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A Michigan Genomics Initiative dataset at a glance

In the main paper, we provide an overview of The Michigan Genomics Initiative (MGI) dataset
and provide detailed analyses. Here, we include some additional information referred to in the
main text. Supp. Figure A.1 provides a visual schematic of the data generation mechanisms
in MGI along with the conceptual difference between source and target populations. Supp.
Table A.1 provides comparisons between MGI patients, people included in the National Health
and Nutrition Examination Survey (NHANES) in 2017-2018, and the US adult population.
Supp. Figure A.2 shows the rates of observed disease by age in these three groups of people,
and Supp. Table A.2 provides sources for external summary information used for these
comparisons.

In this paper, we consider several EHR-derived phenotypes. International Classification
of Disease (ICD) codes were used to define disease status in MGI data. These codes were
aggregated into a coding system known as phenotype codes or “phecodes” following the coding
systems described elsewhere (Denny et al., 2010). Cancer diagnosis was defined as receipt of
any phecode corresponding to a cancer diagnosis during follow-up in the Michigan Medicine
EHR. Diabetes diagnosis was defined as receipt of phecode 250 (“diabetes mellitus”), which
includes diabetes types I and II. Coronary artery disease (CAD) diagnosis was defined as receipt
of phecode 411.4 (“coronary atherosclerosis”). Macular degeneration diagnosis was defined
as receipt of phecode 362.2 (“degeneration of macula and posterior pole of retina”) among
patients at least 50 years old. Since our goal in case study (b) is to study age-related macular
degeneration (AMD), we will use “macular degeneration” and “AMD” interchangeably. Body
mass index (BMI) was defined as the median observed BMI value prior to any cancer diagnosis
or bariatric surgery. For patients without BMI measurements before such diagnoses, the earliest
observed BMI was chosen.
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Figure A.1: Schematic of MGI data generation and desired data analysis
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Table A.1: Comparison of disease and demographic characteristics between cohorts

NHANES, 2017-2018

Characteristic MGTI! (Interview and ;S AlLdl.llt
Examination, 18+) opulation
Sample size 43339 5533 >200,000,000
Age, median 59.0 51 35.3°
Number of visits, mean (range) 84 (1 - 1425) - -
Length of follow-up (d = day, y = year) 8y (1d - 41.0y) - -
Body Mass Index (BMI), mean 29.9 29.7 27.6*
BMI category, n (%)
Underweight, <18.5 473 (1.1) 99 (1.8) 11.9%*
Normal, [18.5, 25.0) 10338 (23.9) 1372 (24.8) 27.3%
Overweight, [25.0, 30.0) 14025 (32.4) 1727 (31.2) 26.3%
Obese, 30.0+ 17880 (41.3) 2236 (40.4) 34.4%
Unknown 623 (1.4) 99 (1.8) -
Female, n (%) 22710 (52.4) 2861 (51.7) 50.9%
Smoking habits, n (%)
Never 21575 (49.8) 3301 (59.7) 58.9%*
Former 14261 (32.9) 1260 (22.8) 24.0%
Current 7402 (17.1) 972 (17.6) 17.1%
Unknown 101 (0.2) 0 (0) -
Lifetime disease prevalence, (%)
Diabetes (Type I or II) 11838 (27.3) 838 (15.2)2 13.0°
Macular degeneration 1849 (4.3) - 2.1%°
Coronary artery disease 6943 (16.0) 243 (4.6) 12.1%"
Cancer (any type) 23587 (54.4) 551 (10.5) 39.5%"
Race/Ethnicity (%)
Non-Hispanic White 42387 (97.8) 1898 (34.3) 69.1%*
Hispanic/Other/Unknown 952 (2.2) 3635 (65.7) 30.9%

1 age represents age of last diagnosis in EHR. Summaries provided for entire MGI cohort used in case study (a). Case
study (b) uses a subset of unrelated MGI patients of recent European decent aged 50+.
2 NHANES diagnosis status was missing for 4, 284, and 270 patients for diabetes, coronary artery disease, and cancer
(any type), respectively. Macular degeneration diagnosis was not collected for NHANES in 2017-2018. Lifetime disease
prevalence was calculated for NHANES using patients with observed disease status.

3 Source: US Census, 2000. Adult-only median age is between 40 and 44.

4 Source: National Health and Nutrition Examination Survey (NHANES) with selection weighting, 2017-2018
5 Source: Centers for Disease Control and Prevention (CDC), National Diabetes Statistics Report, 2013-2016

6 Source: NIH National Eye Institute Statistics, 2010 prevalence for ages 50+.
7 Source: CDC, National Center for Health Statistics, National Health Interview Survey, 2017-2018

8 Source: NIH National Cancer Institute; Surveillance, Epidemiology and End Results Program (SEER), 2015-2017



Table A.2: External data sources used for bias correction

Data Source

Quantity

Link

US Census, 2000

NIH National Cancer Institute;
Surveillance, Epidemiology and End
Results Program (SEER)

NIH National Eye Institute Statistics,
2010

Centers for Disease Control and
Prevention (CDC), National Diabetes
Statistics Report, 2013-2016

CDC, National Center for Health
Statistics, National Health Interview
Survey, 2017-2018

National Health and Nutrition
Examination Survey (NHANES),
2017-2018

age distribution
cancer prevalence! by age (2016)

lifetime risk of developing cancer
(all sites, 2015-2017)
lifetime cancer risk by gender (all
sites, 2008-2016)

age-related macular degeneration
prevalence by age (and overall for
ages 50+)

diabetes prevalence by age

coronary artery disease prevalence
by age

cancer, diabetes, CAD, AMD,
BMI, age, and smoking joint
distribution

https://www.census.gov

https://seer.cancer.gov/data/

https://seer.cancer.gov/data/

https://seer.cancer.gov/csr/previous.html

https://www.nei.nih.gov

https://www.cdc.gov

https://www.cdc.gov/nchs/index.htm

https://www.cdc.gov/nchs/...

! invasive cancers only, limited to cancers occurring in the previous 24 years.


https://www.census.gov/data/tables/2000/dec/phc-t-09.html
https://seer.cancer.gov/csr/1975_2016/results_merged/topic_prevalence.pdf
https://seer.cancer.gov/csr/1975_2017/results_merged/topic_lifetime_risk_diagnosis.pdf
https://seer.cancer.gov/csr/previous.html
https://www.nei.nih.gov/learn-about-eye-health/resources-for-health-educators/eye-health-data-and-statistics/age-related-macular-degeneration-amd-data-and-statistics/age-related-macular-degeneration-amd-tables
https://www.cdc.gov/diabetes/pdfs/data/statistics/national-diabetes-statistics-report.pdf
https://www.cdc.gov/nchs/fastats/heart-disease.htm
https://www.cdc.gov/nchs/nhanes/index.htm

Figure A.2: Disease prevalence by age in MGI, NHANES, and the US adult population®
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! Prevalence by age in NHANES was calculated using data from 2017-2018. Data on macular degeneration
diagnosis are not available for NHANES for this time period. Cancer prevalence by age is for invasive cancers
only.



B Case studies: additional figures and tables

Step 1: Fixing reasonable values for r

We can use the population disease rates for cancer and macular degeneration reported in Supp.
Table A.1 along with the observed EHR-derived disease status rates in MGI to obtain estimates
of the marginal sampling ratio, 7, as a function of potential values for the marginal sensitivity, ¢.
Supp. Figure B.1 shows these predicted values. We cannot use these data alone to determine
the “true” value for 7. Instead, we can use this plot to guide reasonable choices for 7 for further
analysis. For both outcomes, we consider values between 1 (no disease-related selection) and
100 (patients with disease 100x more likely to be included).

Figure B.1: Marginal sampling ratio as a function of marginal sensitivity
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! These relationships were estimated using assumed disease prevalences in Supp. Table A.1. For the cancer
outcome, some values of ¢ were incompatible with the data (estimated 7 < 0), and 7 is not plotted.



Step 2: Estimating sensitivity

We then estimate sensitivity ¢y (X) as a function of covariates X using Method 2b in Figure 1.
This approach requires specification of P(D = 1|X). This distribution is not known, but we do
know the marginal disease prevalence, P(D = 1), and the relationship between disease diagnosis
and age, P(D = 1|Age). We estimate ¢y (X) first assuming P(D = 1|X) = P(D = 1) and then
assuming P(D = 1|X) = P(D = 1|Age). We present results assuming P(D = 1|X) = P(D =
1|Age) in the main paper. Supp. Figure B.2 presents the distributions of estimated cyrye(X)
across MGI participants. This figure demonstrates that the choice P(D = 1|X) can have a
strong impact in the estimation of ¢4 (X ). For the cancer outcome, where diagnosis is expected
to be associated with more doctors visits and longer follow-up, neither of our specifications for
P(D = 1]|X) is very reasonable. We showed in Beesley and Mukherjee (2022), however, that
downstream estimation of 6 is only weakly impacted by the specification of P(D = 1|X), so
we are not very concerned with this assumption violation in practice. Supp. Figure B.3
shows the estimated (§ log-odds ratios for covariates in the sensitivity model. Interestingly, the
estimated odds ratios tend to be similar for the two outcomes, with a slightly stronger estimated
association with longer follow-up time for the macular degeneration outcome. Higher sensitivity
in both outcomes is associated with longer follow-up and more visits per follow-up time.

Figure B.2: Estimated patient-varying sensitivities ¢ty (X) as a function of marginal sampling
ratio using method 2b. P(D = 1|X) was assumed to equal either P(D = 1) or P(D = 1|Age).
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Figure B.3: Estimated sensitivity model parameters 8 as a function of marginal sampling
ratio. Sensitivity was estimated using the method 2b and setting P(D = 1|X) = P(D = 1]|Age)
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Figure B.4: Estimated patient-varying sensitivities ciue(X) as a function of specificity for
Macular degeneration (age 50+), assuming 7 = 25. P(D = 1|X) was approximated by either
P(D =1) or P(D = 1]|Age).

Method & P(D=1) & P(D=1|Age)

=
o
Q

o
\l
o

o
R
o

Estimated Sensitivities
o
ol
o

'

07 075 08 08 09 0095 1
Assumed Specificity

©

o

Q@
1



Step 3: Estimating weights for selection bias adjustment

In estimating weights for selection bias adjustment using NHANES data, we fit regression models
for (1) the probability of selection into NHANES among the US adult population and (2) the
probability of inclusion in MGI given inclusion in MGI or NHANES. Parameter estimates for
these regression model fits are provided in Supp. Table B.1.

Supp. Figure B.5 shows the estimated individual-level selection weights for the MGI
patients included in case study (a), where each type of weight is sorted by increasing value
along the x-axis. All weights are trimmed above by 10 to ensure no one patient dominates
the estimation. Although not shown, poststratification weights with and without the AMD
outcome are extremely similar, indicating that AMD status may not appreciably differ between
MGI and the US populations after accounting for differences due to age and other diseases. In
contrast, poststratification weights with and without the cancer outcome differ substantially,
reflecting the clear enrichment of MGI in terms of cancer outcomes relative to the US adult
population. This same phenomenon occurs for weights estimated using NHANES.

Table B.1: Beta regression of NHANES sampling probabilities (relative to US adult popula-
tion) and logistic regression for including in MGI given inclusion in NHANES or MGI

Beta regression for
sampling probabilities!
Log-Odds Ratio, (95% CI)

Logistic regression for
inclusion in MGI

Log-Odds Ratio, (95% CI)

Age
<40 reference reference
40-59 0.21 (0.17, 0.25) 0.56 (0.45, 0.66)
60+ 0.66 (0.62, 0.69) 0.34 (0.24, 0.45)
Diabetes diagnosis
No reference reference
Yes 0.08 (0.04, 0.12) 0.48 (0.37, 0.58)
CAD diagnosis
No reference reference
Yes -0.04 (-0.02, 0.11) 0.90 (0.74, 1.07)

BMI category
Underweight (<= 18.5)
Normal (18.6 — 24.9)
Overweight (25.0 — 29.9)
Obese (30+)

Smoking habits
Never
Current or Former
Current
Former

Race/ethnicity
Hispanic/Other/Multi
Non-Hispanic White

0.15 (0.03, 0.26)
reference
-0.06 (-0.10, -0.03)
-0.06 (-0.10, -0.03)

reference
0.03 (-0.02, 0.05)

reference
-0.91 (-0.95, -0.88)

-0.32 (-0.66, 0.03)
reference
-0.02 (-0.12, 0.09)
-0.25 (-0.35, -0.14)

reference

-0.14 (-0.25, -0.03)
0.12 (0.02, 0.21)

reference
4.40 (4.31, 4.49)

! Implemented with a logit link function for mean of beta distribution



Figure B.5: Estimated selection bias adjustment weights (not correcting for misclassification
of disease phenotypes) for case study (a)
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1 “poststrat” indicates poststratification weights estimated using population summary statistics. “NHANES”
indicates IPW weights estimated using NHANES data. Estimated weights are shown along the y-axis, and each
weight is sorted by increasing value across the MGI patients along the x-axis. For case study (b), we compute
similar poststratification weights focusing on subset of unrelated MGI patients aged 50+ of recent European
ancestry. Brackets in legend labels correspond to outcome variables for case studies (a) and (b).
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Step 4, case study (a): Association between cancer and gender

Table B.2: Log-odds ratio point estimates and width of 95% confidence intervals for cancer-

gender associations (reference = male) [Case study (a)] !

Log-odds Width of 95%
ratio confidence intervals

Uncorrected analysis -0.10 0.076

Selection weighting only
Poststratification: without cancer 0.14 0.106
Poststratification: with cancer (uncorrected) -0.18 0.093
NHANES IPW: without cancer (from Elliot 2009) 0.01 0.154
NHANES IPW: with cancer (from Elliot 2009) -0.18 0.112

Matching only
Matching with BMI, smoking status -0.05 0.082
Matching without BMI, smoking status -0.06 0.082

Approx. D*|Z method [method 4a]

No weighting (from Duffy et al. (2004)) -0.15 0.115
Poststratification: without cancer 0.17 0.132
Poststratification: with cancer (uncorrected) -0.18 0.094
Poststratification: with cancer (corrected) -0.17 0.093
NHANES IPW: without cancer 0.02 0.206
NHANES IPW: with cancer (uncorrected) -0.19 0.122
NHANES IPW: with cancer (corrected) -0.17 0.120
Non-logistic link method [method 4c]

No weighting (extension of Sinnott et al.

(2014)) ghting ( -0.15 0.115
Poststratification: without cancer 0.17 0.132
Poststratification: with cancer (uncorrected) -0.18 0.094
Poststratification: with cancer (corrected) -0.17 0.093
NHANES IPW: without cancer 0.02 0.206
NHANES IPW: with cancer (uncorrected) -0.19 0.122
NHANES IPW: with cancer (corrected) -0.17 0.120

! For Approx. D*|Z and Non-logistic link function methods, sensitivity is estimated assuming # = 25. The
former method without weighting is equivalent to the approach in Duffy et al. (2004), and the non-logistic link
function implementation without weighting is a generalization of the method in Sinnott et al. (2014) to allow for
covariate-related sensitivity.

Selection bias adjustment weights with and without correction for phenotype misclassification are pre-
sented in this table. The IPW weighting method without misclassification correction is equivalent to the method
proposed in Elliot (2009).
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Step 4, case study (b): Association between AMD and genetic loci

Supp. Figure B.6 compares estimated associations between macular degeneration diagnosis
and 43 genetic loci in MGI and TAMDGC. The box around each point corresponds to the 95%
confidence interval in either dataset. We observe smaller estimated effects in MGI compared
to IAMDGC estimates. There are many possible explanations for this phenomenon, three of
which seem most likely. Firstly, the 43 genetic loci were chosen as the top hits in the TAMDGC
GWAS, so the resulting point estimates may be over-estimated following the “winner’s” curse.
Secondly, GWAS results for advanced AMD were obtained for IAMDGC data, and resulting
genetic associations may be stronger for this outcome than for the MGI macular degeneration
outcome including less advanced cases in addition to advanced ones. Thirdly, MGI results may
be attenuated as a result of misclassification and/or selection bias.

Figure B.6: Estimated AMD log-odds for 43 SNPs using MGI and IAMDGC data. 95%
confidence intervals in MGI and IAMDGC data are shown as shaded boxes.
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In Supp. Table B.3, we provide summary metrics for the performance of the bias-
correction strategies in Supp. Figure 1 to reduce potential bias due to phenotype misclassi-
fication and selection. An abridged version of this table is included and discussed in the main
paper. Supp. Figure B.8 shows the 43 estimated log-odds ratio associations in ITAMDGC
and MGI (uncorrected and corrected using method 4a without selection weighting). Method
4a does not uniformly map the uncorrected MGI point estimates to the IAMDGC GWAS esti-
mates. This plot does demonstrate, however, that the point estimates and confidence intervals
can sometimes differ substantially between the various data analysis methods for a given ge-
netic locus, and these differences here are more pronounced for extreme values of the IAMDGC
GWAS 0 (far left and far right values).
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Table B.3: Bias-adjusted AMD log-odds ratios across 43 genetic loci [Case study (b)] *

Avg. Lin’s Con- Rfl:tgi.ve
Absolute cordance MAPE
Deviation  Correlation Standard
Error
TAMDGC GWAS 0 1 0 1
Uncorrected Analysis 0.30 0.61 0.81 2.2
No misclassification adjustment
Weighting without AMD 0.25 0.82 0.85 4.2
Weighting with AMD (Uncorrected) 0.27 0.78 0.93 6.4
Approx. D*|Z method [method 4a]
No weighting (from Duffy et al. (2004)) 0.26 0.76 0.75 3.1
Weighting without AMD 0.26 0.85 0.90 5.6
Weighting with AMD (Uncorrected) 0.28 0.80 0.97 7.1
Weighting with AMD (Marg. Corrected) 0.27 0.80 0.90 5.6
Non-logistic link method [method 4c]
No weighting (ext. of Sinnott et al. (2014)) 0.28 0.73 0.79 3.1
Weighting without AMD 0.29 0.61 1.02 5.6
Weighting with AMD (Uncorrected) 0.28 0.84 1.04 7.3
Weighting with AMD (Corrected) 0.29 0.61 1.03 5.6

! For Approx. D*|Z and Non-logistic link function methods, sensitivity is estimated assuming 7 = 25. The
former method without weighting is equivalent to the approach in Duffy et al. (2004), and the non-logistic link
function implementation without weighting is a extension of the method in Sinnott et al. (2014) to allow for
covariate-related sensitivity. Bolded values indicate the best performing methods.

Average absolute deviation = average absolute difference between MGI and IAMDGC point estimates
(lower is better)

Definitions: Average absolute deviation = average absolute difference between MGI and TAMDGC
point estimates (lower is better); Lin’s concordance correlation = estimated concordance between MGI and
TAMDGC point estimates (higher is better); MAPE (mean absolute percentage error) = average absolute
difference between 1 and the ratio of MGI and IAMDGC point estimates (lower is better); Avg. relative
standard error = ratio of standard errors for MGI and TAMDGC point estimates.

Figure B.7: Bias-adjusted AMD log-odds ratios across 43 genetic loci as a function of speci-
ficity [Case study (b)]
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Figure B.8: Bias-adjusted AMD log-odds for estimates for 43 SNPs
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C On the question of transportability

We suppose our goal is to use the internal EHR data (S = 1) to make inference about some
well-defined target population. Suppose first that our goal is to generalize inference to some
subset of the study’s source population (Dahabreh and Hernan, 2019). For MGI, we might
want to learn about the source population of people living in southeast Michigan as illustrated
in Figure A.1, or we might be interested in some subset of the source population such as
people living in this area with pre-existing comorbidities. More commonly, however, our goal
is will be to transport inference based on the study “internal data” to some external target
population containing some members not included in the source population. For example, we
may want to use MGI data to make statements about the US adult population. In order to use
data sampled non-probabilistically from the source population to learn about some other target
population, additional assumptions are needed relating the source and target populations. In
this section, we clarify some of the assumptions needed to transport our inference to the desired
target population and provide some crude strategies for evaluation.

First, we clarify some notation. Let Population A be the study source population, and let
Population B represent the target population. By definition, the study sample is some subset
of Population A. Our interest is in clarifying when we can make statements about Population
B using data from the EHR sample. We will assume the following:

Assumption T1: P(D =1|Z,Pop = A) = P(D = 1|Z, Pop = B).

In other words, the target relationship between D and Z is the same in the source and target
populations. This is a strong assumption, but it is key. We also note that we can achieve
this relationship if there exists a (possibly empty) covariate set U not containing Z such that
P(D =1|Z,U,Pop=A) = P(D = 1|Z,U, Pop = B) and if f(U|Z, Pop = A) = f(U|Z, Pop =
B). This implies that P(D = 1|Z, Pop = A) = P(D = 1|Z, Pop = B), so Assumption T1
is satisfied. In general, we will not know whether Assumption T1 is satisfied. This would
require us to know the association between D and Z in Population B. If this were known, there
would be little reason to perform the current analysis at all, since the whole goal is to make
inference about this distribution. Therefore, we will view this is a key untestable assumption
for transportability to be viable. We also note that we not assume that the distribution of Z
is the same in the two populations. Reframed using terms from the transfer learning literature
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as in Kouw and Loog (2019), we will allow for a covariate shift between the two populations in
terms of Z, but we do not allow for a concept shift (i.e., the conditional distribution of interest
must be the same in the two populations).

We now focus on the particular setting with no misclassification, so D is measured di-
rectly in the study sample. We construct a theoretical random indicator 7' defined for ev-
eryone in Populations A and B such that P(T = 1|W, D) follows the same selection pattern
as P(S = 1|W, D, Pop = A), the true selection mechanism relating the EHR sample to the
source population. We further assume that P(T = 1|W, D, Pop = A) > 0 for all W and D
(Assumption T2). Let W' denote the variables in W that are not included in Z (i.e., the
additional predictors related to selection that are not adjusted-for in the disease model). We
have that

P(T=1|D,Z,Pop=A) = /P(T =1|D,Z, W', Pop = A) f(W'|D, Z, Pop = A)dW1.

We also have that
f(D|Z, T =1,Pop=A) x P(T =1|D,Z,Pop =A)f(D|Z, Pop = A)

= [/ P(T =1|D, Z, W', Pop = A) f(W'|D, Z, Pop = A)dW'| f(D|Z, Pop = B).

Suppose further that
Assumption T3: f(W'|D, Z, Pop=A) = f(W'|D, Z, Pop = B).
Then, we have that
f(D|Z, T =1,Pop=A) x P(T =1|D,Z,Pop = A)f(D|Z, Pop = A)
= P(T =1|D,Z,Pop = B)f(D|Z, Pop = B).

This in turn implies that we can re-weight a model for D|Z, T = 1, Pop = A with weights
defined by the inverse of the distribution of T'|D,Z, Pop = B to make inference about the
distribution for D|Z, Pop = B. Rephrased, we can use the internal data to transport inference
to Population B by re-weighting the data based on f(T'|D, Z, Pop = B).

Of course, we will not know f(T'|D,Z, Pop = B) in practice. We can apply various data
strategies discussed in the main paper to estimate weights for selection bias adjustment as a
function of Z, D, and W. Therefore, we will require a final, less rigid assumption:

Assumption T4: Constructed weights are “good enough” to recover

the target population 67 through weighted analysis of the internal sample

What is “good enough” will necessarily depend on the problem being studied, the scientific con-
text, and the investigator’s bias tolerance. Later on, we discuss some diagnostics for evaluating
the plausibility of Assumption 4, and additional information can be found elsewhere, e.g.,
Degtiar and Rose (2021).

As an alternative to Assumptions 3-4, we could instead make the stronger assumption that
D L T|Z,Pop = A, which directly implies that f(D|Z,T = 1, Pop = A) = f(D|Z, Pop = B).
In this case, we can transport results to the target population directly using the observed data.
However, this assumption is extremely strong and unlikely to occur in practice. Therefore, we
will ignore this trivial case.

To summarize, we have transportability of inference if (1) the distribution of D|Z is the
same in the target and source populations, (2) P(S = 1|W, D, Pop = A) > 0 for all W and D,
(3) the distribution of un-adjusted-for factors related to selection from the source population,
WT, given D and Z is the same in Populations A and B, and (4) the weights constructed for
selection bias adjustment are “good enough” to account for systematic differences between the
internal data and the target population in terms of the D|Z log-odds ratio. These last two
assumptions are not required if we can make the stronger assumption that selection from the
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source population is independent of D given Z (but not WT).

We make a distinction here where our goal is to study the association between D and Z in
Population B. Given the current specification, however, we are not attempting to make causal
statements about the relationship between D and Z. This allows us to transport results with
somewhat looser assumptions than are required in usual causal inference settings (Degtiar and
Rose, 2021). However, Assumptions T1-T3 can be loosely framed in terms of more familiar
concepts in causal inference as discussed in Degtiar and Rose (2021). Assumption T1 relates
to exchangeability, where the relationship between D and Z is assumed to be the same in both
populations. Assumption T2 is related to positivity of selection, where any individual with
characteristics D and W in the target population (Population B) would have non-zero proba-
bility of selection based only on D and W if they had been a member of Population A. The
other assumptions relate to unmeasured confounding of the association between D and Z in
terms of associations between D and WT. If this association given Z is the same in the two
populations, then the potential impact of excluding W1 from the model for D is the same in
the two populations. In practice, we may be able to loosen this assumption further when our
primary interest is in log-odds ratios for logistic regression models. In this setting, the associ-
ation between D and Z given W may be only mildly impacted by excluding W7 from analysis
if Z and WT are independent given D (Neuhaus and Jewell, 1993). In other words, we may
still be able to transport our results to Population B when the conditional distribution of W7
is different from Population A if we have that Wt 1L Z |D in both populations.

C.1 Assessment of reasonableness of transportability assumptions for case
studies (a) and (b)

Although the assumptions described above are not easily tested using the observed data, it
is possible to crudely evaluate the reasonableness of Assumption 4 by comparing weighted
inference using the study data to summary statistics for the target population (Degtiar and
Rose, 2021). We may also compare the propensity weights calculated for internal and external
individual-level data.

For case study (a), we constructed many weights for selection bias adjustment. Here, we
will consider four weight formulations as shown in Figure B.5, where poststratification weights
are constructed using summary statistics from the US census and SEER. For case study (b), we
constructed poststratification weights using NIH National Eye Institute and US census summary
statistics. For these two case studies, we are interested in exploring how the disease prevalence
by age calculated using the weighted study data compare to the target population for each
study. For this analysis, we ignore the potential impact of phenotype misclassification.

C.1.1 Positivity assumption: comparison of IPW scores calculated for internal
(MGI) and external (NHANES) samples for case study (a)

When a probability sample from the target population is available, one strategy for evaluating
the reasonableness of transportability is to calculate the value of the IPW weights for both
the internal and external samples (Degtiar and Rose, 2021). In our setting, IPW weights were
constructed for MGI using data from external probability sample NHANES. While our target
population is the US adult population and not the NHANES sample, the similarity in propensity
scores between these two samples may give some insight into the reasonableness of transporta-
bility between related populations.

We calculate the IPW propensity weights for both the MGI and NHANES samples and plot
the distribution of resulting (before sum-to-one scaling) weights for each sample in Figure C.1.
We find that the propensity scores tend to be higher for NHANES than for MGI individuals.
This supports the reasonableness of the positivity assumption, where all NHANES indi-
viduals have a nonzero probability of being included in MGI based on the characteristics used

16



for weight construction.

Tipton (2014) proposed a metric for comparing the similarity of the distributions of propen-
sity scores. This index is defined as Tipton Index = ), V/Dinternal,p X Pexternal b, Where b indexes
bins of possible propensity score values and pinternarp and Pegternal,p denote the proportion of
internal and external sample scores that fall in each bin, respectively. This index ranges between
0 and 1, where values of 1 indicate strong potential for generalizability between populations.
Using fine bins of width 5 between 0 and 300,000, the Tipton indices calculated for the IPW
weights with and without including cancer diagnosis are 0.60 and 0.67, respectively.

Figure C.1: Distributions of unscaled IPW propensity scores (without correction for phenotype
misclassification) for case study (a) in MGI and NHANES !
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I Tipton Indices represent the similarity in these propensity scores between MGI and NHANES.
Scores range between 0 and 1, with 1 indicating strong generalizability. Indices were calculated

using the empirical distribution of (unscaled) propensity scores with bins defined between 0 and
300,000 with bin widths of 5.

C.1.2 Comparing weighted and unweighted estimates: Comparison of weighted
and unweighted summary statistics in MGI with target population values
for both case studies

Figure C.2 provides the estimated disease prevalence by age using MGI data and calculated
using various weight construction strategies. For (adjusted) cancer prevalence, we see strong
bias in estimates of the population cancer prevalence by age using raw MGI data and using
weighted MGI data with weights constructed ignoring the relationship between selection and
cancer. When we re-weight the MGI data using weights that do condition on cancer diagnosis,
the resulting estimates for the cancer prevalence by age closely resemble the truth in the target
population. This is not surprising in the case of weights based on SEER data, since the disease
prevalence by age in the target population was directly used to construct the weights. For
(adjusted) AMD prevalence, we see comparatively less difference between MGI data results and
the target disease rates. However, weights constructed adjusted for both age and AMD status
better recover the target population characteristics.

We can also compare other weighted and unweighted estimands based on MGI data with
those calculated using NHANES and those based on summary statistics compiled for the US
adult population. Results are shown in Table C.1. Generally, [IPW weighted estimates based
on MGI data tended to be closer to the target population and NHANES estimates than es-
timates from crude analysis. Estimates using poststratification weights, however, often did a
poor job at recovering population quantities. Two major factors may contribute. Firstly, the
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IPW weights were constructed using individual-level data that allowed the joint distribution of
key variables of interest to be estimated. In contrast, the poststratification weights constructed
in this study relied only on marginal distributions of summary statistics. Secondly, the IPW
weights included additional predictors including BMI, smoking status, and race/ethnicity in the
modeling, while these variables were not accounted for directly in the poststratification weight
construction. Since smoking status and BMI are both related to cancer diagnosis even after
adjusting for age, we may expect inference based on the NHANES IPW weights to be more
trustworthy than inference based on the poststratified weights.

We may also use individual-level data on cancer diagnosis and other factors available through
NHANES to calculate the association between cancer and many patient characteristics in
the target population (through weighted analysis of NHANES data using provided NHANES
weights). We can then compare estimates for the target population with estimates from weighted
and unweighted MGI data. Figure C.3 shows the estimated probability of having a cancer diag-
nosis adjusting for age, BMI, race/ethnicity, smoking status, diabetes diagnosis, CAD diagnosis,
and gender in the target population and using MGI data. These predictions are calculated for
each MGI patient. Probabilities using raw MGI data are far from the target population proba-
bilities, and results using weights constructed ignoring cancer status do not correct these results.
Weighted analysis of MGI data based on weights conditioning on cancer status perform much
better, where analysis with weights constructed using NHANES data unsurprisingly do a good
job at reproducing “true” associations also calculated using NHANES.

Figure C.2: Weighted and unweighted disease prevalences in study sample and target
populations!
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! For case study (b), we define our target population as the subset of the US adult population
aged 50+ of recent European descent. For corresponding weight construction, however, we
used summary statistics for the entire US adult population aged 50+. An underlying assump-
tion is that the summary statistics used to develop the poststratification weights (i.e., the age
distribution and the prevalence of AMD by age) do not differ appreciably by ancestry.
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Table C.1: Comparison of weighted and unweighted MGI summary statistics with target
population estimates

Analysis Type Crude MGI Weighted Analysis Target Population
Analysis Data MGI MGI MGI MGI NHANES! US Adults?
Type of Weights None | Case (a) Case (a) Case (b) Provided None
IPW Poststrat. Poststrat. ‘Weights

Age, Mean 56.8 47.2 44.0 44.0 47.3 40-44
Female, % 52.4 53.6 55.9 54.7 51.8 50.9
Prior Cancer Diagnosis, % 54.4 10.1 39.6 4.5 11.0 39.53
Prior CHD Diagnosis, % 16.0 4.3 4.5 4.7 4.1 12.13
Prior AMD Diagnosis, % 4.2 1.9 2.0 0.71 - 2.13
Obese, % 41.3 41.5 33.6 34.2 41.9 34.4
Current Smokers, % 17.1 21.7 19.0 18.3 17.1 17.1
Non-Hispanic White, % 97.8 56.8 97.6 28.8 62.0 69.1

I'NHANES results have been weighted using the weights provided by NHANES, while the results for MGI with
IPW weighting use constructed IPW weights or poststratification weights (constructed for either case study (a) or
(b)) that include each disease diagnosis without correcting for phenotype misclassification. Age-related macular
degeneration information were not collected for NHANES in the years under study.

2 See Table A.2 for sources of US adult summary statistics.

3 US Adult summary statistics correspond to lifetime disease prevalence, not proportion of adults with prior
diagnosis. Therefore, they are an upper bound on reasonable values for percent of adults with prior diagnosis.

Figure C.3: Weighted and unweighted probability of having cancer estimated using MGI and
NHANES Data !
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! Predicted probabilities from models adjusting for age, BMI, race/ethnicity, smoking status,
diabetes diagnosis, CAD diagnosis, and gender. Results using NHANES data use a model
weighted with the provided NHANES weights and can be interpreted as representative of the
target population of interest.
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