiplicative form of
Bernstein’s inequality (McDiarmid, 1998, Theorem 2.3(c)), we have

d d d d
ZZP Djk <pjk/2 ZZ@ np;r/8

j=1 k=1 j=1 k=1

The desired bounds on the event A then follow from the definitions of the norms.

References

Boucheron, S., Lugosi, G. and Massart, P. (2013) Concentration Inequalities: A Nonasymptotic Theory
of Independence. Oxford University Press, Oxford.

Cai, T. T. and Zhang, A. (2018a) Rate-optimal perturbation bounds for singular subspaces with
applications to high-dimensional statistics. Ann. Statist., 46, 60-89.

Cape, J., Tang, M. and Priebe, C. E. (2018) The two-to-infinity norm and singular subspace geometry
with applications to high-dimensional statistics. Ann. Statist., to appear.

Massart, P. (2007) Concentration Inequalities and Model Selection, Springer, Berlin.

McDiarmid, C. (1998) Concentration. In Probabilistic Methods for Algorithmic Discrete Mathematics,
pp- 195-248, Springer.

Tropp, J. A. (2012) User-friendly tail bounds for sums of random matrices. Found. Comput. Math.,
12, 389-434.

van der Vaart, A. W. and Wellner, J. A. (1996) Weak Convergence and Empirical Processes. Springer,
New York.

Vershynin, R. (2012) Introduction to the non-asymptotic analysis of random matrices. In Y. Eldar
and G. Kutyniok (Eds.) Compressed Sensing, Theory and Applications. Cambridge University Press,
Cambridge. 210-26.

Yu, B. (1997) Assouad, Fano and Le Cam. In Festschrift for Lucien Le Cam: Research Papers in
Probability and Statistics, Pollard, D., Torgersen, E. and Yang G. L. (Eds.), 423-435. Springer, New
York.

Yu, Y., Wang, T. and Samworth, R. J. (2015) A useful variant of the Davis—Kahan theorem for
statisticians. Biometrika, 102, 315-323.

Zhu, Z., Wang, T. and Samworth, R. J. (2021) High-dimensional principal component analysis with
heterogeneous missingness. Submitted.

Wang, T. (2016) Spectral methods and computational trade-offs in high-dimensional statistical infer-
ence. Ph.D. thesis, University of Cambridge.



	Proof of main results
	Auxiliary lemmas used in Section A

