Journal: Ecosphere

Title: Dicamba drift impacts plant-herbivore interactions at the agro-ecological interface

Authors: Nia M Johnson and Regina S Baucom

Appendix S1

Herbivory Response	Chewing Dan (2018)	Chewing Damage (2018)		Idance	Whitefly Abundance (2019)	
Fixed Effects:	F	р	F	р	F	р
Treatment $(df = 2)$	0.906	0.410	12.014	< 0.001	5.300	0.006
Block 2018 (df = 1) 2019 (df = 2)	1.236	0.270	1.656	0.201	1.356	0.261
Treatment X Block 2018 (df = 2) 2019 (df = 4)	0.109	0.897	0.363	0.697	1.076	0.370
Random Effects:	χ2	р	χ2	р	χ2	р
Population (df = 1)					0.000	1.000
Maternal Line (df = 1)	0.498	0.480	0.000	1.000	0.535	0.464
Maternal Line X Treatment (df = 1)	0.000	1.000	0.000	1.000	0.000	1.000

Table S1. Influence of herbicide treatment on chewing damage for 2018 and whitefly abundance for both years, analyzed using *F*-statistics values showing effects of treatment, block, treatment by block interactions, and likelihood ratio test statistics (x^2) showing maternal line variation on herbivory measurements. In 2019 maternal lines are nested within populations. Significant values are expressed in boldface.

2018								
Trait	Height	Leaf C		int	Leaf Width		Flower Cour	nt
Fixed Effects:	F	Р	F	Р	F	Р	F	Р
Treatment (df = 2)	220.555	< 0.001	28.012	< 0.001	8.246	0.001	7.284	0.001
Block (df = 1)	0.278	0.599	7.627	0.007	6.151	0.014	5.421	0.022
Treatment X Block (df = 2)	60.804	< 0.001	15.714	< 0.001	3.554	0.032	4.287	0.016
Random Effects:	χ2	Р	χ2	Р	χ2	Р	χ2	Р
Maternal Line $(df = 1)$	0.000	1.000	0.000	1.000	0.000	1.000	0.000	1.000
Maternal Line X Treatment ($df = 1$)	0.000	1.000	1.986	0.159	0.000	1.000	0.054	0.816

Table S2. 2018 influence of herbicide treatment on velvetleaf traits, analyzed using Fstatistics values showing the effects of treatment, block, treatment by block interactions, and likelihood ratio test statistics ($\chi 2$) maternal line and maternal line by treatment interactions on variation of plant phenotypes. Significant values are expressed in boldface.

2019								
Trait	Height		Leaf Count		Leaf Width		Flower Coun	t
Fixed Effects:	F	Р	F	Р	F	Р	F	Р
Treatment (df = 2)	2.844	0.061	5.113	0.007	0.791	0.458	6.916	0.001
Block (df = 2)	0.144	0.866	0.700	0.498	2.398	0.096	1.313	0.271
Treatment X Block (df = 4)	0.551	0.699	0.506	1.697	1.763	0.188	0.470	0.758
Random Effects:	χ2	Р	χ2	Р	χ2	Р	χ2	Р
Population (df = 1)	0.000	1.000	0.632	0.427	5.112	0.024	0.397	0.528
Maternal Line (df =1)	0.000	1.000	0.000	1.000	0.000	1.000	0.166	0.684
Maternal Line X Treatment (df = 1)	0.000	1.000	0.000	1.000	0.000	1.000	0.000	0.986

Table S3. Influence of herbicide treatment on velvetleaf traits, analyzed using F-statistics

values showing the effects of treatment, block, treatment by block interactions, and likelihood ratio test statistics ($\chi 2$) showing population, maternal line, population by treatment interactions, and maternal line by treatment interactions on variation of plant phenotypes. Maternal lines were nested within populations. Significant values are expressed in boldface.

2018								
Trait	β	SE	Р	γ	SE	Р	r	Р
Whitefly Resistance	0.081	0.077	0.299	-0.191	0.055	0.087	0.060	0.622
Herbicide Resistance	-0.191	0.330	0.565	3.464	1.056	0.107	-0.123	0.174
Relative Growth	1.715	0.218	< 0.001	3.912	0.558	< 0.001	0.750	< 0.001
Whitefly Resistance X Herbicide Resistance				0.712	0.334	0.291		
Whitefly Resistance X Relative Growth				0.816	0.222	0.072		
Herbicide Resistance X Relative Growth				3.364	1.109	0.136		

Table S4. 2018 Selection analysis showing direct selection on focal traits: whitefly resistance, herbicide resistance, and relative growth rate. Linear (β) (R² = 0.510; p < 0.001) and quadratic (γ) (R² = 0.609; p < 0.001) selection gradients with associated standard errors (SE) and *P*-values (*P*). The (r) column represents correlation coefficients between trait and fitness, estimated as Pearson product-moment correlations. Significant values are expressed in boldface.

			2019					
Trait	β	SE	Р	Y	SE	Р	r	Р
Whitefly Resistance	0.002	0.190	0.990	0.232	0.230	0.526	-1.56	0.098
Herbicide Resistance	0.052	0147	0.722	-0.133	0.116	0.759	-0.004	0.955
Relative Growth	2.169	0.245	< 0.001	0.774	0.353	0.363	0.694	< 0.001
Whitefly Resistance X Herbicide Resistance				0.285	0.190	0.455		
Whitefly Resistance X Relative Growth				-0.818	0.390	0.297		
Herbicide Resistance X Relative Growth				1.328	0.373	0.078		

Table S5. 2019 Selection analysis showing direct selection on focal traits: whitefly resistance, herbicide resistance, and relative growth rate. Linear (β) (R² = 0.453; p < 0.001) and quadratic (γ) (R² = 0.466; p < 0.001) selection gradients, and total selection with associated standard errors (SE) and *P*-values (*P*). The (r) column represents correlation coefficients between trait and fitness, estimated as Pearson product-moment correlations. Significant values are expressed in boldface.

Trait	Relative Rat	Growth te	Herbicide Damage		
Fixed Effects:	F	Р	F	Р	
Treatment (df = 2)	2.431	0.10	76.464	< 0.001	
Block 2018 (df = 1)	7.971	0.005	107.667	1.000	
Treatment X Block 2018 (df = 2)	5.239	0.007	100.918	0.340	
Random Effects:	χ2	Р	χ2	Р	
Maternal Line (df = 1)	0.000	1.000	0.000	1.000	
Maternal Line X Treatment (df = 1)	0.000	1.000	0.000	1.000	

Table S6. 2018 Influence of treatment and block on relative growth, and herbicide damage, analyzed using F-statistics values showing the effects of treatment, block, treatment by block interactions, and likelihood ratio test statistics ($\chi 2$) showing, maternal line, and maternal line by treatment interactions on variation of plant phenotypes. Significant values are expressed in boldface.

Trait	Relative Ra	Growth te	Herbicide Damage		
Fixed Effects:	F	Р	F	Р	
Treatment $(df = 2)$	0.031	0.969	46.730	< 0.001	
Block (df = 2)	0.323	0.724	0.006	0.994	
Treatment X Block (df = 4)	0.259	0.904	5.982	< 0.001	
Random Effects:	χ2	Р	χ2	Р	
Population (df = 1)	0.000	1.000	0.190	0.663	
Population X Treatment (df = 1)	0.479	0.488	2.300	0.129	
Maternal Line (df = 1)	0.000	1.000	0.000	1.000	
Maternal Line X Treatment ($df = 1$)	0.000	1.000	0.000	1.000	

Table S7. 2019 Influence of treatment and block on relative growth, and herbicide damage, analyzed using F-statistics values showing the effects of treatment, block, treatment by block interactions, and likelihood ratio test statistics ($\chi 2$) showing population, maternal line, population by treatment interactions, and maternal line by treatment interactions on variation of plant phenotypes. Significant values are expressed in boldface.

Figure S1. Locations of velvetleaf populations sampled and used for this study. In 2018, the field experiment was conducted with only population one, while in 2019 the sample size was increased to all eight populations. Populations 3, 4, 6, 7, and 8 were used in the 2021 greenhouse experiment.

Figure S2. Photosynthetic carbon dioxide response curves by drift environment. a) A- C_i curves measured on leaves grown without drift exposure b) Comparison of A- C_i curves measured on leaves that developed before drift exposure (Leaf 1) and after drift exposure (Leaf 2) at 0.5% field dose. c) and at 1% field dose.