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Abstract

We describe models and likelihood-based estimation of the finite population mean

for a survey subject to unit nonresponse, when post-stratification information is avail-

able from external sources. A feature of the models is that they do not require the

assumption that the data are missing at random (MAR). As a result, the proposed mod-

els provide estimates under weaker assumptions than those required in the absence of

post-stratification information, thus allowing more robust inferences. In particular, we

describe models for estimation of the finite population mean of a survey outcome with

categorical covariates and externally observed categorical post-stratifiers. We compare

inferences from the proposed method with existing design-based estimators via sim-

ulations. We apply our methods to school-level data from California Department of

Education to estimate the mean academic performance index (API) score in years 1999

and 2000. We end with a discussion.

Key words : Maximum likelihood; missing not at random; non-ignorable models; post-

stratification; raking; unit nonresponse.
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1 Introduction

It is truly an honor to contribute an article to this special issue celebrating Nan Laird’s

award of the 2021 International Prize in Statistics. We start by connecting the topic of our

article with some aspects of Nan’s methodological work. A useful feature of likelihood-based

methods of statistical inference – in particular, Bayesian inference or asymptotic inference

based on maximum likelihood (ML) – is that the methods can be applied to non-rectangular

datasets, such as arise when there are missing data. Two of Nan Laird’s most cited papers,

on ML estimation using the Expectation Maximization (EM) algorithm (Dempster et al.,

1977) and ML estimation of mixed models for unbalanced longitudinal data (Laird and Ware,

1982), exploit this property.

Standard ML software for missing data is based on the assumption that the missingness

mechanism is ignorable, which means that inference can be based on the likelihood derived

from the complete-data model for the study variables, without modeling the missingness

mechanism. A key sufficient condition for ignoring the missingness mechanism is that the

data are missing at random (MAR), as discussed in Rubin’s famous (1976) paper (Rubin,

1976). An interesting feature of our paper is that it includes an simple practical example

where missingness is missing not at random (MNAR) but the mechanism is nevertheless

ignorable, thus showing that the MAR condition is a sufficient but not always a necessary

condition for ignorability.

Our paper concerns the analysis of nonresponse in survey sample data when there is

post-stratified data, specifically marginal distributions of survey variables available for the

population or a random sample of the population from sources external to the survey. Such
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data are increasingly important in survey sampling settings, with the rising levels of survey

nonresponse and increased reliance on data that are not randomly sampled. As we show,

the presence of post-stratified data allows the MAR assumption to be relaxed, and certain

MNAR models to be fitted.

In finite population survey sampling, likelihoods can be defined by so-called “superpopu-

lation” modeling, where the finite population is assumed to be sampled from an infinite-sized

“superpopulation,” and inference is based on a statistical models for the survey variables in

this superpopuation (Chambers et al., 2012; Valliant et al., 2000). This approach leads to

likelihood functions for model parameters, and inferences about finite population parameters

based (in effect) on prediction of the values of survey variables for nonrespondents and non-

sampled units. However, concerns over model misspecification lead many statisticians trained

in probability sampling to prefer the so-called design-based or randomization approach to

statistical inference. In this approach, which is predominant in classic survey sampling texts

(e.g. Kish (1965), Cochran (2007)), the survey variables are treated as fixed quantities and

not assigned a distribution; rather inference is based on the probability distribution that

underlying probabilistic selection of the sample. This approach is not strictly applicable

when there is survey nonresponse, but the “quasi-randomization” approach, which acts as if

we have a probability sample after conditioning on auxiliary data available for respondents

and nonrespondents, can be thought of as extending the randomization approach to handle

nonresponse. In this article we adopt a superpopulation modeling perspective to surveys,

but our simulations include some comparisons with common design-based approaches.

We describe likelihood-based estimation of the finite population mean of a survey variable

Y , when (a) Y and a set of post-stratifiers Z are observed for r respondents but missing
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for n–r nonrespondents in the sample, (b) a set of covariates X is observed for all n units

in the survey, and (c) the marginal distribution of each Zk, k = 1, . . . , K is also observed

for the same target population, from a larger survey or a census. A Zk could represent

a set of variables, provided their joint distribution is available from auxiliary data. For

ease of presentation, we consider univariate auxiliary Zk margins throughout this paper.

The structure of the data is depicted in Figure 1. For unit i = 1, . . . , n in the survey,

R
1 X1 y1 z11 … z1K z*11 z*1K
. . . . .
. . . . .
. . . . . . .
1 Xr yr zr1 … zrK . … .
0 Xr+1 . .
. .
. .
. .
0 Xn z*N1 z*NK

Dobs Zaux

Not Linked

Figure 1: Missing data pattern with postsratifying information.

let di = (xi, yi, zi) denote the values of (X, Y, Z), and Ri denote the value of the response

indicator R, where Ri = 1 if (yi, zi) is observed and Ri = 0 if (yi, zi) is missing. We denote by

D the full data matrix for the survey, D = (d1, . . . , dn)T , di = (xi, yi, zi), D
obs the observed

survey data, namely {di, i = 1, . . . , r} and {xi, i = r + 1, . . . , n} and Zaux the auxiliary

data consisting of the marginal distributions of Zk, k = 1, ..., K. Note that the units in

the auxiliary data Zaux are not linked with the units in the survey. This scenario occurs
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frequently in settings where post-stratification is used for nonresponse adjustment.

We assume throughout the paper the probability that (zi, yi) is observed may depend on

xi and zi but does not depend on yi, given xi and zi, that is:

P(Ri = 1|xi, zi, yi, ψ) = P(Ri = 1|xi, zi, ψ). (1)

where ψ represents unknown model parameters for the conditional response propensity

model. The resulting mechanism is missing not at random (MNAR) (Rubin, 1976; Little

and Rubin, 2019), if missingness depends on zi, because zi is not observed for survey units

i that are missing. We describe circumstances where the auxiliary margins Zaux provide us

with the information needed to estimate the parameters governing the joint distribution of

X and Z, allowing ML or Bayesian inference. We focus here on models for the important

case where X and Z consist of categorical variables, although our general approach can also

be applied to problems where some or all of X or Z are continuous.

Standard design-based approaches to this data structure include post-stratification (Holt

and Smith, 1979) and extensions such as raking, where respondents are weighted to match the

distribution of the discrete post-stratifiers in the population. Calibration methods, extend

post-stratification to encompass known population totals of continuous auxiliary variables

(Deville and Sarndal, 1992; Deville et al., 1993; Särndal et al., 2003; Lumley, 2010; Kott and

Chang, 2010; Kott and Liao, 2017, 2018): These methods minimize the distance between

the original sampling weights and new calibration weights subject to known sums of aux-

iliary variables (Deville and Sarndal, 1992). Kalton and Flores-Cervantes (2003) describe

estimators obtained from alternative choices of distance functions. One advantage of our

likelihood-based approach is that it does not require the choice of a distance function, which
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appears to us to be somewhat arbitrary.

Model-based inference, on the other hand, treats the survey outcomes as well as the

inclusion and response indicators as random variables in a statistical model: The model is

used to (i) infer the population parameters of interest or (ii) predict the unobserved values

of Y . Two main variants of model-based inference are frequentist superpopulation modeling,

where inferences are based on repeated samples from the sample and the superpopulation,

and Bayesian inference, where a prior distribution is chosen for the parameters, and infer-

ences are based on the posterior distribution of the finite population quantities of interest

given the observed data (Little, 2004). Little (1993) justifies post-stratified and raking esti-

mates for categorical post-strata as ML estimates for particular models. Gelman and Little

(1997) propose multilevel regression and post-stratification, a Bayesian multilevel modeling

approach to post-stratified survey data. This approach was further developed by Si et al.

(2017) and Si and Zhou (2019). None of these articles consider MNAR models for missing

data, which is the focus of this paper.

Section 2 outlines likelihood-based inference for surveys with the data pattern of Figure 1.

Section 3 compares and contrasts repeated sampling properties of the proposed model-based

estimators to commonly used design-based estimators for a variety of assumed missing data

mechanisms using simulated categorical data. Section 4 applies the proposed methods to

real data with continuous outcomes from the California Department of Education. Section

5 ends with a discussion and directions for future research.
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2 Models for unit nonresponse with auxiliary informa-

tion

2.1 Overview

Denoting density functions by f(.), we consider models that are i.i.d. over the units i, where

the joint distribution of X, Z, Y and R is factored as

fX,Z,Y,R(xi, zi, yi, ri|θ, φ) = fY |X,Z,R(yi|xi, zi, θ, Ri = ri)fX,Z,R(xi, zi, ri|φ)

= fY |X,Z,R(yi|xi, zi, θ)fX,Z,R(xi, zi, ri|φ), (2)

and θ and φ are distinct parameters (Little and Rubin, 2019). Note that the distribution of Y

given (X,Z,R) in the second line of Eq. (2) does not depend on R. This is justified because

the assumption in Eq. (1) about the missingness mechanism implies that R is independent

of Y given X and Z. This means that the parameters θ of this conditional distribution can

be estimated from the component of the likelihood based on the survey respondents. The

remaining parameters φ are then estimated by assuming a model for the joint distribution

of X, Z and R for which these parameters are identified from the survey and auxiliary data.

We consider here cases where X and Z are categorical, in which case the available data lead

to incomplete contingency tables with supplemental margins. We can thus apply methods

for this data structure discussed in Little and Rubin (2019).
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Our inferences are based on the likelihood shown below in Eq. (3),

L(θ, φ|Dobs, Z
aux) =

r∏
i=1

fY |X,Z(yi|xi, zi, θ)φr0(1− φr0)(n−r) ×
r∏
i=1

fX,Z(xi, zi|ri = 1, φ(1))

×
n∏

i=r+1

fX(xi|ri = 0, φ)×
K∏
k=1

N∏
j=1

fZk
(z∗jk|φ), (3)

where the first r sample units are respondents, φ0 is the marginal probability of response

to the survey, (Dobs, Zaux) represents the observed data, and the last component of the

likelihood comes from the auxiliary data. We use φ(ri) to distinguish between the parameters

in the observed (ri = 1) and missing (ri = 0) units respectively. According to Eq. (2), the

parameter θ, describing the conditional distribution of Y given X and Z, is the same for

the observed and missing data, but the parameter φ can differ between the observed and

missing data. A slight simplification in Eq. (3) is that the data from each of the auxiliary

margins is assumed independent of the information from the survey data. This is not quite

true if the auxiliary margins and survey have units in common: however we believe that

this information is negligible, and it is not easily recoverable given that the auxiliary and

survey units are not linked. ML estimation of the population mean of Y is achieved by first

predicting the values of Z for nonrespondents in the sample given X and the ML estimate

of φ, and then predicting the values of Y for nonrespondents from the distribution of Y

given (X,Z) and the ML estimate of θ. The Bayesian approach replaces ML estimates of

the parameters with draws from their posterior distribution.

We now consider some special cases of ML inference based on Eq. (3).
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2.2 Single Post-Stratifier

We first consider the simple case of a single post-stratifier Z and no covariates X. The

missingness assumption in Eq. (1) then reduces to

P(Ri = 1|Zi, Yi, ψ) = P(Ri = 1|Zi, ψ). (4)

The likelihood in Eq. (3) reduces to

L(θ, φ|Dobs, Z
aux) = A(θ)×B(φ)× C(φ) where

A(θ) =
r∏
i=1

fY |Z(yi|zi, θ),

B(φ) =
N∏
j=1

fZ(z∗j |φ), and

C(φ) = φr0(1− φr0)(n−r)
r∏
i=1

fZ(zi|ri = 1, φ(1)) (5)

The parameters θ of the conditional distribution of Y given Z can be estimated from A(θ),

and the parameters of the marginal distribution of Z across respondents and nonrespondents

can be estimated from the auxiliary data B(φ).

For univariate categorical Z with J categories, a natural model is to assume that Z is

multinomial with

P(zi = j) = φj, j = 1, . . . , J,
J∑
j=1

φj = 1. (6)

The ML estimate of φj, is simply the proportion of the auxiliary data in post-stratum j.

The resulting direct estimate of the population mean of Y is

Ȳmod =
J∑
j=1

φ̂j ȳmodj , (7)

where Ȳmodj is the average of observed and predicted values of Y in post-stratum j, based on

the assumed model for Y given Z and φ̂j = Nj/N . For example, if the model assumed that Y
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was normal with mean µj and variance σ2
j , then Ȳmod = ȲPS =

∑J
j=1 φ̂j ȳjR, where ȳjR is the

respondent sample mean in post-stratum j. This estimator is the well-known post-stratified

mean, and weights respondents by the inverse of the response rate in post-stratum j.

Alternatively, we can use the models in (3) and (6) to predict or impute the unobserved

values of Z for individual nonrespondents, and use them as predictors in a model for Y . The

resulting predictive estimator of the population mean of Y is

Ȳpred =
1

n

(
r∑
i=1

yi +
n∑

i=r+1

ŷi

)
, (8)

where ŷi is the predicted value of yi given the predicted value of ẑi for nonrespondent i =

r+ 1, . . . , n. The parameters θ for the regression of Y on Z, and φ(0), for the distribution of

Z among nonrespondents are both estimated by ML. The ML estimate of φ
(0)
j , the estimated

proportion of nonrespondents in category j is

φ̂
(0)
j =

nφ̂j − rφ̂(1)
j

n− r

where φ̂
(1)
j is the observed proportion of respondents in category j, which can be estimated

from C(φ).

Estimators based on Eqs. (7) and (8) require at least one respondent in each post-

stratum, and may be unstable if the respondent sample sizes in any post-strata is small. This

is particularly likely if Z is a vector of two or more variables, with their joint distribution

available from auxiliary data. Instability can be addressed by assuming an unsaturated

model for Y . For example if Z is bivariate, say Z = (Z1, Z2), then we can assume an

additive model for Y given (Z1, Z2), or a mixed model with fixed main effects of Z1 and Z2

and random interactions. This modeling approach to stabilizing ȲPS and Ȳpred differs from

the typical design-based approach, which is to modify the nonresponse weight. This example
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is also discussed in Little et al. (2017), who point out that the post-stratified mean is actually

ML for a MNAR model.

2.3 Two or More Post-Stratifiers

Suppose now we have two categorical post-stratifiers Z1 and Z2, with respectively J1 and J2

levels, and we have auxiliary data on the marginal distributions of Z1 and Z2 but not their

joint distribution. The model (2) becomes

fZ,Y,R(zi1, zi2, yi, ri|θ, φ) = fY |Z(yi|zi1, zi2, θ)× fZ,R(zi1, zi2, ri|φ).

Denoting the marginal probability of response by φ0, the likelihood (3) becomes

L(θ, φ|Dobs, Z
aux) = A(θ)×B(φ), where

A(θ) =
r∏
i=1

f(Y |Z1,Z2)(yi|zi1, zi2, θ) and

B(φ) = φr0(1− φr0)(n−r)
r∏
i=1

f(Z1,Z2)(zi1, zi2|ri = 1, φ(1))

×
N∏
j=1

fZ1(z
∗
j1|φ)×

N∏
j=1

fZ2(z
∗
j2|φ). (9)

The ML estimates of θ are estimated from A(θ), and ML estimates of φ are estimated from

B(φ). We focus on the latter here.

An unconstrained (or saturated) multinomial joint distribution for (Z1, Z2, R) has 2J1J2 − 1

distinct probabilities. The data described in Figure 1 yields estimates of J1J2 + J1 + J2 − 2

probabilities, namely the joint distribution of (Z1, Z2) for respondents (J1J2−1 probabilities)

and the marginal distributions of Z1 (J1 − 1 probabilities), Z2 (J2 − 1 probabilities) and R

(1 probability). This implies that there are

2J1J2 − 1− (J1J2 − J1 − J2 − 2) = (J1 − 1)(J2 − 1)
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more parameters that are not estimable. That is, the saturated MNAR model is under-

identified.

We consider the constrained MNAR “RAKE” model that assumes the marginal distribu-

tions of Z1 and Z2 are different for respondents and nonrespondents, but the (J1 − 1)(J2 − 1)

odds ratios of Z1 and Z2 are the same for respondents and nonrespondents. This yields the

same number of constraints as there are under-identified parameters, that is, a just-identified

model. Little and Wu (1991) showed that raking the J1×J2 table of respondent counts (say

{rj1j2}) to the auxiliary margins of Z1 and Z2 gives ML estimates φ̂ of φ under this RAKE

model.

The post-stratified estimator (7) extends to

Ȳrake =

J1∑
j1=1

J2∑
j2=1

φ̂j1j2 ȳmodj1j2

where φ̂j1j2 is the estimated proportion of the population with Z1 = j1, Z2 = j2 from raking,

and ȳmodj1j2
is the average of observed and predicted values of Y given Z1 = j1, Z2 = j2, based

on the model for Y given Z1, Z2 with θ estimated by ML. The predictive estimator (8) uses

predicted values of Z1 and Z2 for nonrespondents, where φ̂
(0)
j1j2

is the estimated proportion of

nonrespondents with Z1 = j1, Z2 = j2 from raking.

With K > 2 auxiliary margins, raking yields ML estimates of φ for the model that as-

sumes the marginal distributions of Z1, . . . , ZK differ for respondents and nonrespondents,

but the j-way associations between Z1, . . . , ZK are the same for respondents and nonrespon-

dents, for j = 2, . . . , K. A more parsimonious unsaturated log-linear model for Z1, . . . , ZK

that sets higher-order associations to zero may be needed here if the number of respon-

dents in the cells formed by Z1, . . . , ZK is small. For discussion of unsaturated models for
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Z1, . . . , ZK and R (see Little and Rubin, 2019, Chapter 13 and Section 15.4.2).

2.4 One Post-Stratifier and One Covariate

With one covariate X observed for all units in the sample, and one post-stratifier Z observed

for survey respondents, the model in Eq. (2) yields the likelihood

L(θ, φ|Dobs, Zaux) = A(θ)×B(φ), where

A(θ) =
r∏
i=1

fY |X,Z(yi|xi, zi, θ) and

B(φ) = φr0(1− φ0)
(n−r)

r∏
i=1

fX(xi|ri = 1, φ(1))
n∏

i=r+1

fX(xi|ri = 0, φ(0)) ×
N∏
j=1

fZ(z∗j |φ), (10)

where φ0 is the marginal probability of response. This structure is similar to the case of two

post-stratifiers, with X playing the role of one of the post-stratifiers. Here we have data

on the distributions of X for respondents and nonrespondents from the sample, whereas

for a post-stratifier, we have data on the marginal distribution from auxiliary data and the

distribution for respondents from the sample. In particular for categorical X and Z, we

can apply the RAKE model of Section 2.3 with X playing the role of Z2. For that model,

raking the joint distribution of X and Z for respondents to the auxiliary margin of Z and

the margin of X from the sample yields ML estimates of φ and φ(0).

3 Simulation study

3.1 Simulation Design and Methods Compared

The goal of this simulation study is to explore repeated sampling properties of the proposed

estimators for different missingness mechanisms and different outcome regression models.
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To focus on the missingness mechanisms for unit nonresponse, we consider simple random

samples from a finite population. To avoid distributional assumptions, we consider here the

situation where all variables of interest are univariate and binary.

Let Y be a binary survey variable of interest and Z a binary post-stratifier, observed

only for sample respondents. Let X denote a binary covariate, observed for all units in the

sample and R the binary response indicator which is observed for all units in the sample.

The marginal distribution of Z in the population is also available from an external source.

We generate data for (X, Y, Z,R) using a selection model factorization (Little and Rubin,

2019):

fX,Z,Y,R(xi, zi,yi, ri|θ, φ)

= fY |X,Z(yi|xi, zi, θ)fX,Z(xi, zi|φ)fR|X,Z,Y (ri|xi, zi, yi, ψ), (11)

where

1. (X,Z) are multinomial with P(X = Z = 0) = .2, P(Z = 0, X = 1) = .35, P(X =

0, Z = 1) = .3 and P(X = Z = 1) = .15

2. Y given (Z,X) is Bernoulli with

logit P(Y = 1|X,Z) = θ0 + θX(X − X̄) + θZ(Z − Z̄) + θXZ(X − X̄)(Z − Z̄)

for θ0 = 0.5 and six choices of (θX , θZ , θXZ) shown in Table 1.

3. R given (Z,X, Y ) is Bernoulli with

logit P(ri = 1|zi, xi, yi, ψ) = ψ0+ψX(X−X̄)+ψZ(Z−Z̄)+ψXZ(X−X̄)(Z−Z̄)+ψY (Y−Ȳ )

14
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Table 1: Parameters for the outcome regression model: distribution of Y given X and Z.

θX θZ θXZ

2 2 2

2 2 0

2 0 0

0 2 0

0 0 0

for seven choices of ψ = (ψX , ψZ , ψXZ , ψY ) shown in Table 2, chosen to reflect different

relationships between R and Y , X and Z. The coefficients are chosen to give an

approximate response rate of 70% for all simulated datasets.

A total of 5×7 = 35 combinations of population structures and non-response mechanisms

are considered in our simulation study. All populations are generated such to avoid the

presence of structural zeros. At each iteration, we generate a population of size N = 100, 000

and draw a simple random sample with fixed sample size of n = 1000. We use the six

estimators described below to estimate the finite population mean Ȳ .

The following methods for estimating the population mean of Y were compared in the

simulation study:

1. The respondent mean, ignoring the supplemental information about X and Z. This

method is labelled CC, for complete-case analysis.

2. The respondent weighted mean, with weights the inverse of the response rate within

categories of X, ignoring the information about Z. We label this method NR, for

nonresponse weighted analysis.
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Table 2: Parameters for the response propensity model: distribution of R given X,Z and Y .

MD Scenario ψX ψZ ψXZ ψY

Scenario 1 2 2 2 2

Scenario 2 2 2 2 0

Scenario 3 2 2 0 2

Scenario 4 2 2 0 0

Scenario 5 2 0 0 0

Scenario 6 0 2 0 0

Scenario 7 0 0 0 0

3. The post-stratified weighted mean, with weights obtained by matching to the Z aux-

iliary margin, ignoring the information about X. We label this method PSZ, for

post-stratification based on Z.

4. NRPS: the weighted mean, with weights from one iteration of raking to the X sample

margin and then the Z auxiliary margin. This is a standard design-based approach.

5. RAKEXZ: Similar to NRPS, but iteratively raking on the X and Z margins until

convergence. This yields ML estimates of the joint distribution of X and Z under the

RAKE model of Section 2.3 and takes the form of the estimator in Eq. (7) based on a

logistic regression with X and Z interactions for Y .

6. PRED1: Predictive model-based estimator in the form of (8), where X and Z are

jointly imputed for the nonrespondents using the RAKE model of Section 2.3, assum-

ing the odds ratios of X and Z are the same for respondents and nonrespondents.

Nonrespondent values of Y are imputed assuming a saturated logistic model for Y

16
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given X and Z.

7. PRED2: Same as PRED1, except the interactions of X and Z are not included in the

logistic model for Y given X and Z.

Inferences for CC, NR, PSZ, RAKEXZ and NRPS are performed using the the survey

package in R (Lumley, 2009). We use the R package nlme (Bates, 2005) to fit the regression

models in the two predictive estimators PRED1 and PRED2, and use bootstrap replicates

for standard errors.

3.2 Simulation Results

Tables 4 and 5 compare the absolute root mean square error and the absolute empirical bias

of the six different estimators described in Section 3.1 in repeated random samples. Tables 6

and 7 compare the non-coverage and the average relative width of 95% confidence intervals

from the six different estimators in repeated random samples. When the response depends

on the outcome Y (MD Scenarios 1 and 3), none of the methods perform well, with high

relative bias and relative RMSE, and confidence coverage far below the nominal 95% level.

On the other hand, when the data is MCAR (MD Scenario 7), all methods perform well.
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Figures 2 – 4 display the intermediate missing data mechanism in MD scenarios 2, 4, 5 and

6. In these scenarios, the three model-based estimators give more efficient point estimates

as indicated by lower root mean square errors (Figure 2), mainly due to the reduced bias

(Figure 3). These estimators also yield tighter confidence intervals (Figure 4) while achieving

nominal coverage (Figure 5). These estimators adapt to the optimal design-based estimators

which give point estimates with low RMSE and empirical bias with good inferences when

the weights appropriately adjust for missingness: In missing data scenarios 2 and 4, where

missingness depends on X and Z, the NRPS and RAKEXZ estimators achieve this. In

missing data scenario 5, missingness depends on X, and weighting methods that adjust for

X give efficient results while in missing data scenario 6 where missingness depends on Z,

weighting methods that adjust forX give efficient results. It summary, as long as the response

mechanism does not depend on the X and Z interaction, the model-based estimators remove

much of the bias.

4 Application

We apply the six estimators in Section 3.1 to data from the Academic Performance Index

(API), a standardized test of students which sought to measure academic performance and

progress of public schools in the state of California (Kim and Sunderman, 2005). The API

was administered by California Department of Education and used to guide statewide policy

through 2017, when it was replaced by a new accountability system. The apipop dataset in

the R package survey contains information on 37 variables for all 6194 schools with at least

100 students.
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We consider two numeric outcomes, the mean api scores in year 1999 and 2000 which we

denote by Y1 and Y2 respectively. It is plausible to assume that missingness of school-level

data would depend on whether or not a school had all its pupils tested. However this variable

will be measured once the survey is taken, and not necessarily available through official

statistics or past surveys— we thus consider as our covariate X, the binary variable which

is equal to one if 100% of students in a school are tested and zero otherwise. Missingness

of information on a school can also depend on the school’s overall performance. One such

measure is whether a school is eligible for awards. The proportion of schools eligible for

awards can be assumed to be obtainable from official statistics, and we thus consider awards

as our binary post-stratifier Z. We use R1 and R2 to denote the binary response indicator

variables for Y1 and Y2 respectively. We consider the following models for the missing data

mechanisms

logit[P(R1 = 1|X = x, Z = z)] = 1 + ψx(x− px) + ψz(z − pz) + ψxz(x− px)(z − pz)

and

logit[P(R2 = 1|X = x, Z = z)] = 1 + ψx(x− px) + ψz(z − pz) + ψxz(x− px)(z − pz)

using the same values of ψx, ψz and ψxz shown in Table 3. Here, we only consider the

scenarios where missingness depends on X and Z. Similar to our simulation study, the

coefficients in Table 3 are also chosen to give a response rate of approximately 70%. The

five different missingness mechanisms are similar to those considered in Section 3, reflecting

different dependency structures of R. We draw repeated samples from the apipop dataset

and apply the proposed estimators to each observed dataset.
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Table 3: Models for R given X and Z.

MD Scenario ψX ψZ ψXZ

Scenario 1 2 2 2

Scenario 2 2 2 0

Scenario 3 2 0 0

Scenario 4 0 2 0

Scenario 5 0 0 0

We use the same six estimators considered in Section 3. After verifying normality as-

sumptions of Y1 and Y2 for respondents, we use linear regression with binary predictors to

model the distribution of the two different outcomes given X and Z. We use 50 bootstrap

samples for the RAKE model at the first step, and 50 predictive draws using the residual

standard errors of the linear regression of Y on X and Z. The design-based methods were

all derived using the survey package in R, and residual standard errors of the linear model

were extracted using the R software package arm (Gelman et al., 2018).

Figures 6 compares the point estimates for the mean API score in the years 1999 and

Figure 7 compares its interval estimates. Similar qualitative results were observed for the

mean API score in the years 2000 (see Figures 1 and 2 in the Online Supplement). The

qualitative patterns are in general similar for both survey outcomes. Our results suggest that

that all methods perform well when the data is MCAR. The three model-based estimators,

namely RAKEXZ, PRED1 and PRED2 all perform well and show robustness to the missing

data mechanisms, as evident by the relatively flat RMSEs and EBs for all other missing data

mechanisms. In these simulations, we also see that the methods involving PS, namely PS
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and NRPS perform relatively well. However, we see methods CC and NR give very high

RMSEs, especially for Ȳ2 and empirical bias for the first two missing data mechanisms, and

CC and NR still performing poorly for the fourth missing data mechanism.
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Figure 6: Comparison of Point Estimates of six different estimators for the population mean

API score in 1999 (Y1).

In terms of the interval estimates displayed in Figure 6, the three model-based methods

perform well in the sense of yielding tight confidence intervals that achieve nominal coverage

when the missing data structure conforms with the method of choice. While these findings

agree in general, with our simulation results based on a binary outcome, they are more

pronounced here. The two model based methods give conservative intervals and achieve

nominal coverage throughout. However, this comes at the cost of wide confidence intervals.

We observe similar qualitative patterns for both outcomes.

The qualitative patterns are in general similar for both survey outcomes. Our results

suggest that that all methods perform well when the data is MCAR. The three model-

based estimators all perform well and show robustness to the missing data mechanisms, as
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evident by the relatively flat RMSEs and EBs for all other missing data mechanisms. In

these simulations, we also see that the methods involving PS, namely PS and NRPS perform

relatively well. However, we see methods CC and NR give very high RMSEs, especially

for Y2 and empirical bias for the first two missing data mechanisms, and CC and NR still

performing poorly for the fourth missing data mechanism.
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Figure 7: Non-coverage vs relative average width of resulting 95% CI of the population mean

API score in 1999 (Y1).

5 Discussion

We describe likelihood-based inference for survey nonresponse when post-stratification vari-

ables are observed for survey nonrespondents but not nonrespondents, and marginal distri-

butions of these variables are available from auxiliary data. Models assume that missingness
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does not depend on the survey variable subject to nonresponse, but are MNAR when missing-

ness depends on the post-stratification variables. By formally modeling the joint distribution

of X and Z, the auxiliary information provides us with the data to identify MNAR models,

weakening assumptions about the mechanism. A novel feature of the paper is to describe

how post-stratification information from external sources can be formally incorporated into

the likelihood function. Thus, we are not aware of the basic missingness assumption of

Eq. (2) and the likelihood function of Eq. (3) having been described in previous literature.

The model-based estimates considered here are maximum likelihood, with standard errors

estimated using bootstrap replicates. For small samples where the asymptotic properties

of ML do not apply, an attractive alternative approach is to add prior distributions for the

parameters and base inferences on Bayesian posterior distributions.

Advantages of this modeling approach are that (a) the model assumptions clarify condi-

tions under which particular estimates are asymptotically optimal; (b) unsaturated models

allow for situations where the data do not support saturated models for the joint distribu-

tion of (Z, X and R) or Y given Z and X; and (c) the approach avoids arbitrary choices

of distance functions required for methods that modify the survey weights. There has been

recent interest in likelihood-based with auxiliary information. Chatterjee et al. (2016) and

Chen et al. (2015) developed methodology for regression models. Chatterjee et al. (2016)

also relaxed the simple random sampling assumption by considering more general sampling

designs such as two-phase sampling. These and other work discussed in the introduction do

not consider non-ignorable nonresponse models.

We focused here on simple random sampling designs and categorical covariates and post-

stratifiers. Stratified random sampling can be accommodated by including stratum indicators
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as X variables in the model, and cluster and multistage sampling by hierarchical models

that include random effects to model clustering. These extensions, and models that include

continuous variables within X and Z, are topics for future research.

References

Bates, D. (2005). Fitting linear mixed models in R. R news, 5(1):27–30.

Chambers, R. L., Steel, D. G., Wang, S., and Welsh, A. (2012). Maximum likelihood esti-

mation for sample surveys. CRC Press.

Chatterjee, N., Chen, Y.-H., Maas, P., and Carroll, R. J. (2016). Constrained maximum

likelihood estimation for model calibration using summary-level information from external

big data sources. Journal of the American Statistical Association, 111(513):107–117.

Chen, A., Owen, A. B., and Shi, M. (2015). Data enriched linear regression. Electronic

Journal of Statistics, 9(1):1078–1112.

Cochran, W. (2007). Sampling techniques. Wiley-India.

Dempster, A., Laird, N., and Rubin, D. (1977). Maximum likelihood from incomplete data

via the EM algorithm. Journal of the Royal Statistical Society. Series B (Methodological),

39(1):1–38.

Deville, J. and Sarndal, C. (1992). Calibration estimators in survey sampling. Journal of

the American Statistical Association, pages 376–382.

28

This article is protected by copyright. All rights reserved.



Deville, J., Sarndal, C., and Sautory, O. (1993). Generalized raking procedures in survey

sampling. Journal of the American Statistical Association, pages 1013–1020.

Gelman, A. and Little, T. C. (1997). Poststratification into many categories using hierarchical

logistic regression. Survey Methodology.

Gelman, A., Su, Y.-S., Yajima, M., Hill, J., Pittau, M. G., Kerman, J., Zheng, T., Dorie,

V., and Su, M. Y.-S. (2018). Package ‘arm’.

Holt, D. and Smith, T. (1979). Post stratification. Journal of the Royal Statistical Society.

Series A (General), pages 33–46.

Kalton, G. and Flores-Cervantes, I. (2003). Weighting methods. Journal of Official Statistics

-Stockkolm-, 19(2):81–98.

Kim, J. S. and Sunderman, G. L. (2005). Measuring academic proficiency under the No Child

Left Behind Act: Implications for educational equity. Educational researcher, 34(8):3–13.

Kish, L. (1965). Survey sampling.

Kott, P. and Chang, T. (2010). Using Calibration Weighting to Adjust for Nonignorable

Unit Nonresponse. Journal of the American Statistical Association, 105(491):1265–1275.

Kott, P. S. and Liao, D. (2017). Calibration weighting for nonresponse that is not missing

at random: Allowing more calibration than response-model variables. Journal of Survey

Statistics and Methodology, 5(2):159–174.

Kott, P. S. and Liao, D. (2018). Calibration weighting for nonresponse with proxy frame

29

This article is protected by copyright. All rights reserved.



variables (so that unit nonresponse can be not missing at random). Journal of Official

Statistics (JOS), 34(1).

Laird, N. and Ware, J. (1982). Random-effects models for longitudinal data. Biometrics,

38(4):963–974.

Little, R. (1993). Post-stratification: A modeler’s perspective. Journal of the American

Statistical Association, pages 1001–1012.

Little, R. (2004). To model or not to model? Competing modes of inference for finite

population sampling. Journal of the American Statistical Association, 99(466):546–556.

Little, R. and Wu, M. (1991). Models for contingency tables with known margins when

target and sampled populations differ. Journal of the American Statistical Association,

pages 87–95.

Little, R. J. and Rubin, D. B. (2019). Statistical analysis with missing data, volume 793.

John Wiley & Sons.

Little, R. J., Rubin, D. B., and Zangeneh, S. Z. (2017). Conditions for ignoring the missing-

data mechanism in likelihood inferences for parameter Subsets. Journal of the American

Statistical Association, 112(517):314–320.

Lumley, T. (2009). SURVEY: analysis of complex survey samples. R package version 3.11-2.

Lumley, T. (2010). Complex surveys: a guide to analysis using R, volume 565. Wiley.

Rubin, D. (1976). Inference and missing data. Biometrika, 63(3):581.

30

This article is protected by copyright. All rights reserved.



Särndal, C., Swensson, B., and Wretman, J. (2003). Model assisted survey sampling. Springer

Verlag.

Si, Y., Trangucci, R., Gabry, J. S., and Gelman, A. (2017). Bayesian hierarchical weighting

adjustment and survey inference. arXiv preprint arXiv:1707.08220.

Si, Y. and Zhou, P. (2019). Bayes-raking: Bayesian finite population inference with known

margins. arXiv preprint arXiv:1901.02117.

Valliant, R., Dorfman, A., and Royall, R. (2000). Finite population sampling and inference:

a prediction approach. Wiley, New York.

31

This article is protected by copyright. All rights reserved.



Table 4: Comparison of 10, 000 × relative RMSE of estimators in simulations (n=10000).
(ψX , ψZ , ψXZ , ψY ) (βX , βZ , βXZ) CC NR PS.Z NRPS RAKEXZ PRED1 PRED2
(2,2,2,2) (2,2,2) 26 42 47 75 87 83 84
(2,2,2,0) (2,2,2) 64 87 96 131 145 144 145
(2,2,0,2) (2,2,2) 82 73 58 51 79 79 79
(2,2,0,0) (2,2,2) 56 32 39 42 42 42 42
(2,0,0,0) (2,2,2) 174 183 185 195 199 198 200
(0,2,0,0) (2,2,2) 97 48 33 5 1 2 2
(0,0,0,0) (2,2,2) 35 15 13 1 1 1 1
(2,2,2,2) (2,2,0) 21 1 34 3 1 1 1
(2,2,2,0) (2,2,0) 50 74 0 1 1 1 1
(2,2,0,2) (2,2,0) 1 1 1 1 1 1 1
(2,2,0,0) (2,2,0) 22 41 41 76 96 89 91
(2,0,0,0) (2,2,0) 41 64 65 103 123 123 123
(0,2,0,0) (2,2,0) 58 67 29 36 74 74 74
(0,0,0,0) (2,2,0) 44 15 35 38 38 38 38
(2,2,2,2) (2,0,0) 158 166 166 177 184 184 183
(2,2,2,0) (2,0,0) 85 38 30 3 2 1 1
(2,2,0,2) (2,0,0) 47 22 23 4 1 1 1
(2,2,0,0) (2,0,0) 29 1 52 7 1 1 1
(2,0,0,0) (2,0,0) 51 92 0 0 0 0 0
(0,2,0,0) (2,0,0) 1 1 1 1 1 1 1
(0,0,0,0) (2,0,0) 41 1 83 1 1 1 1
(2,2,2,2) (0,2,0) 26 1 42 1 1 1 1
(2,2,2,0) (0,2,0) 129 1 108 1 1 1 1
(2,2,0,2) (0,2,0) 20 1 0 0 0 0 0
(2,2,0,0) (0,2,0) 1 1 1 1 1 1 1
(2,0,0,0) (0,2,0) 70 116 1 9 1 1 1
(0,2,0,0) (0,2,0) 28 46 1 5 1 1 1
(0,0,0,0) (0,2,0) 15 1 1 11 1 1 1
(2,2,2,2) (0,0,0) 257 213 0 0 0 0 0
(2,2,2,0) (0,0,0) 1 1 1 1 1 1 1
(2,2,0,2) (0,0,0) 1 1 1 1 1 1 1
(2,2,0,0) (0,0,0) 1 1 1 1 1 1 1
(2,0,0,0) (0,0,0) 1 1 1 1 1 1 1
(0,2,0,0) (0,0,0) 1 1 0 0 0 0 0
(0,0,0,0) (0,0,0) 1 1 1 1 1 1 1
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Table 5: Comparison of 100 × relative absolute empirical bias of estimators in simulations
(n=10000).
(ψX , ψZ , ψXZ , ψY ) (βX , βZ , βXZ) CC NR PS.Z NRPS RAKEXZ PRED1 PRED2
(2,2,2,2) (2,2,2) 814 1043 1109 1399 1506 1477 1483
(2,2,2,0) (2,2,2) 1061 1243 1309 1529 1605 1603 1605
(2,2,0,2) (2,2,2) 1194 1124 1002 935 1169 1168 1169
(2,2,0,0) (2,2,2) 1055 799 884 914 915 914 915
(2,0,0,0) (2,2,2) 1669 1707 1720 1765 1783 1777 1789
(0,2,0,0) (2,2,2) 1592 1112 916 333 104 183 134
(0,0,0,0) (2,2,2) 784 510 468 117 22 38 39
(2,2,2,2) (2,2,0) 590 6 767 214 7 6 6
(2,2,2,0) (2,2,0) 994 1216 6 5 5 4 4
(2,2,0,2) (2,2,0) 1 1 1 2 2 2 2
(2,2,0,0) (2,2,0) 743 1026 1030 1414 1583 1528 1541
(2,0,0,0) (2,2,0) 844 1060 1068 1350 1478 1477 1477
(0,2,0,0) (2,2,0) 996 1080 705 782 1132 1132 1131
(0,0,0,0) (2,2,0) 939 532 836 871 874 874 874
(2,2,2,2) (2,0,0) 1587 1627 1628 1682 1712 1713 1710
(2,2,2,0) (2,0,0) 1489 985 869 203 145 12 87
(2,2,0,2) (2,0,0) 906 623 631 243 30 5 5
(2,2,0,0) (2,0,0) 706 7 950 331 6 6 5
(2,0,0,0) (2,0,0) 1006 1362 0 1 2 2 1
(0,2,0,0) (2,0,0) 3 4 4 6 7 8 7
(0,0,0,0) (2,0,0) 1031 16 1473 10 7 3 9
(2,2,2,2) (0,2,0) 667 1 861 4 6 6 6
(2,2,2,0) (0,2,0) 1498 0 1368 0 0 1 1
(2,2,0,2) (0,2,0) 627 8 1 0 0 1 1
(2,2,0,0) (0,2,0) 8 10 9 10 10 9 9
(2,0,0,0) (0,2,0) 1350 1742 4 449 5 9 4
(0,2,0,0) (0,2,0) 700 904 1 276 1 0 0
(0,0,0,0) (0,2,0) 491 10 14 425 12 12 12
(2,2,2,2) (0,0,0) 2278 2072 9 10 8 6 7
(2,2,2,0) (0,0,0) 3 3 2 2 2 3 2
(2,2,0,2) (0,0,0) 13 12 10 9 8 18 7
(2,2,0,0) (0,0,0) 13 10 12 9 8 9 9
(2,0,0,0) (0,0,0) 10 7 9 6 7 6 7
(0,2,0,0) (0,0,0) 4 3 6 6 6 4 4
(0,0,0,0) (0,0,0) 3 3 3 3 3 3 3
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Table 6: Comparison of non-coverage of 95% interval estimates in simulations (n=10000).
(ψX , ψZ , ψXZ , ψY ) (βX , βZ , βXZ) CC NR PS.Z NRPS RAKEXZ PRED1 PRED2
(2,2,2,2) (2,2,2) 100 100 100 100 100 100 100
(2,2,2,0) (2,2,2) 100 100 100 100 100 100 100
(2,2,0,2) (2,2,2) 100 100 100 100 100 100 100
(2,2,0,0) (2,2,2) 100 100 100 100 100 100 100
(2,0,0,0) (2,2,2) 100 100 100 100 100 100 100
(0,2,0,0) (2,2,2) 100 100 100 64 14 30 23
(0,0,0,0) (2,2,2) 100 100 98 20 7 10 12
(2,2,2,2) (2,2,0) 100 6 100 62 14 14 16
(2,2,2,0) (2,2,0) 100 100 9 8 10 4 4
(2,2,0,2) (2,2,0) 8 8 9 10 9 13 14
(2,2,0,0) (2,2,0) 100 100 100 100 100 100 100
(2,0,0,0) (2,2,0) 100 100 100 100 100 100 100
(0,2,0,0) (2,2,0) 100 100 100 100 100 100 100
(0,0,0,0) (2,2,0) 100 99 100 100 100 100 100
(2,2,2,2) (2,0,0) 100 100 100 100 100 100 100
(2,2,2,0) (2,0,0) 100 100 100 34 21 13 17
(2,2,0,2) (2,0,0) 100 100 100 62 10 12 13
(2,2,0,0) (2,0,0) 100 4 100 94 8 9 9
(2,0,0,0) (2,0,0) 100 100 6 4 6 1 2
(0,2,0,0) (2,0,0) 6 6 6 7 7 13 18
(0,0,0,0) (2,0,0) 100 4 100 4 7 7 7
(2,2,2,2) (0,2,0) 100 4 100 7 8 10 10
(2,2,2,0) (0,2,0) 100 8 100 14 16 16 18
(2,2,0,2) (0,2,0) 100 6 5 5 6 1 1
(2,2,0,0) (0,2,0) 6 6 6 6 6 10 14
(2,0,0,0) (0,2,0) 100 100 6 88 6 6 7
(0,2,0,0) (0,2,0) 100 100 5 72 6 5 6
(0,0,0,0) (0,2,0) 99 6 7 98 13 18 18
(2,2,2,2) (0,0,0) 100 100 4 4 4 1 1
(2,2,2,0) (0,0,0) 5 6 6 8 6 10 12
(2,2,0,2) (0,0,0) 8 6 8 11 12 10 11
(2,2,0,0) (0,0,0) 4 4 4 6 6 9 9
(2,0,0,0) (0,0,0) 8 4 6 12 16 20 20
(0,2,0,0) (0,0,0) 7 7 5 5 5 1 1
(0,0,0,0) (0,0,0) 8 8 7 7 7 19 20
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Table 7: Comparison of 100 × relative average width of 95% interval estimates in simulations
(n=10000).
(ψX , ψZ , ψXZ , ψY ) (βX , βZ , βXZ) CC NR PS.Z NRPS RAKEXZ PRED1 PRED2
(2,2,2,2) (2,2,2) 227 225 204 180 181 182 172
(2,2,2,0) (2,2,2) 258 259 246 225 224 214 210
(2,2,0,2) (2,2,2) 260 260 263 202 201 198 191
(2,2,0,0) (2,2,2) 249 254 157 165 159 230 227
(2,0,0,0) (2,2,2) 266 269 269 271 273 249 236
(0,2,0,0) (2,2,2) 250 249 228 205 208 224 196
(0,0,0,0) (2,2,2) 247 251 243 228 227 214 208
(2,2,2,2) (2,2,0) 246 254 243 201 203 198 192
(2,2,2,0) (2,2,0) 251 252 170 178 172 235 230
(2,2,0,2) (2,2,0) 244 246 246 248 249 209 199
(2,2,0,0) (2,2,0) 225 222 206 184 184 176 165
(2,0,0,0) (2,2,0) 253 254 245 226 224 209 205
(0,2,0,0) (2,2,0) 255 255 254 198 196 193 187
(0,0,0,0) (2,2,0) 245 251 155 167 157 229 226
(2,2,2,2) (2,0,0) 261 264 263 266 269 243 228
(2,2,2,0) (2,0,0) 245 244 226 208 210 198 185
(2,2,0,2) (2,0,0) 241 246 239 229 227 211 204
(2,2,0,0) (2,0,0) 240 250 233 197 201 198 190
(2,0,0,0) (2,0,0) 246 246 167 179 170 235 231
(0,2,0,0) (2,0,0) 239 242 242 243 246 207 195
(0,0,0,0) (2,0,0) 240 241 222 210 209 225 203
(2,2,2,2) (0,2,0) 239 254 229 227 226 215 210
(2,2,2,0) (0,2,0) 231 258 230 205 205 203 197
(2,2,0,2) (0,2,0) 243 254 160 175 166 230 226
(2,2,0,0) (0,2,0) 236 246 237 246 246 205 195
(2,0,0,0) (0,2,0) 248 251 232 214 215 235 214
(0,2,0,0) (0,2,0) 246 244 254 239 234 229 223
(0,0,0,0) (0,2,0) 250 247 253 201 201 195 188
(2,2,2,2) (0,0,0) 245 248 179 187 179 244 240
(2,2,2,0) (0,0,0) 243 244 254 255 254 222 212
(2,2,0,2) (0,0,0) 233 233 218 199 196 267 189
(2,2,0,0) (0,0,0) 239 239 230 215 213 188 185
(2,0,0,0) (0,0,0) 238 238 234 187 187 168 165
(0,2,0,0) (0,0,0) 241 241 159 167 159 220 218
(0,0,0,0) (0,0,0) 233 233 233 233 233 173 168
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