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Abstract 

Introduction. Studies investigating the relationship between blood pressure (BP) 

measurements from electronic health records (EHRs) and Alzheimer’s disease (AD) rely on 

summary statistics, like BP variability, and have only been validated at a single institution. We 

hypothesize that leveraging BP trajectories can accurately estimate AD risk across different 

populations. 

 

Methods. In a retrospective cohort study, EHR data from Veterans Affairs (VA) patients were 

used to train and internally validate a machine learning model to predict AD onset within five 

years. External validation was conducted on patients from Michigan Medicine (MM).  

 

Results. The VA and MM cohorts included 5,488 and 1,372 patients, respectively. Model 

performance using BP trajectories was modest but comparable (AUROC=0.64 [95%CI=0.54-

0.73] (VA) vs. AUROC=0.66 [95%CI=0.55-0.76] (MM)). 
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Conclusion. Approaches that directly leverage BP trajectories from EHR data could aid in AD 

risk stratification across institutions. 

 

Word count: 150/150 

 

 

 

 

Introduction  

Cardiovascular risk factors are associated with increased risk of Alzheimer’s disease (AD)1 and 

could be exploited to predict AD risk years before clinical diagnosis. Current work investigating 

relationships between AD risk and blood pressure (BP) primarily focuses on prospectively 

collected clinical trial data2-8. These trials are often limited in the amount of longitudinal data 

collected since sample sizes are frequently small (e.g., <1,000 individuals)2-3; the followup 

period is short (e.g., <three years)4-6; or the measurements are sparse (e.g., once every five 

years)7-8. To address these limitations, recent work used electronic health record (EHR) data, 

which contain decades of longitudinal data for thousands of patients, from a single institution to 

study the relationship between AD and BP9. However, assumptions were made regarding what 

aspects of the longitudinal measurements were important (e.g., BP variability). Moreover, these 

associations have only been validated on a single healthcare system. We expand on prior work 
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by i)using machine learning approaches to directly leverage longitudinal measurement 

trajectories without making assumptions and ii)validating on an external cohort. We 

hypothesize that i)using EHR-based BP trajectories can help predict AD onset and 

ii)performance will be on par with summary statistics.  

Methods 

We describe the inclusion/exclusion criteria applied to two populations to obtain our study 

cohorts. This study was approved by the Institutional Review Boards at the University of 

Michigan and Phoenix Veterans Affairs. 

Study Cohorts  

Development and Internal Validation Cohort. We trained on patients from the five hospitals of 

the Veterans Affairs (VA) Veterans Integrated Service Network (VISN, formerly VISN18) 

region’s Cerner EHR instance (Cerner Corporation, North Kansas city, MO)10. Patient timelines 

were aligned at the first available encounter between 68-72 years (i.e., we predicted AD onset 

for all patients at the first encounter between 68-72). We aligned to control for age and because 

AD incidence rises at 75 years11. We excluded patients labeled with AD at alignment, patients 

with <five years of followup without an AD label, and like previous work,9 patients with <three 

measurements before alignment. Only patients with hypertension, identified by ICD 

(International Classification of Diseases) codes recorded ≤two years before alignment,12 

were included to control for the effect of hypertension on AD risk.  

External Validation Cohort. The external validation cohort included patients from Michigan 

Medicine’s (MM) Epic EHR instance (Epic Systems Corporation, Verona, WI) aligned 
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between 68-72. To control for data availability, we only included patients with ≥35 BP 

measurements, since VA patients generally had more measurements than MM patients. 35 was 

chosen to match the average number of measurements over a patient’s entire history before 

alignment. Cohort characteristics were compared between populations, using χ2 tests for 

statistical significance. 

Outcome. The model was trained to predict AD onset within five years of alignment. AD onset 

was labeled using a cohort discovery tool based on ICD codes for AD13. 

Model Development & Evaluation 

Data Preprocessing. We focused on features that were easy to collect or recorded routinely, 

retrospectively extracting only those in Table A3 for each cohort. Starting from alignment and 

going backward in time at six month intervals through five years of historical data, we recorded 

patient demographics (e.g., race), and the most recent vital sign measurements (e.g., the latest 

systolic BP measurement). For any missing measurement during the six-month interval, the 

previous value was carried forward, and a binary indicator denoting imputed values was set to 

1. We also included the number of measurements taken within the six-month interval. Five 

years of historical lookback was chosen based on data availability. 

Model Training. Our model, “BP Trajectories”, was a long-short term memory (LSTM)14 

recurrent neural network trained with the development cohort, using features from “General 

Information” and “Trajectories” (Table A3). We also trained two baseline LSTMs. The first, “BP 

Stats”, used all features from Table A3 except BP trajectories. The second, “No BP”, excluded 

both BP trajectories and summary statistics4,5,9,15,16 (Appendix A4). Neural network parameters 

were optimized using Adam. We used early stopping and random search in the hyperparameter 

space for model selection (more in Appendix A5). 
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Internal and External Validation. On the held-out VA validation and external MM cohorts, we 

measured the AUROC and AUPR (area under the receiver operating characteristics and 

precision-recall curves, respectively), reporting empirical 95% confidence intervals from 1,000 

bootstrapped samples. Statistical significance was tested using a resampling test17.  

Model Interpretation. To visualize which trajectories “BP Trajectories” found important, we 

plotted the median and interquartile range of trajectories among the predicted high-risk (≥90th 

risk percentile) and low-risk patients (≤10th risk percentile) for the internal and external 

validation cohorts. Given the expected population differences in the internal and external 

cohorts (e.g., fraction female), we conducted a permutation importance analysis on MM to 

measure the extent of feature utilization by the model, reporting 95% confidence intervals 

(Appendix A6). 

Results  

Cohort Characteristics. The development and internal validation cohorts included 5,488 and 

1,372 patients, respectively. Across cohorts, 2.4% of patients experienced the outcome. The 

external MM cohort included 1,201 patients, 2.5% of which experienced the outcome (Figure 

A1). The internal and external validation cohorts had several differences (Appendix A2), 

including the proportion female (internal=2.6%; external=54.0%), proportion with 

dyslipidemia (internal=29%; external=70%), and median diastolic BP (internal=78mmHg 

[IQR=71-85]; external=72mmHg [IQR=67-78]). However, the median systolic BPs were similar 

(internal=135mmHg [IQR=123-148]; external=135mmHg [IQR=126-143]).  

Internal and External Validation. On the VA validation cohort, “BP Trajectories” achieved 

AUROC=0.64, 95%CI=0.54-0.73 and AUPR=0.04, 95%CI=0.03-0.06. For MM, “BP Trajectories” 
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performed similarly (AUROC=0.66, 95%CI=0.55-0.76; AUPR=0.06, 95%CI=0.03-0.12) (Figure 

1). Performance was comparable to “BP Stats” (Figure 1).  

Model Interpretation. On the VA validation cohort, systolic and diastolic BP were consistently 

higher in the high-risk group than the low-risk group (Figure 2). MM had similar patterns for 

systolic BP. MM predictions were mostly affected by vitals, with 95%CI=0.043-0.188, 95%CI=-

0.009-0.036 describing the drop in AUROC and AUPR, respectively, from permutation 

importance (Table A4). 

Discussion 

We developed a model using EHR-based BP trajectories to predict AD onset. It was developed 

and internally validated using VA data and externally validated using MM data. The model had 

modest discriminative performance. Despite differences in health systems, EHR platforms, and 

patient populations, our patterns in discriminative performance (e.g., “BP Trajectories” was 

comparable to “BP Stats”) and observed high-/low-risk BP trajectory patterns were consistent, 

demonstrating the potential to generalize. 

Our results highlight the potential for model interoperability across institutions. 

Interoperability is a known challenge in healthcare due to differences in patient populations and 

medical/coding practices, and few studies have addressed it18. As hospitals collect more data,19 

addressing this will be crucial to improve healthcare practices.  

Like previous work, high-risk patients generally had higher systolic and diastolic BP and greater 

variability3-9. Leveraging trajectories provides additional information by highlighting when 

these differences matter most. Summary statistics do not readily capture such differences. 

While others used time-series trajectories to predict AD onset using datasets like ADNI,20 we 

used EHR data. EHRs contain longitudinal data from routine clinical care (e.g., vitals). This 
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allows us to potentially develop screening tools for the general population to identify high-risk 

individuals in any healthcare system without requiring invasive tests. Such individuals could be 

recruited to clinical trials like ADNI for biological validation, providing more high-risk 

individuals for enrollment.  

Although we focused on BP, this approach could potentially be used to identify meaningful 

longitudinal relationships among other features (e.g., image-based biomarkers). With BP, 

summary statistics important for predicting AD onset were established4,5,9,15,16. For new 

features, these statistics may not be established. Since using trajectories performed comparably 

to summary statistics for BP, one could potentially benefit from using trajectories when the 

longitudinal relationship between the feature and risk of AD onset is unknown, stimulating 

hypothesis generation.  

Our study has several limitations. The cohort discovery tool used to identify AD patients had 

sensitivity=0.7013. We excluded patients with <35 BP measurements for MM, so the approach 

may not generalize to individuals with fewer measurements. Finally, the amount of BP data 

available was limited in terms of the lookback period and frequency of measurement, with 

missing rates between 10%-70%, (Table A2). While high, this reflects clinical practice, where 

patients may not have routinely collected measurements. We hypothesize that longer lookbacks 

and more routinely collected measurements could improve performance. However, we are 

encouraged that, despite high rates of missingness, the model could capture a predictive signal.  

We demonstrated the potential of using EHR-based BP trajectories to predict AD onset, and our 

results were consistent across two EHRs. Leveraging EHR trajectories could help uncover the 

relationship between BP and AD by discovering unrecognized temporal patterns. Such analyses 

could apply to other features/diseases without knowing which summary statistics are 

predictive.  
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Figure 1. Overall performance. We show the AUROC and AUPR curves for all three models for 

each dataset. Error bars represent 95% confidence intervals. (a) VA dataset; (b) MM dataset 
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Figure 2. Median trajectories. We show the median trajectories for systolic and diastolic BP 

(abbreviated SBP and DBP, respectively) within different risk groups from the model trained on 

time series data. Risk groups were defined by the 10th and 90th percentiles of the model’s 

predictions. Error bars represent interquartile ranges. (a) VA dataset; (b) MM dataset 

 

 


