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-Abstract 

 Network features found in the brain may help implement more efficient and robust neural 

networks. Spiking networks process spikes in the spatiotemporal domain and can offer better energy-

efficiency than deep neural networks. However, most SNN implementations rely on simple point 

neurons that neglect the rich neuronal and dendritic dynamics. In this study, we propose a bio-inspired 

columnar learning network (CLN) structure that employs feedforward, lateral and feedback 

connections to make robust classification with sparse data. The network is inspired by the mammalian 

neocortex, comprising cortical columns each containing multiple minicolumns formed by interacting 

pyramidal neurons. A column continuously processes spatiotemporal signals from its sensor, while 

learning spatial and temporal correlations between features in different regions of an object along 

with the sensor’s movement through sensorimotor interaction. The columnar learning network can 

be implemented using memristor crossbars with a local learning rule, Spiking Timing Dependent 

Plasticity, that can be natively obtained in 2nd-order memristors. CLN allows inputs from multiple 

sensors to be simultaneously processed by different columns, resulting in higher classification 

accuracy and better noise tolerance. Our analysis on networks implemented on memristor crossbars 

show the system can operate at very low power and high throughput, with high accuracy and 

robustness to noise. 
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1. Introduction 

Neural networks have recently attracted much attention for perception and learning tasks.[1,2] Despite 

these advances, common deep neural networks (DNNs) lack biological features that can potentially make the 

system more efficient and robust. Spiking neural networks (SNN) use spikes and temporal encoding methods 

to process information and are potentially more efficient than artificial DNNs.[3–9] Bio-inspired neuromorphic 

systems are also compatible with emerging devices such as memristor crossbars that allow efficient hardware 

implementation[10–18]. However, most SNN implementations use point neurons that neglect the rich internal 

dendritic structures of cortical neurons and the spatiotemporal computing capabilities of the dendrites. In this 

study, we propose a Columnar Learning Network (CLN) that utilizes these different dendritic structures for 

efficient multi-sensory, spatiotemporal data processing. The CLN is inspired by the theory that the neocortex 

is comprised of cortical columns, each of which consists of identical components - pyramidal neurons and 

synaptic connections trained by local learning rules.[19–22] Key components of the CLN include feedforward 

connections from the input, lateral connections that allow firing neurons to predict neighboring neurons’ action 

potentials at the next time step, feedback connections from firing neurons at the next layer, and inter-column 

connections that enable columns to collectively perform a higher order intelligent task than what a single 

column can do.  It is different from several prior studies that have aimed to adopt the concept of pyramidal 

neurons to memristor-based SNN, but with a focus at the neuron level rather than the construction of a bio-

plausible network with cortical column structures as building blocks.[23] 

The proposed CLN can be implemented efficiently with 2nd-order memristors that natively possess the 

local learning rule, spiking time dependent plasticity (STDP)[24–26]. We test the network with different inputs 

(e.g. visual and auditory), and verify its performance in terms of accuracy and noise robustness in object 

recognition tasks. With the columnar structure, each column can receive inputs from different sensors that 

detect the same object, and the multiple columns work collectively to produce more robust classification results. 

We further estimate the performance of the hardware-implemented network and show the proposed network 

can achieve extremely low energy consumption and high throughput. 

2. Main  

2. 1. Column structures 

The neocortex is organized horizontally into six laminae, and vertically into columns of cells linked 

via synaptic connections across laminae. The basic unit of the neocortex is the minicolumn which is a narrow 

chain of neurons extending vertically,[19] and multiple minicolumns form a cortical column  by short-range 

horizontal connections. Many columns exist in the neocortex, and each column may take inputs from a 

different sensor. Figure 1a schematically shows the column concept. 

In vision, the input a column of neurons processes forms a receptive field (RF), as illustrated by the 

colored circles in Figure 1a. Cells in one minicolumn process a local region (e.g. marked by the yellow circles) 

in the RF, and different minicolumns may process different local regions in the RF.[27] Neuron firing in a 
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minicolumn is typically sparse, [28] e.g. following behaviors such as winner-take-all (WTA) that at most one 

cell in a minicolumn can fire per input and others are inhibited by the winner.[21,28] Through this competition, 

each cell in a minicolumn may detect a different input pattern. While the minicolumns execute relatively 

simple feature detection, synaptic connections along or across columns allow the network to execute intelligent 

tasks of higher degree.[29] 

2. 1. 1. Pyramidal neuron model 

The minicolumns are formed by pyramidal neurons[19,30]. Figure 1b schematically shows a pyramidal 

neuron structure, consisting of a soma, an axon, and dendrites that are further categorized into basal and apical 

dendrites. The basal dendrites (BD) descend from the base of the soma, while the apical dendrites (AD) ascend 

from the top of the soma.[31] Functionally, the basal dendrites process feedforward signals from the lower layer 

as well as lateral signals from firing neurons within or across the minicolumns[32–35]; whereas the apical 

dendrites processes feedback signals from firing neurons in the upper layer.[20,35–37] The basal dendrites are 

further divided into proximal basal dendrites (PBD) and distal basal dendrites (DBD) depending on their 

adjacency to the soma.[38] The PBD are closer to the soma and due to their proximity produce strong signals 

and have a direct impact on the soma’s firing, while the far away DBD inputs are weaker due to attenuation 

along the dendrites, and are incapable of directly inducing neuron firing.[39] However, spikes from the DBDs 

can still modify the neuron membrane potential and increase the probability of the neuron winning within a 

minicolumn. Similar to the effects of DBDs, feedback signals collected by apical dendrites indirectly affect 

neuron firing. 

2. 1. 2. CLN structure 

Figure 1c schematically shows an example of the proposed CLN. In this example, there are 2 cortical 

columns, each of which has 5 minicolumns at each horizontal layer, where the horizontal layers correspond to 

the laminae layers in Figure 1a.  The two columns can receive inputs from two different sensors, e.g. visual 

and audio inputs, respectively. Each minicolumn in turn has 4 pyramidal neuron cells. As discussed earlier, 

cells in the same minicolumn receive identical inputs.  

In the proposed CLN, neurons in Layer 1 receive inputs through their PBDs. Spikes generated by the 

winning neurons (marked in green) in Layer 1 are propagated onto Layer 2 through axonal connections 

(depicted as orange arrows) and reach cells in Layer 2 via the PBDs of the Layer 2 neurons. In this example, 

the winning cell (marked in blue) in Layer 2 produces the classification output, and in turn sends 

backpropagating spikes to cells in Layer 1 through their ADs (marked in purple).[20] 

Beyond feedforward (via PBDs) and feedback connections (via ADs), spikes from the winning 

neurons also propagate to other cells in the same horizontal layer (both within a minicolumn and across 

minicolumns) through the DBDs of those cells, as illustrated by the red arrows in Figure 1c. These lateral 

connections allow the firing neurons to send signals to “predict” the action of their neighboring neurons in the 

next step. 
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To illustrate how these different connections, i.e. feedforward, lateral and feedback connections, work, 

let’s examine a case where the two green cells in Layer 1 of column 1 fire at time t1, as shown in Figure 1c. 

These spikes will be propagated to other neurons in Layer 1 via the lateral DBD connections (red arrows). The 

firing cells in Layer 1 also cause a cell (blue) in Layer 2 to fire, and feedback is sent through the ADs to all 

cells in Layer 1, as shown in the Figure 1c.  

At the next time t2, cells in Layer 1 receive new inputs through the feedforward connections via the 

PBDs. The effects of the feedforward signals are then combined with the prediction signals from the lateral 

DBDs and the feedback signals from the ADs. Note the prediction signals and the feedback signals are from 

spikes generated at a prior time t1. The effects of the different signals also depend on the connection strength, 

with PBDs typically having the strongest connections and DBDs and ADs having weaker connections. The 

collective effects of the feedforward, lateral and feedback signals produce the new winning neuron at time t2, 

marked in yellow. This process is then repeated. 

We expect the operations of the CLN will be more efficient and robust when compared with 

feedforward-only networks, because the lateral and feedback signals enable spatiotemporal cues among 

neurons. For example, when an input induces comparable membrane potential changes in multiple cells in one 

minicolumn, the winner can still be determined due to the lateral and feedback spikes from other neurons that 

fired based on earlier inputs. In turn, these connections can make the CLN effective in learning spatiotemporal 

patterns in the input and make robust decisions.  

2. 1. 3. Sensorimotor integration approach 

We adopt the sensorimotor integration approach to send inputs to the cortical columns over time, and 

to enable the network to process time-series information in the form of data streams.[21,40] Briefly, visual 

sensors generate spikes from a localized region corresponding to the RF, where the eyes are staring at, and 

new signals are continuously generated as the RF is updated along with the eyes’ movement over time (Figure 

1e). It is a common workflow for humans to classify an object too large to be captured at once, and instead 

interprets the spatial information of an object in the temporal domain. 

Once the vision sensor captures a portion of the object and sends the visual signals, the brain extracts 

features from the data and predicts candidates of what the object may be, using the extracted features and the 

location information of the focal points. Afterwards, it outputs motor signals to the sensor’s muscle to shift the 

focal points to another region to get new inputs. The process is depicted in Figure 1d,e. Through the repeated 

cycles (Figure 1d), the brain selects the possible candidates of the object and determines what it is in the end. 

During this process, the brain may also learn correlations between features found in different regions of the 

object and the sensor’s movements, allowing it to predict more accurately in the next task using the learned 

correlation.[41,42] 

The coordinated sensor-motor actions make the system very efficient in object detection once the 

correlation has been learned. Figure 1f shows an example of finding a constellation in the sky. Following the 
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learned correlation, the eyes will preferentially focus on the regions where the stars belonging to the 

constellation may exist, marked as the shaded regions in Figure 1f. This process eliminates the need to produce 

and process inputs at other regions not related to the constellation, thus greatly reducing the total energy cost.  

2. 1. 4. Classification Task Example 

Figure 1g-i illustrate an example of the CLN network performing classification task using the common 

visual dataset, MNIST. For this single sensor (input stream) task, only one cortical column is needed. 

Following the sensorimotor integration approach, Layer 1 of the column receives inputs from a portion of an 

image that corresponds to its RF at a given timestep and scans the image over time. For convenience, we 

choose the direction of the sensor scan to be the vertical direction, and an RF area corresponds to a horizontal 

stripe of the image. No inputs are provided at time t1, and the green stripes labeled t2 to t14 correspond to the 

RFs of the visual inputs to the CLN during the sensor navigation, with some overlap between the RFs at 

consecutive timesteps. 

At time t2, input spikes are sent to neurons in Layer 1 of the CLN, based on the intensity of the pixels. 

Each minicolumn in Layer 1 processes a specific region in the RF (for example, those marked by the blue 

rectangles in Figure 1g) causing some cells to fire. The firing cells in turn propagate spikes to other cells in 

the same minicolumn and across minicolumns through DBDs, which modulate the likelihood of these cells to 

fire at the next timestep. During this process, the network learns temporal tendency of the input features 

through the DBD weight updates.  

As shown in Figure 1c,e, the range of DBDs is spatially short so that the prediction effect from firing 

neurons is mainly to its neighbors. The spatial range of the prediction at the next timestep is illustrated as green 

pyramids in Figure 1h. The firings of cells in Layer 1 additionally cause certain cells in Layer 2 that represent 

possible candidates (numbers 0, 8 and 9 in this example) to fire. These spikes in turn provide feedback signals 

to cells in the lower layer through ADs that affect which cells in Layer 1 may fire in the future, along with the 

input spikes and the lateral prediction spikes. This process is repeated throughout the sensor movement from 

the top to the bottom. In the end, the cell in Layer 2 that fires the most times during the scan is chosen in the 

end as the result of the classification. This example is schematically shown in Figure 1i for the three candidate 

cells in Layer 2, with red and green color representing silence and firing of the cell during sensor movement, 

respectively. In the end, the cell corresponding to number 8 is chosen as the classification result since it 

produced the most spikes over time. 

2.2. CLN implementations 

2.2.1 Basal dendritic connections 

A CLN composed of a single cortical column across two layers is illustrated in Figure 2a, highlighting 

the PBDs, DBDs, axons and ADs for the pyramidal neurons. 

In this example, we use the single column CLN to process inputs from a single sensor, (e.g. the MNIST 

A
ut

ho
r 

M
an

us
cr

ip
t



 This article is protected by copyright. All rights reserved 

dataset). As explained above, at any given time an RF corresponding to a 32x3 stripe in the input is processed 

by the Layer 1 neurons through the PBD connections, as shown in Figure 1g,h. We chose conventional 

feedforward networks to model the PBD connections. Specifically, the PBD connections are modeled by a 2x2 

convolution layer with depth of 4, followed by a 2x2 summation pooling layer, as shown in Figure 2c. The 

depth here represents the number of cells in a minicolumn, as all cells in a minicolumn receive identical inputs 

but can learn different features. The 2x2 pooling layer improves the network’s robustness against minor spatial 

or temporal displacement of input signals.  

After 2x2x4 convolution and 2x2 pooling in the PBD connections, the original 32x3 input is converted 

into a 15x1x4 feature map that corresponds to the input-induced changes of the soma’s membrane potential, 

across15 minicolumns with 4 neurons in each minicolumn. To implement WTA in a minicolumn, we adopted 

a depth-wise inhibition (DWI) operation which allows at most one of the four cells per minicolumn to fire. 

Following the Sensorimotor integration approach, after the first RF is processed, the sensor moves to 

the next stripe along the vertical direction. We allow an overlap of 1 row of pixels between the RFs, so the 

original 32x32 data correspond to 15 RFs, each corresponding to a 32x3 stripe with an overlap of 1 row. The 

RFs are processed by the CLN sequentially over time t1 to t15. In this example (Figure 1g), there are no data in 

the first and last stripe, so the CLN only need to operate during t2 to t14. 

2.2.2 Distal dendritic connections  

The output spikes from firing neurons in Layer 1 are then sent to other neurons in Layer 1 through the 

lateral DBD connections, as depicted in Figure 2a. We model the DBD connections with small fully connected 

(FC) networks, where neurons in one minicolumn are connected to other neurons in r neighboring 

minicolumns (including itself), as shown in Figure 2b,d. In this example, the DBD connections for neurons in 

one minicolumn are represented by a 4x4r network, and different minicolumns will have different DBD 

connections trained using unsupervised local learning such as STDP.  

2.2.3 Output layer and Apical dendrites 

Spikes from neurons in Layer 1 are also sent to neurons in Layer 2 via axonal connections for further 

processing, e.g. classification. These axonal connections are modeled as feedforward connections and 

implemented using FC layers. Specifically, there are 60 neurons in Layer 1 generating data over 15 timesteps, 

and 10 neurons in Layer 2 corresponding to the 10 output classes in this example. The simplest approach is to 

connect all outputs (60x15) from Layer 1 with all neurons in Layer 2, using a 900x10 FC layer. However, this 

will result in significant hardware overhead. Again, following the sensorimotor integration approach and the 

fact that Layer 1 neurons only process local spatiotemporal data, we can split the 15 timesteps into groups that 

focus on local temporal features. For example, the 15 timesteps can be split into 5 groups, each corresponding 

to 3 consecutive timesteps. Consecutive neuron outputs during the 3 timesteps are used as the input to Layer 

2 neurons. We note this approach is similar to the temporal accumulation effect employed in Reservoir 

Computing systems[43,44] to detect the temporal patterns over time. In theory, the consecutive outputs can also 
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be replaced by a trainable 3x1 convolution, but our studies show there is little difference in the final 

classification accuracy between using a trained 3x1 convolution and the simple outputs from the 3 consecutive 

timesteps.  

Using this approach, the 900x10 FC layer can then be replaced with 5 60x10 FC layers, as shown in 

Figure 2e. The spiking cells in Layer 2 correspond to classification outputs, and these spikes are in turn sent 

back to Layer 1 neurons through the feedback AD connections. In our design, to save hardware and training 

costs, we use the same 5 60x10 axonal connections for the AD connections, with signals running backwards 

across the network when used as AD connections. As discussed earlier, the feedback signals are combined 

with the lateral DBD signals and the new input signals to determine the Layer 1 neuron firing in the next time 

step. 

2.2.4. Multi-column networks 

A key feature of the CLN is its ability to use multiple columns to execute tasks in parallel or execute 

higher order intelligent tasks, where each column receives input from a different sensor or distributed inputs 

(e.g. from the tactile system), following the principles shown in Figure 1c. Figure 2f shows an example of a 

two-column network, where each column is configured in the exact same manner, and all hyperparameters are 

identical in the columns. 

Possible examples of dual-sensor inputs are right eye and left eye, eyes and ears, or other pairs of 

sensory organs. For the demonstration, we selected artificial visual and audio inputs based on the MNIST and 

FSDD datasets, respectively, to mimic cortical columns receiving signals from eyes and ears.[45,46] We 

preprocessed both datasets to make them the same dimension of 32x32. Like the single column CLN case, 

each sensor takes a 32x3 region from the input per timestep.  

In the training phase, each column is trained individually using training data in its respective dataset. 

After training, each column can analyze input data received by its own sensor. Additionally, decision is now 

derived by the aggregate of the cell potentials from the corresponding Layer 2 cells in both columns. The 

aggregation is executed by the inter-column connections as depicted by the yellow arrow in Figure 2f, where 

the membrane potentials of corresponding Layer 2 neurons from the 2 columns are summed up in an element-

wise fashion. During inference tests, we rearranged the two separate test datasets into a combined test dataset, 

grouped by common ground truths. Due to the smaller audio dataset, audio data is re-used multiple times in 

the combined test dataset to resolve the unbalanced number of available test data.  

2.2.5. Preprocessing 

Before feeding data to the network, we preprocessed the raw data. First, analog values of the visual 

inputs and the spectrogram of audio inputs are normalized. Second, we binarized and then skeletonized the 

visual inputs, while audio inputs are whitened and then binarized. Figure 3a,b show an example of the original 

visual and audio inputs representing the same object, and Figure 3c,d show results after the preprocessing step 

for both cases. For the auditory data, the x-axis represents frequency, and the y-axis represents time (from top 
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to bottom). 

2.3. CLN Training  

2.3.1 DBD connections 

The DBD connections are trained using local learning rules in an unsupervised manner. Specifically, 

we leverage the STDP effects that can be natively implemented in a 2nd-order memristor with simple, non-

overlapping spikes. [24–26] Among our fabricated 2nd-order memristor devices, we chose the type with the 

shortest internal time constants to decrease the operation latency of the system. The experimentally obtained 

STDP characteristics for such a device are shown in Figure 3i, along with fitting curves.  The conductance 

modulation curves when subjected to a series of pre- and post-pulse pairs are shown in Figure 3j.  

Following [47], the weight update dynamics by a pair of pre- and post-spikes can be described as: 

𝛥𝑊 =  𝑊A ∙ 𝑒𝑥𝑝(⎯
|𝛥𝑡|

𝜏
) ∙ (𝑊LRS⎯𝑊) ∙ (𝑊 − 𝑊HRS)                                                                             (1) 

where 𝑊A is a fitting parameter, 𝛥𝑡  is the time gap between the pre and post spikes, 𝜏 is the STDP time 

constant, and W is the synaptic strength. 𝑊A and 𝜏 may be different for LTP and LTD. 

The DBD connections for neurons in one minicolumn are implemented in a memristor crossbar, as 

shown in Figure 3k, where each connection is implemented with a 2nd-order memristor. Inputs to the crossbar 

are neuron firings from the minicolumn, which modulate the membrane potential of neurons in the neighboring 

r minicolumns (itself included) based on the input spikes and the synaptic weights. The input and output neuron 

spikes in turn natively update the corresponding synaptic weights, through the STDP effect described in 

Equation 1. 

2.3.2 PBD connections 

 The PBD connections detect local features in the input. Instead of training the PBD connections, we 

chose to use a pre-selected 2x2x4 convolution kernel, shown in Figure 3l, for the convolution layer in the PBD 

to minimize hardware and training cost.  These pre-selected features detect different slopes in the 

spatiotemporal domain (e.g. angles in visual inputs, and shifts in frequency-time in audio inputs). Figure 3e,f 

show example outputs after convolution with the 4th feature in the 2x2x4 convolution kernel, for the visual 

and audio inputs, respectively. Figure 3g,h show outputs of the winning neurons in Layer 1 after integrating 

contributions from the PBD connections that consist of 2x2x4 convolution, 2x2 summation pooling, and DWI, 

as well as contributions from the DBD connections and the AD connections.  

2.3.3 Axonal connections and AD connections 

The axonal connections and AD connections are also implemented in memristor crossbars using the 

same 2nd-order memristor devices as used in the DBD connections. For the axonal connections, 5 60x10 

crossbars are used. Since Layer 2 neurons need to perform classification, the weights are trained using a 

supervised learning algorithm, softmax regression, using accumulated spikes from the 10 Layer 2 neurons that 
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correspond to the 10 output classes. The cost function is calculated following the negative log likelihood loss 

function (NLLLoss) method and minimized by a standard gradient-based optimization method, RMSprop, 

through weight updates.[43,44,48] The same trained axonal connections are also used as the AD connections for 

the feedback signals, where spikes from the Layer 2 neurons are propagated backwards through the crossbars. 

 

2. 4. Results 

We verified the performance of the implemented CLN network in terms of classifying accuracy, noise 

robustness, and spike sparsity using neural network simulations. During the verification stage, we also 

analyzed how the neighborhood range, r, of the DBD connections and the number of groups in the axonal 

connections affect the network performance. 

2.4.1 CLN performance 

For each CLN design, we ran 30 trials of training and testing, and averaged the results of the trials to 

minimize effects arising from random weight initialization at the beginning of the training process. It roughly 

takes 15 epochs to achieve saturated classifying accuracy for both visual and audio datasets, as shown in 

Figure 4a,b. Very little accuracy drop is observed during testing for the visual inputs (Figure 4a). For the 

auditory inputs, a 1.5% loss in test accuracy is observed due to the small auditory dataset (2700 training 

samples vs 60000 training samples in the visual dataset) that make the training less effective, even after 

adopting techniques such as dropout during training (Figure 4b).  

More interestingly, Figure 4c shows that the multicolumn network introduced in Figure 2f can achieve 

meaningfully higher accuracy in the classification task than both single column networks. Even though each 

column is trained separately in the two-column CLN, the inter-column connections help the network make 

more robust decisions. This effect may be traced back to the network’s biological inspirations, where it is 

common that a person is better at classifying an object when he or she is using multiple sensors like two hands, 

or hand and eyes, or eyes and ears, rather than using only a single sensor. To verify the higher accuracy is due 

to the cooperative effects of both sensor inputs instead of simply the larger network size, we compared the 

two-column CLN results with single-column networks that are double the original size, either by making the 

network wider (by using wider dimension feature maps) or deeper (by additionally adding more layers), as 

shown in Figure 4c and Table 1. The two-column network still outperforms these larger single column 

networks that use only visual data, suggesting the multicolumn network is more efficient by leveraging inputs 

and features from multiple sensors. 

2.4.2. Effects of network structure 

Figure 4d shows how the DBD connection’s neighborhood range r affects the network accuracy. It is 

interesting that after initially improving the accuracy, further increasing the range leads to accuracy drop. It is 

possible that predictions made far away from a neuron may lack spatiotemporal correlation and will just add 
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noise. This observation is consistent with the theory that attenuation along the dendrites plays an important 

role, and effects from far away neurons are diminished considerably[49]. In the following discussion, we reduce 

the DBD neighborhood range from 5 to 3 to achieve better power and area efficiency with minimal accuracy 

drop. The corresponding numbers of memristors used to implement the DBD connections for different r are 

shown in Table 2. 

Next, we tested the effects of grouping in the axonal connections between Layer 1 and Layer 2 neurons. 

As discussed earlier, without grouping (group size = 1), a large 900x10 FC layer is required. Grouping outputs 

from 3 consecutive timesteps reduces the size of the axonal connections to 5 60x10 FC layers with minimal 

accuracy change (Figure 4e). Further increasing the group size (e.g. to 5) leads to a more measurable accuracy 

drop with reduced benefits in network size reduction, as shown in Table 3. To balance the performance and 

the hardware cost, we set the group size to 3 in the following discussions. 

Feedback signals through the ADs help the network to achieve better accuracy in classification tasks 

and improve its noise tolerance. Figure 4f shows the effects of ADs on the auditory task in a single-column 

CLN, where clear disparity in terms of accuracy can be observed with and without the AD connections. 

2.4.3. Noise tolerance 

A key potential advantage of the CLN over conventional DNN is better noise tolerance provided by 

the lateral and feedback connections. We tested two types of noise that are likely to both sensory inputs - 

insufficient data and Gaussian noise. The former is by providing only a portion of the data, and the latter is by 

adding Gaussian noise with mean 0 and different variance to the input data. 

For comparison with widely known networks, we chose LeNET which is one of the smaller DNNs but 

still ~8x the size of the two-column CLN to benchmark the noise performance.[50] Figure 4g,h show how well 

the networks deal with insufficient data and Gaussian noise, respectively. In both cases, the proposed CLN 

network outperforms LeNET, and the robustness to noise is highly apparent at higher noise levels in both cases. 

In addition, the multi-column network also shows superior noise tolerance to single columnar networks, 

supporting the hypothesis that utilizing multiple sensory inputs leads to more robust decisions. 

2. 4. 4. Spike sparsity 

The proposed CLN network produces sparse spikes due to competition of neurons within a 

minicolumn and the inhibitory effects from the lateral and feedback connections. Figure 4i shows the total 

number of spikes generated by all cells in Layer 1 for the 2 tasks, at different network configurations. 

Increasingly sparser spike counts are obtained with the addition of WTA implementations, lateral connections, 

and feedback connections, respectively, potentially making the network more energy efficient. The spike 

counts of these different configurations are listed in Table 4. 

2. 5. Hardware implementation 

2. 5. 1. Hardware architecture 
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We next study the hardware implementation of the CLN to estimate energy consumption and speed of 

the proposed network. For better parallelism and reconfigurability of the network, we mapped the network in 

a tiled-architecture.[51,52] For the very small sized CLN discussed here, we chose 4x4 and 12x12 crossbars as 

the fundamental building blocks, although larger crossbars are likely needed for more complex CLN designs. 

Figure 5a shows the allocation of the crossbar arrays to each layer for a single CLN column, following the 

network structure shown in Figure 2a. Blue, yellow, and green blocks represent PBD, DBD and axonal/AD 

connections, respectively. The PBD weights are copied three times to increase parallel processing of the 

original input data. The crossbar arrays used to map different connections are summarized in Table 5. Detailed 

description of the hardware implemented CLN can be found in Methods. 

Figure 5b shows the implementation of the PBD connections in detail, including the 2x2x4 

convolution kernel weight matrix (mapped in a 4x4 crossbar, a blue block), 4 integrators and comparators 

(brown blocks) to implement threshold functions that binarize the induced potential changes, and 4 integrate 

and fire (IF) neuron circuits (violet squares) for the neurons in a minicolumn, and a MAX circuit that finds the 

largest membrane potential among the 4 neurons for DWI operation. The neuron with the highest potential 

will fire if its potential also crosses a pre-determined threshold. 

The DBD connections comprise 5 12x12 crossbars, with one such example shown in Figure 5c. For a 

neighborhood size of 3, the 12 crossbar columns are connected to the neurons in 3 minicolumns (MCX, MCY, 

MCZ). With 3 copies of PDB connections, 3 inputs can be processed in parallel and 3 MCs (MCa, MCb, MCc) 

may spike at a given time. 

The 5 60x10 axonal connections are mapped in 25 12x12 crossbars, as shown in Figure 5d, where the 

5 groups during sensorimotor movement are illustrated in different shades of green. Spikes from the 10 output 

neurons in each group correspond to classifications made during the sensorimotor movement, and the 

accumulated spikes over the groups produce the final classification output.  

2. 5. 2. Performance estimation 

Next, we estimate the energy consumption and speed of the network for processing the different tasks 

based on the forementioned hardware. We used the TSMC 28nm technology library to synthesize the required 

circuits to obtain realistic power and speed estimates.[53,54] We set pulse amplitude and width of a spike to 0.3V 

and 10ns to prevent unexpected weight updates during inference.  

The energy consumed by a crossbar array in the PBD, DBD and axon/AD connections is estimated as: 

𝐸array  =  𝑉spk ∙ 𝑡spk ∙ ∑ ∑ 𝑆(𝑥, 𝑡) ∙  𝑊array
𝑋
𝑥=1

𝑇
𝑡=1                                                                           (2) 

where Vspk and tspk are the pulse amplitude and width of a spike, S(x,t) is a delta function that equals to 1 if 

there is a spike at position x and time t in the input and 0 otherwise, and Warray is the weight matrix of the layer.  

The energy consumed by the threshold function used in the PBD connections is estimated as: 
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𝐸𝑇𝐻  =  𝐸comp 𝑥 ∑ ∑ ∑ 𝐵CONV(𝑑, 𝑥, 𝑡)𝐷
𝑑=1

𝑋
𝑥=1

𝑇
𝑡=1                                                                                       (3) 

where T, X and D are the y (here representing time), x (representing position) and depth dimension of the output 

feature map of the convolution layer, Ecomp is the energy required by the comparator per cycle, and BCONV(d,x,t) 

is the binarized membrane potential for position x in depth d at time t. 

The energy consumed by the DWI function is estimated as: 

𝐸𝐷𝑊𝐼  =  ∑ ∑ 𝐸MAX
15
𝑥=1 +15

𝑡=1 ∑ ∑ ∑ 𝑇𝐻(𝑉MAX, 𝑉mem(𝑑, 𝑥, 𝑡))4
𝑑=1

15
𝑥=1

15
𝑡=1 ∙ 𝐸comp                              (4) 

where EMAX is the energy consumed by the MAX circuit, TH(a,b) is a threshold function that outputs 1 when 

b is same or larger than a, VMAX is the largest potential found by the circuit, Vmem(d,x,t) is the membrane 

potential of cell d in minicolumn x at time t, and Ecomp is the energy of the comparator which also appears in 

Equation 3.  

Using Equation 2-4, we simulated the total energy the CLN spends to process each input. For the 

calculation, we used the test dataset of both sensory inputs and averaged the energy per input over the whole 

dataset. The values are presented in Table 6. The higher energy consumption for the auditory inputs is 

explained by the fact that the visual inputs have sparser spikes than the auditory inputs, as illustrated in Figure 

3c,d, Figure 4i and Table 4. 

The latency of the system is calculated by counting the number of timesteps to process an input data, 

assuming each timestep is 2x the width of a spike’s width (10ns).  As discussed earlier, since the convolution 

operations in the feedforward connections consume the most timesteps, we employed three copies of the PBD 

connections to speed up the process. 

The estimated energy and latency per input, as well as the overall system power, are summarized in 

Table 7. The small network size, combined with the sparsity of spikes, make the proposed network extremely 

energy efficient compared with other SNN networks reported in literature based on similar technology[55]. 

Overall, the network can operate at < 0.5mW and is capable of processing inputs at very high inference rates 

(e.g. thousands of inferences per second, IPS) with high accuracy and noise robustness, as discussed earlier. 

 

3. Conclusion 

In this study, we proposed a bio-inspired network structure that can be implemented with memristor 

crossbars for efficient and robust processing of multi-sensory, spatiotemporal data. The network is inspired by 

the cortical column structure in the mammalian neocortex. We show that lateral and feedback connections 

make the network more efficient and robust, and the inter-column connection allows the multi-column network 

to achieve higher accuracy and greater noise robustness compared to single sensor networks. 

The CLN network can be efficiently mapped on memristor crossbars. The local STDP rule used in the 

lateral connections in CLN can also be natively implemented with the internal dynamics of a 2nd-order 
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memristor. Our simulation of the proposed network shows extremely low energy consumption and high 

throughput, suggesting the potential of the proposed network for low-energy, real-time on-sensor applications. 

 

4. Methods 

4. 1. Device fabrication 

The 𝑇𝑎𝑂𝑥 based 2nd-order memristors are fabricated following prior studies.[25,26] Device fabrication 

starts with 35nm Pd bottom electrode deposition by photolithography, e-beam evaporation and lift-off, 

followed by sputtering of 30nm 𝑇𝑎𝑂𝑥 using a Ta metal target in an 𝐴𝑟/𝑂2 gas mixture (3% O2, ~5mTorr) at 

400°C. A 4-nm 𝑇𝑎2 𝑂5 switching layer is then deposited by RF sputtering using a 𝑇𝑎2𝑂5  ceramic target in 

Ar at ~5 mTorr. The 40nm Pd top electrode is fabricated and deposited in the same way as the bottom electrode. 

4. 2. Device Measurement 

The 2nd-order memristors were measured with pulse pairs to extract the STDP behavior and weight 

update curves. For STDP measurements (Figure 3i), we applied the pre-synaptic pulse with a 0.75V amplitude 

and 100ns width to the top electrode, and post-synaptic pulse with a 0.7V amplitude and 100ns width to the 

bottom electrode. The time gap between the pulses is adjusted from -300ns to 300ns. For the weight update 

curves (Figure 3j), we applied a fixed number of such pulse pairs consecutively with a fixed time gap of 150ns.   

4. 3. Preprocessing of the datasets 

For visual inputs, we normalized and binarized the analog pixel values of the written digits in the 

MNIST dataset[45] using a prefixed threshold value of 0.6. Afterwards, the data are skeletonized using the 

scikit-learn skeletonize function[56]. For audio inputs, we normalized the analog values in the FSDD[46] dataset 

and whitened the data with epsilon of 0.4.[57] After that, we applied 2x2 maxpooling to the FSDD data to 

change the input dimension to 32x32, i.e. the same as the inputs in the MNIST dataset. Afterwards, we 

binarized the inputs using a prefixed threshold value of 0.2. 

4. 4. Power and latency estimate of CLN hardware  

To estimate the hardware power and latency, we synthesized necessary peripheral circuits including 

comparators, IF neuron circuits and MAX circuits (which find the largest membrane potential), following the 

literature.[53,54] We counted the number of timesteps and the number of spikes generated during the Python 

simulation. Using the information, we calculated the energy consumption and the latency required to complete 

the tasks. We ignored some parasitic factors like wire resistance and parasitic capacitance in these estimates. 

The weight matrix of the convolution layer and the comparators in the PBD connections consume 

energy every cycle. The IF neuron circuits and the MAX circuit in the DWI circuit work every four cycles to 

find a winner within a minicolumn. This process is repeated for the 15 minicolumns for each 32x3 receptive 

field.  
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When a winner of the minicolumn fires, the output spike is propagated through a DBD weight array 

as shown in Figure 5c. When three copies of the convolution kernels are used to reduce latency, 3 minicolumns 

may output spikes to the same neighborhood at a given time. In this case, the active minicolumns are 

dynamically assigned to the input of the FC layers to maximize hardware utilization.  

The spikes are also propagated to the axonal connections, shown in Figure 5d.  The 5 groups during 

the sensorimotor movement are shown as 5 different shades of green. Within each group, i.e. during time t1-t3, 

the 10 output neurons will fire based on the accumulated outputs from the crossbars. The neuron spiking 

corresponds to classifications made during the sensorimotor movement. Spikes from the corresponding 

neurons are then accumulated over the 5 groups and produce the final classification for the object. 
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Table 1. Network structures of the two-column CLN and the wider and deeper CLNs shown in Figure 4c.  

Column PBD DBD Additional Layer Axon/AD 

 Input Kernel 

size 

Soma Spikeso Array 

Number 

Array 

Size 

Spikeso Kernel 

Size 

Array 

Number 

Array 

Size 

Two 32x3 2x2x4 15x1x4 15x1x4 15 4x12 None None 5 60x10 

Wider Single 43x3 2x2x4 21x1x4 21x1x4 21 4x12 None None 7 84x10 

Deeper Single 32x3 2x2x4 15x1x4 15x1x4 15 4x12 6x1x52 3x3x52 2 312x10 

 

Table 2. Number of memristors used to form the DBD connections with different neighborhood ranges, and 

the corresponding accuracies 

Neighborhood range Memristors Visual Audio Paired 

  Training 

[%] 

Test 

[%] 

Training 

[%] 

Test 

[%] 

Test 

[%] 

3 688 95.09 95.21 93.93 92.44 98.74 

5 1104 95.10 95.00 93.95 93.56 98.94 

7 1488 95.04 94.98 93.83 93.44 98.88 

9 1840 95.02 95.03 94.19 93.22 98.71 

 

Table 3. Classification accuracy for different grouping numbers, along with the number of memristors used 

for each case. Grouping significantly reduces the hardware size with minimal impact on accuracy. 

Number of groups Accuracy Memristors 

 Visual 

[%] 

Audio 

[%] 

Paired 

[%] 

 

1 95.96 92.44 98.88 900 

3 95.21 92.44 98.74 300 

5 92.85 91.78 98.21 180 

 

Table 4. Average spike counts in Layer 1, for different network configurations. 

Task PBD w/o DWI w/ PBD w/ PBD+DBD CLN 

Visual 31.11 29.86 23.40 23.40 

Audio 209.69 131.35 82.34 82.13 

 

Table 5. The number of crossbar arrays used to implement different features for a single column in the 

proposed CLN. 

Network Number of Array Array size 

PBD 3 4x4 

DBD 5 12x12 

Axon (AD) 25 12x12 
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Table 6. Average energy consumption of different components in the CLN 

Task PBD DBD Axon/AD Total 

 

[pJ] 

 Earray 

[pJ] 

EIF 

[pJ] 

EDWI 

[pJ] 

Earray 

[pJ] 

Earray 

[pJ] 

Visual 483 21.5 15.6 557 211 1290 

Audio 2620 268 80.8 2280 1130 6390 

 

Table 7. Performance metrics of the proposed CLN hardware system. 

Number of PBD Task Total cycles Latency 

[µs] 

Power 

[µW] 

IPS 

1 Visual 616.41 12.33 104.51 81114 

1 Audio 841.80 16.84 379.31 59367 

5 Visual 206.14 4.12 312.52 242556 

5 Audio 281.27 5.63 1135.24 177768 
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Figure 1. Columnar network structures. a) Columnar structures in the neocortex, showing 4 columns with 14 

minicolumns each. b) Schematic of a pyramidal neuron. c) Different connections of the proposed CLN, 

showing PBD connections (green arrows) that feed the inputs to Layer 1 of the network, DBD connections 

(red arrows), axonal connections (orange arrows) and AD connections (purple arrows). d) Illustration the 

sensorimotor integration approach. e) The receptive field (RF) of a column. As the sensor moves, the RF is 

updated. A minicolumn (colored in yellow) may process a local region of the RF (marked by the orange circle). 

f) An example of the sensorimotor integration method to find stars in a constellation. g-i) Schematic of the 

CLN processing an input image. g) The RFs along time shown as green stripes. The local inputs processed by 

the minicolumns at t2 are highlighted as blue rectangles as an example. h) the RFs sensed by the network at 

different timesteps. The firing neuron sends a prediction signal to neurons in its neighborhood at the next 

timestep (green squares).  i) Firing patterns of the three candidate cells in Layer 2 fire over the 15 timesteps. 

Green: firing. Red: no firing.  
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Figure 2. Proposed CLN configuration. a) Network configuration for a single column CLN, showing the PBD 

(green box), DBD (red box), axon (orange box) and AD (purple box) connections. b) Example input. The 

colors mark the membrane potential change after the PBD connections, and the blue arrows mark the DBD 

connections. c) PBD connection implementation. d) DBD connection from a single minicolumn, mapped as 

an FC layer. e) Axonal connections with several FC structures based on the grouping method. f) Schematic of 

a two-column CLN network, with each column receiving inputs from a different sensor. 
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Figure 3. CLN for visual and audio input processing. a,b) An example of the original data of the same object 

in a) visual dataset and b) audio dataset. c,d) After preprocessing. e,f) After feedforward connections in the 

PBD layer. An example corresponding to output of the 4th feature in the convolution kernel is shown here. g,h) 

Firing neurons in the 15 minicolumns (plotted along the x-axis) after the PBD connections, during the 15 

timesteps (plotted along the y-axis). The neurons are represented by their assigned colors in l). i) Measured 

data and fitting curves of a fabricated 2nd-order memristor natively implementing STDP. Lower nset: scanning 

electron microscope image of the fabricated device. Upper inset: schematic of the device structure. j) Simulated 

weight updates after the application of consecutive pulse pairs with fixed 𝛥𝑡 of 150ns.[26] k) DBD connections 

implemented by a memristor crossbar. The DBD connections are learned by the local STDP rule natively 

implemented in the 2nd-order memristors, showing examples of potentiation (green dots) and depression 

(orange dot) l) The 4 2x2 convolution kernels used for the conv layer in the PBD connections. All colored 

squares are implemented by the low-resistance state of the memristor, and the white squares are implemented 

by the high-resistance state of the memristor. 
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Figure 4. Performance of the proposed two-column CLN on visual, audio, and combined datasets. a,b) 

Classification accuracy for a) visual and b) audio datasets, during training and test. c) Test accuracy of two-

column CLN for the combined dataset, along with test accuracy for the wider and deeper single-column CLNs 

using only visual inputs. d) Effects of the DBD connections’ neighborhood range on test accuracy. e) Effects 

of grouping spikes from Layer 1 in the axonal connections on test accuracy. f) Effects of AD connections on 

accuracy. g,h) Effects of g) insufficient data and h) gaussian noise on the performance of different networks. 

i) Total number of Layer 1 neuron spikes averaged over the test dataset, for different network configurations. 
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Figure 5. Hardware implementation. a) A column of the CLN implemented in a tiled memristor crossbar 

architecture. Blue blocks represent the convolution kernels of PBD connections, yellow and green blocks 

represent the DBD and axon/AD connections, respectively. b) Visualization of workflow of the PBD 

connections during four cycles (ti1-ti4). c) One of the 5 12x12 crossbars used to implement the DBD connections. 

Each minicolumn (MCx, MCy, MCz) receives input spikes from 3 adjacent minicolumns. d) 25 12x12 crossbars 

used to implement the 5 60x10 axon/AD connections. The different shades of green represent the 5 groups 

during sensorimotor movement. 
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Inspired by column structures in the mammalian cortex, a Columnar Learning Network was proposed 

and demonstrated using 2nd-order memristors. The CLN can perform robust classification with sparse 

data, while learning spatiotemporal correlations in inputs from different regions of an object. Multi-

sensor processing enabled by CLN leads to higher classification accuracy and better noise tolerance. 
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