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Lay Summary  

Parental age is a risk factor for autism spectrum disorder; however, little is known about possible 

biologic aging changes that contribute to this association. We found that mothers with faster 

epigenetic aging and fathers with slower epigenetic aging, relative to their chronologic age, were 



at increased odds of having a child with ASD and/or decreased early learning, at 3 years of age. 

These findings suggest epigenetic aging in parents may play a role in neurodevelopment and 

ASD. 

 

Abstract  

Parental age is a known risk factor for autism spectrum disorder (ASD), however, studies to 

identify the biologic changes underpinning this association are limited. In recent years, 

“epigenetic clock” algorithms have been developed to estimate biologic age and to evaluate how 

the epigenetic aging impacts health and disease. In this study, we examined the relationship 

between parental epigenetic aging and their child’s prospective risk of ASD and autism related 

quantitative traits in the Early Autism Risk Longitudinal Investigation (EARLI) study. Estimates 

of epigenetic age were computed using 3 robust clock algorithms and DNA methylation 

measures from the Infinium HumanMethylation450k platform for maternal blood and paternal 

blood specimens collected during pregnancy. Epigenetic age acceleration was defined as the 

residual of regressing chronological age on epigenetic age while accounting for cell type 

proportions. Multinomial logistic regression and linear regression models were completed 

adjusting for potential confounders for both maternal epigenetic age acceleration (n=163) and 

paternal epigenetic age acceleration (n=80). We found accelerated epigenetic aging in mothers 

estimated by Hannum’s clock was significantly associated with lower cognitive ability and 

function in offspring at 12 months, as measured by Mullens Scales of Early Learning (MSEL)- 

scores (β = -1.66, 95% CI: -3.28, -0.04 for a 1-unit increase). We also observed a marginal 

association between accelerated maternal epigenetic aging by Horvath’s clock and increased 

odds of ASD in offspring at 36 months of age (aOR = 1.12, 95% CI: 0.99, 1.26). In contrast, 



fathers accelerated aging was marginally associated with decreased ASD risk in their offspring 

(aOR = 0.83, 95% CI: 0.68, 1.01). Our findings suggest epigenetic aging could play a role in 

parental age risks on child brain development. 

 

Keywords: epigenetic age, biologic age, age acceleration, autism spectrum disorder, autism-

related traits, DNA methylation, parental age 

 



Introduction 

In the last two decades, molecular biomarkers that can capture disease onset, age-associated 

physiological decline, and death, have been developed to better understand biologic aging 

processes (Johnson, 2006). Compared to other types of biomarkers of biological age, such as 

telomere length, transcriptomic-based, and proteomic-based estimators (Jylhava et al., 2017), 

DNA methylation-based age estimators (Horvath, 2013, Hannum et al., 2013, Levine et al., 

2018), referred to as “epigenetic clocks”, have been shown to predict chronological age with 

very high accuracy including across tissues and ethnicities (Zhao et al., 2016, Bormann et al., 

2016). More recently, PhenoAge and GrimAge clocks are designed to incorporate clinical and 

lifestyle factors, such as plasma proteins and cigarette smoking to predict physiologic 

dysregulation (Levine et al., 2018, Lu et al., 2019). At the individual level, predicted epigenetic 

age, i.e. “biologic age”, can be compared to actual chronologic age, whereas the difference 

between the chronologic age and predicted epigenetic age captures the age discordance of the 

individual. One type of discordances is epigenetic age acceleration, i.e. being biologically older 

than ones chronologic age, which has been associated with a wide-range of adverse health 

outcomes including neurological disorders and age-related outcomes such as all-cause mortality 

(Lu et al., 2019, Chen et al., 2016, Perna et al., 2016), cancer (Dugue et al., 2018, Durso et al., 

2017, Ambatipudi et al., 2017, Perna et al., 2016, Levine et al., 2015), cardiovascular and 

metabolic diseases (Roetker et al., 2018, Nevalainen et al., 2017, Horvath et al., 2016a, Perna et 

al., 2016, Horvath et al., 2014), and psychiatric and neurodegenerative disorders(Rosen et al., 

2018, Fries et al., 2017, Horvath et al., 2016b, Levine et al., 2015, Horvath and Ritz, 2015). 

However, to our knowledge, no studies have investigated parental epigenetic age acceleration or 

deceleration with neurodevelopmental outcomes in their children despite advanced parental 



chronologic age being a known risk factor for several neurodevelopmental outcomes including 

autism spectrum disorder (ASD).   

 

Parental chronologic age is an established risk factor for ASD (Lyall et al., 2017). Meta-analyses 

have shown increased risk of ASD independently associated with advanced  maternal age and 

paternal age (Wu et al., 2017).  Additionally, combined effects of maternal age and paternal age 

on the risk for ASD in offspring have been reported (Idring et al., 2014, Sandin et al., 2016). 

Findings from a recent study of children at high familial risk for ASD observed younger 

chronologic age in parents was associated with increased risk of ASD and poorer cognitive 

ability (Lyall et al., 2020). Little is known about the biologic mechanisms underlying these 

associations but a number of mechanisms have been proposed including increased de novo 

mutation burden in older individuals (Girard et al., 2016, Leppa et al., 2016, Sebat et al., 2007, 

Virkud et al., 2009) and altered leukocyte telomere length (Lewis et al., 2020, Li et al., 2014, 

Nelson et al., 2015). Epigenetic changes have also been linked to chronologic age (Alisch et al., 

2012, Bell et al., 2012, Bormann et al., 2016, Heyn et al., 2012, Martino et al., 2011) and to ASD 

(Andrews et al., 2018, Bakulski et al., 2021, Hannon et al., 2018, Ladd-Acosta et al., 2014), 

independently, but no studies, to our knowledge, have examined epigenetic aging as a potential 

aging-related mechanisms that may be relevant to ASD risk. One possible mechanism for the 

associations observed between older parental age and ASD is hypothesized to be DNA 

methylation changes associated with older parental age, but other aging factors could underly the 

parental age and ASD association, such as epigenetic aging as a marker of biological aging, in 

particular the deviation of epigenetic aging from chronological aging, may be an alternative 

marker for the aging processes that could be associated with ASD.   



 

Previous studies have shown that parental age-ASD association may differ in families at low, 

general, or high familial risk. However, the mechanisms are not well understood. One hypothesis 

is that de novo mutation may not fully explain the parental age-ASD association and it is possible 

that de novo mutation plays a less role in the high-risk families (Gratten et al., 2016, Lyall et al., 

2020). Given the differences in high familial and general population observed in other studies, it 

is important to better understand the biological risk factors associated with ASD in the high-risk 

population. To address these gaps in knowledge and to provide insights into whether the 

epigenetic aging process plays a role in ASD risks in the high-risk population, we tested the 

association between epigenetic age acceleration/deceleration in mothers and fathers during 

pregnancy, and ASD-related outcomes including clinical ASD diagnosis, related social 

communication traits, and cognitive and adaptive function in their children in early childhood.  

 

Methods 

Study Population 

Participants for this analysis were enrolled through Early Autism Risk Longitudinal Investigation 

(EARLI),  which has been previously described (Newschaffer et al., 2012).  EARLI is a 

prospective study of ASD that utilizes a familial history design, i.e. it enrolled pregnant women 

who had a previous child with ASD. The new baby sibling was at increased likelihood for ASD 

given the increased sibling recurrence of ASD (Newschaffer et al., 2012). Briefly, EARLI was 

implemented at four major metropolitan locations across the U.S. (Philadelphia, Baltimore, San 

Francisco Bay Area, and Sacramento), representing three distinct U.S. regions (Southeast 

Pennsylvania, Northeast Maryland, and Northern California). Recruitment methods varied by 



location to capitalize on unique resources at each study site. Enrolled mothers were seen at 

regular intervals during pregnancy (approximately once a trimester) and at birth to complete 

interviews that cover a wide range of exposure, medical, and demographic domains, as well as to 

collect biologic and environmental samples, including cord blood and placenta at birth. Infants 

were prospectively followed until 36 months of age. EARLI is racially, ethnically, and 

socioeconomically diverse. All infants included in this analyses were unrelated and were full 

siblings. The institutional review boards (IRB) at organizations in the four study sites (Drexel 

University, Johns Hopkins University, University of California, Davis, and Kaiser Permanente 

Research) approved the EARLI study. 

 

DNA methylation measurements and quality control (QC) 

Maternal and paternal whole blood biosamples were collected using vacutainer EDTA tubes at 

study enrollment using a standardized protocol across all sites. The biosamples were shipped on 

the same day to Johns Hopkins Biological Repository for storage at -80 °C. Genomic DNA was 

extracted using a Qiagen DNA Midi Kit (Qiagen Inc., Valencia, CA) and quantified using a 

NanoDrop spectrophotometer (ThermoFisher Scientific). DNA methylation was measured using 

the Illumina Infinium HumanMethylation450 BeadChip (Illumina, San Diego, CA). For each 

sample, 1 μg of genomic DNA was bisulfite treated using the EZ-96 DNA Methylation kit 

(Zymo Irvine, CA), as per the manufacturer’s instructions. Biosamples were sent to the Johns 

Hopkins Genetic Resource Core Facility (GRCF) for processing.  

 

Several sample- and probe-level quality control measures were applied (Aung et al., 2021). 

Samples were excluded if they were duplicates, had low overall array intensity, or a discrepancy 



between reported sex and empirically predicted sex. Cross-reactive probes as well as probes that 

measured DNA methylation at known SNP positions and outside of CpG sites were removed. 

Probes with detection p-values > 0.01 in 10% of samples were removed from the analyses. A 

final count of 445,241 probes remained in the analysis. A total of 198 maternal DNA 

methylation samples and 93 paternal DNA methylation samples passed the QC procedures. DNA 

methylation data were then normalized using a modified beta-mixture quantile (BMIQ) function 

(Teschendorff et al., 2013, Horvath, 2013). While the original BMIQ is a within-sample 

normalization method to address probe type bias by modifying the type II distribution to match 

that of type I probes, Horvath modified this BMIQ procedure for a different purpose: the 

distribution of each given array is related to that of a “gold standard” array (defined here as the 

mean across all of the training datasets). Thus, Horvath’s modification of the BMIQ method 

could be interpreted as a form of between sample normalization (Horvath, 2013). Lastly, 

proportions of cell types, including B cells, CD4+ T cells, CD8+ T cells, eosinophils, monocytes, 

granulocytes, neutrophils, and natural killer cells, were empirically estimated using the 

estimateCellCounts function of the minfi R package and the Houseman reference panel 

(Houseman et al., 2012, Aryee et al., 2014).   

 

Epigenetic age estimation 

Parental epigenetic age was calculated using three existing epigenetic clock algorithms – 

Horvath’s clock (Horvath, 2013), Hannum’s clock (Hannum et al., 2013), and PhenoAge (Levine 

et al., 2018). Horvath’s clock is based on 353 CpGs and has been robustly correlated with 

chronological age in multiple tissues, whereas the Hannum’s clock is calculated from 71 CpGs 

and constructed on whole blood DNA methylation data. PhenoAge age estimators are developed 



based on 513 CpGs while taking into account 10 clinical characteristics (e.g. glucose, C-reactive 

protein levels, white blood cell counts). For each parental sample, a measure of epigenetic, i.e. 

“biologic”, age acceleration was computed as the residuals from regressing the respective 

epigenetic age on chronological age adjusted for cell type proportions. Positive epigenetic age 

indicates older biologic age compared to chronological age, or acceleration, and negative values 

indicate younger predicted biologic age relative to chronological age, or epigenetic age 

deceleration.   

 

Outcome Assessments 

At 36 months, diagnostic category was determined as either meeting criteria for ASD, not 

meeting ASD criteria but having indications of non-typical neurodevelopment (Non-TD), or 

neuro-typical development (TD). ASD diagnosis was based on both a best estimate clinical 

diagnoses and evaluation of ASD features using the Autism Diagnostic Observational Schedule 

(ADOS) (Lord et al., 1989). To meet ASD criteria a child had to be at or above the ASD cutoff 

of the ADOS and also meet DSM-IV-TR criteria for Autistic Disorder or PDD-NOS based on 

expert clinical opinion. The Non-TD group was defined using the criteria defined by the Baby 

Siblings Research Consortium (BSRC) as used in prior EARLI publications: failing to meet 

criteria for ASD classification  while also having two or more Mullen Scales of Early Learning 

(MSEL) subtest scores ≥ 1.5 SD below the mean (Ozonoff et al., 2014). TD were then children 

not meeting criteria for either ASD or non-TD.  

 

To assess quantitative ASD-related phenotype, at 36 months we collected the 65-item, caregiver-

report Social Responsiveness Scale (SRS), with higher raw score values indicating greater 



expression of the ASD-related phenotype. To assess other quantitative aspects of 

neurodevelopmental phenotype we used Mullen Scales of Early Learning (MSEL) (Mullen, 

1995), also used as described above in out categorical diagnostic algorithm, and Vineland 

Adaptive Behavior Rating Scales 2nd Edition (VABS-II) (Cicchetti, 1989).  Both these care-giver 

report instruments were administered at 12 and 36 months. The MSEL assesses overall 

cognitive, language, and motor ability. The overall standardized MSEL (the Early Learning 

Composite [ELC]) score shows high internal consistency, and convergent validity with other 

measures of IQ among children with and without ASD. The VABS-II score is a standardized 

measure of adaptive functioning from children aged 0 to 18 years and assesses the following 

functioning domains: communication, daily living skills, socialization, motor, and adaptive 

behaviors. Figure S1 presents total number of participants with each outcome available.   

Covariate Information 

Maternal, paternal, and child characteristics, including maternal age, paternal age, race/ethnicity, 

maternal education, paternal education, annual family income, maternal pre-pregnancy body 

mass index (BMI), and child’s sex were obtained through maternal-report questionnaires. Labor 

and delivery information, including birth weight and parity, were extracted from medical records 

by abstractors or physicians at each site. Genetic data were measured using the Illumina 

Omni5+exome array (Illumina, San Diego, CA) at the Johns Hopkins University Center for 

Inherited Disease Research (CIDR). Ancestry principal components (PCs) were determined by 

merging the overlapping genotypes with 1000 genomes project (1000GP, version 5) data. Top 5 

ancestry PCs were used for genetic ancestry adjustment in the analysis.  

 

Statistical Analyses 



Descriptive analyses were conducted to examine maternal, paternal, and child characteristics by 

ASD status, distribution of epigenetic age acceleration/deceleration, and distribution of the 

quantitative traits. Pearson correlation coefficients between chronological age, estimated 

epigenetic age, and epigenetic age acceleration/deceleration across Horvath’s clock, Hannum’s 

clock, and PhenoAge were calculated. Adjusted multinomial logistic regression models were 

completed to evaluate the association between maternal and paternal epigenetic age acceleration 

and ASD diagnosis at 36 months (ASD, non-TD, and TD group as the reference). Multivariable 

linear regression models were used to explore the relationship between parental epigenetic age 

and quantitative traits adjusting for potential confounders. Potential confounders were selected 

based on prior knowledge and retained in the adjusted model if a 15% change in coefficient 

estimate was observed. The final primary models were adjusted for study site, child’s sex, 

maternal or paternal education (high school or less, college, and graduate school or higher), and 

ancestry PCs. Additional models adjusted for maternal age, paternal age, parity, and maternal 

pre-pregnancy BMI were also evaluated in separate models. Results are presented as odds ratio 

(OR) or beta estimates with 95% confidence intervals (CI) per a one-unit increase (1-year) in 

maternal or paternal epigenetic age acceleration. In sensitivity analysis, we further assessed 

potential incremental increases in risk by examining strata of parental age as a categorical 

variable (<30, 30 to <35, and ≥ 35 for maternal age, and <30, 30 to <40, and ≥ 40 for paternal 

age) and epigenetic age as a binary variable (accelerated vs decelerated epigenetic age). We also 

further examined the associations with maternal or paternal epigenetic age acceleration in 

subgroups with both maternal and paternal samples available (n=80 for maternal associations and 

n=78 for paternal associations). A two-sided p-value less than 0.05 was considered statistically 

significant. All statistical analyses were performed using R 3.6 software.  Data are available 



through the National Institute of Mental Health Data Archive (NDA) under the collections for 

the EARLI network (1600).  

 

Results 

Biosamples from a total of 161 mothers and 80 fathers had high quality blood DNA methylation 

measures, chronologic age, and autism diagnosis and/or autism-relevant quantitative trait 

outcome data for their child (Figure S1). As shown in Table 1, mothers were predominantly 

White (66.4%), non-Hispanic (82.8%), and college educated or higher (88.6%). Paternal 

characteristics were similar across the maternal/paternal study population. The mean (SD) 

maternal age and paternal chronologic ages were 34 (5) years and 36 (6) years, respectively. 

Characteristics of the study group by ASD diagnosis are provided in Table S1. The distribution 

of child SRS raw scores in both maternal and paternal analytic samples showed a long tail 

suggests presence of more individuals with higher levels of ASD-related traits (Figure S2). 

MSEL-ELC scores ascertained in children at both 12-months and 36-months of age showed a 

slight shift to the left, i.e. an increase in the proportion of lower cognitive abilities, in both 

parental samples. VABS scores (for which higher scores indicate stronger adaptive functioning) 

showed a relatively normal distribution.  

 

Distributions of parental chronologic ages and estimated epigenetic ages are provided in Table 

S2. DNA methylation estimates of epigenetic age, using the Horvath and Hannum clock 

algorithms as well as PhenoAge, all showed significant high overall correlations with 

chronologic age for both the maternal and paternal samples (Figure 1,  P< 0.001 and correlations 

ranging from 0.70 to 0.84). For example, the correlation between paternal chronologic age and 



Horvath epigenetic age is 0.84 (P<0.001). PhenoAge consistently showed lower correlations 

with chronologic age than the Horvath- and Hannum-based epigenetic age estimates (Figure 1). 

After residualization, epigenetic age acceleration was not associated with chronological age (all 

p>0.05).   

 

For all 3 epigenetic age estimates, we computed epigenetic age acceleration in each parent 

sample and tested for associations with their child’s ASD diagnosis at 36 months of age. As 

shown in Table 2, we observed 1.12 greater odds (95% CI: 0.99, 1.26; P=0.06) of having a child 

with ASD for each 1-year increase in epigenetic age relative to chronologic age among mothers 

(accelerated epigenetic age), using the Horvath epigenetic clock estimates, compared to the TD 

group. The PhenoAge showed a similar direction and magnitude of risk effect as the Horvath 

clock but did not reach statistical significance. Marginal significant associations were observed 

between paternal accelerated epigenetic aging and decreased ASD risk in their child (aOR=0.83, 

95% CI: 0.68, 1.01; P=0.06). Effect estimates for all 3 clocks suggest decreased ASD risk among 

fathers with accelerated biologic aging (Table 2). Accelerated aging in mothers and fathers was 

not associated with increased risk of non-TD in their child. These results were consistent even 

after further adjustment for maternal or paternal chronologic age (Table S3). 

 

We also examined parental accelerated aging associations with autism-related quantitative traits 

as measured by the SRS (Table 3), MSEL (Table 4), and VABS (Table 5) scores. As shown in 

Table 3, maternal and paternal accelerated age was not significantly associated with SRS raw 

scores; however, the effect sizes and directions were generally consistent across clocks and crude 

and adjusted statistical models for Horvath’s clock and Hannum’s clock. Results were similar 



when examining SRS T-scores rather than total raw scores (data not shown) and after further 

adjustment for parental chronologic age for Horvath’s clock and Hannum’s clock (Table S4). 

We observed decreased child MSEL-ELC scores at 12 months (indicating poorer cognitive 

functioning) with maternal epigenetic age acceleration for all three clock algorithms, though only 

the result from Hannum’s clock estimates reached statistical significance (β= -1.66, 95% CI: -

3.28, -0.04, P=0.04, Table 4). Similar associations were not observed between maternal 

accelerated aging and MSEL-ELC scores at 36 months. When we further adjusted for maternal 

and paternal chronologic age (Table S5), the associations of maternal epigenetic age acceleration 

and MSEL-ELC scores at 12 months were similar (β= -1.69, 95% CI: -3.32, -0.06, P=0.04 in the 

model adjusted for maternal age; β= -1.74, 95% CI: -3.36, -0.12, P=0.04 in the model adjusted 

for paternal age). Paternal epigenetic age acceleration was not significantly associated with child 

MSEL-ELC scores at 12 months or at 36 months. VABS scores showed no significant 

associations with either maternal or paternal epigenetic age acceleration (Table 5) including after 

further adjustment for parental chronologic ages (Table S6). 

 

Discussion 

We examined whether epigenetic aging plays a role in parental age associations with ASD and 

autism-related quantitative traits. Maternal accelerated epigenetic age, i.e. biological age older 

than one’s chronologic age, as measured by Hannum’s clock, was associated with increased risk 

of ASD in the child and with decreased cognitive abilities as measured by the MSEL-ELC 

scores. Suggestive associations were also observed between accelerated maternal epigenetic age 

and increased risk for ASD and between accelerated paternal epigenetic age and decreased risk 



for ASD. Our results show that epigenetic aging in parents could play a role in child 

neurodevelopment and cognitive outcomes. 

 

Maternal accelerated age associations with cognitive functioning were significant for estimates 

using the Hannum’s clock but did not reach the same level of statistical significance or effect 

size in statistical models that used epigenetic aging measures from the Horvath’s or PhenoAge 

clocks. Similarly, we only observed associations between epigenetic aging measures from the 

Horavth’s clock and risk of ASD but not with Hannum’s or PhenoAge clocks. The lack of 

correspondence across the associations could be due to differences between the clocks or the 

different physiological processes captured by each clock. Specifically, the Horvath’s clock is a 

multi-tissue clock that captures biologic aging across a diverse set of tissues and cell types 

(Horvath, 2013) whereas the Hannum clock measures biologic aging in a single tissue – whole 

blood. Unlike first-generation clocks, the Horvath’s and Hannum’s clocks that were derived on 

chronologic age alone, PhenoAge was built using clinical measures of health to predict overall 

health and lifespan (Levine et al., 2018). Growing evidence suggest that second-generation 

clocks including PhenoAge and GrimAge (Lu et al., 2019) clocks may be more sensitive to 

biological outcomes associated with lifestyle or clinical factors. Differences in our findings by 

clock algorithms suggest that detection of associations depends on clock methods.  

 

In this study we examined cell-intrinsic aging, by adjusting for cell composition in our regression 

analyses, because we were specifically interested in evaluating the cellular aging process itself as 

opposed to age-related health changes that can cause shifts in blood cell composition and result 

in epigenetic aging differences (Horvath and Raj, 2018). We found cell-intrinsic accelerated 



aging in mothers whose child received an autism diagnosis at age 3. We did not observe 

significant differences in cell-intrinsic aging in fathers related to their child’s 

neurodevelopmental outcomes but point estimates consistently indicated accelerated aging was 

associated with decreased risk for ASD and ASD-related quantitative traits measured via the 

SRS. Previous work suggests the mechanisms that are likely to differ for maternal and paternal 

chronologic age are complex (Grether et al., 2009, Lee and McGrath, 2015, Lyall et al., 2017). A 

hypothesized mechanism for maternal age acceleration with increased ASD risk is mediation by 

pregnancy or perinatal complications, whereas an association of paternal age acceleration with 

decreased ASD risk could be explained by socio-economic status (SES) related factors. It is 

possible that extrinsic or environmental factors may also influence age-related shifts in parental 

blood cell composition and be related to child neurodevelopment. Understanding the impact of 

environmental and genetic factors on cell composition and biologic age, and their potential 

impact on child ASD risk and cognition is an important area of future investigation.  

 

Our study was carried out in a population of children at increased likelihood for ASD due to 

having an older sibling with autism. Previous work suggests that the associations between 

parental age and autism and ASD-related outcomes may differ in the presence of familial risk.  A 

recent study drawn from the ASD-enriched risk (ASD-ER) cohort reported that younger parental 

ages were associated with increased risk of autism and decreased MSEL scores when both 

parents were under the age of 30 (Lyall et al., 2020). Mechanisms underlying these relationships 

at different familial risk are not yet understood. One potential mechanism underlying the parental 

age and ASD association is the increased rates of de novo mutation with advanced parental age 

(Girard et al., 2016). It has been suggested that de novo mutation may play a lesser role in the 



high-risk families (Lyall et al., 2020). Our study observed that the discordance of aging 

measured by the deviation between chronologic age and epigenetic age of mothers was 

associated with autism and cognitive functioning in high-familial risk setting. Given the 

differences in findings by familial risk in parental aging associations with ASD, future work 

should seek to investigate the discordance of aging and potential mechanisms in independent 

samples in general populations stratified by high and low familiar risk.  

 

The sample size of our study was relatively small, limiting the ability to perform stratified 

analyses in subgroups. We cannot rule out the potential for selection bias given the differences in 

the SES-related characteristics of the maternal full study population and the paternal full study 

population. However, in our sensitivity analyses of the subgroup with overlapping maternal and 

paternal observations, we observed overall consistency in the direction of associations for both 

maternal and paternal epigenetic age acceleration with ASD outcomes. Our study population is 

relatively highly educated with increased resources and supports to the child, which could 

introduce residual confounding or mediation by SES-related factors.  In addition, due to the 

small sample size, we were not able to examine the joint effect or combined effect of maternal 

and paternal epigenetic age acceleration on the outcome measures. Finally, we examined the 

associations across different clocks and different outcome measures, which could increase the 

potential for chance finding. Given the nature of the correlated measures of the exposures and 

outcomes in our study, we cannot assume that all tests are truly independent of each other, 

therefore we did not perform multiple testing and presented results at nominal levels.  

 



We provide the first evidence showing that the epigenetic aging in mothers as measured by 

Hannum’s clock is associated with ASD and cognitive function assessed by MSEL scores in 

their children. Additionally, our results suggest the biologic mechanisms related epigenetic aging 

associations with ASD risk may differ between mothers and fathers. Future studies need to be 

conducted to evaluate whether our results are specific to families with a history of ASD or 

whether they reflect biologic processes involved in autism risk, more broadly.  
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Table 1. Descriptive characteristics of the study population in the Early Autism Risk 
Longitudinal Investigation (EARLI) study 

  
Maternal age full 
study population 

Paternal age full 
study population 

(N=163) (N=80) 
Child characteristics, N (%)    

Child sex   
  Male 88 (54.0) 44 (55.0) 
  Female 75 (46.0) 36 (45.0) 
ASD diagnosis   
  ASD 29/154 (18.8) 14/76 (18.4) 
  Non-typical 48/154 (31.2) 28/76 (36.8) 
  Typical 77/154 (50.0) 34/76 (44.7) 
Quantitative traits   
  SRS raw score, mean (SD) 36.9 (27.9) 33.9 (25.3) 
  MSEL-ELC score at 12 months, mean (SD) 201.7 (32.5) 207.6 (28.6) 
  MSEL-ELC score at 36 months, mean (SD) 97.8 (21.5) 98.1 (22.5) 
  VABS composite score at 36 months, mean 
(SD) 92.0 (13.2) 92.6 (11.9) 

Parent characteristics, N (%)    
Maternal age, mean (SD) 34.0 (5.0) 34.2 (4.5) 
Paternal age, mean (SD) 35.9 (6.2) 36.4 (6.2) 
Maternal race   



  White  105 (66.4) 54 (72.0) 
  Black 17 (10.8) 5 (6.7) 
  Other 36 (22.8) 16 (21.3) 
Maternal ethnicity   

  Non-Hispanic 135 (82.8) 68 (90.7) 
  Hispanic 28 (17.2) 7 (9.3) 
Maternal education,    

  High school or less 19 (11.7) 7 (9.5) 
  Some college/college 97 (59.5) 39 (52.7) 
  Graduate school or higher 47 (28.8) 28 (37.8) 
Paternal race   

  White  104 (66.2) 56 (70.9) 
  Black 19 (12.1) 4 (5.1) 
  Other 34 (21.7) 19 (24.0) 
Paternal ethnicity   

  Non-Hispanic 130 (80.7) 67 (84.8) 
  Hispanic 31 (19.3) 12 (15.2) 
Paternal education   

  High school or less 36 (22.4) 7 (9.0) 
  Some college/college 88 (54.6) 44 (56.4) 
  Graduate school or higher 37 (23.0) 27 (34.6) 
Study site, N (%)   

  Drexel 41 (25.2) 28 (35.0) 
  Johns Hopkins 39 (23.9) 20 (25.0) 
  Kaiser Permanente 52 (31.9) 20 (25.0) 
  UC Davis 31 (19.0) 12 (15.0) 

Note: ASD, autism spectrum disorder; SRS, Social Responsiveness Scale; MSEL, Mullen Scales of Early Learning; 
MSEL-ELC, Mullen Scales of Early Learning early learning composite; VABS, Vineland Adaptive Behavior Rating 
Scales. The total sample size for each quantitative trait in the maternal age full study population: N=142 for SRS, 
N=155 for MSEL-ELC at 12 months, N=153 for MSEL-ELC at 36 months, N=152 for VABS; the total sample size 
for each quantitative trait in the paternal age full study population: N=66 for SRS, N=77 for MSEL-ECL at 12 
months and 36 months, N=76 for VABS.  
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 2. Crude and adjusted associations between parental epigenetic age 
acceleration and child ASD and non-typical development at 36 months of age 
  Crude model   Adjusted modela 
  OR (95% CI) p-value   OR (95% CI) p-value 
Maternal epigenetic age acceleration     

   Horvath's clock      

  TD Ref   Ref  
  non-TD 0.98 (0.89, 1.07) 0.60  0.94 (0.86, 1.06) 0.38 
  ASD 1.07 (0.97, 1.19) 0.19  1.12 (0.99, 1.26) 0.06 

   Hannum's clock      

  TD Ref   Ref  
  non-TD 0.97 (0.86, 1.08) 0.55  0.95 (0.83, 1.10) 0.50 
  ASD 0.99 (0.86, 1.13) 0.84  0.95 (0.81, 1.17) 0.55 

   PhenoAge      

  TD Ref   Ref  
  non-TD 0.98 (0.90, 1.07) 0.65  0.96 (0.86, 1.06) 0.39 
  ASD 1.03 (0.93, 1.14) 0.53   1.04 (0.93, 1.16) 0.50 

Paternal epigenetic age acceleration     

   Horvath's clock      

  TD Ref   Ref  
  non-TD 1.00 (0.91, 1.10) 0.97  1.05 (0.90, 1.21) 0.54 
  ASD 0.97 (0.86, 1.09) 0.62  0.83 (0.68, 1.01) 0.06 

   Hannum's clock      

  TD Ref   Ref  
  non-TD 1.03 (0.93, 1.14) 0.53  1.09 (0.93, 1.26) 0.29 



  ASD 1.00 (0.88, 1.15) 0.95  0.80 (0.63, 1.02) 0.07 
   PhenoAge      

  TD Ref   Ref  
  non-TD 1.00 (0.90, 1.12) 0.98  1.02 (0.87, 1.20) 0.83 
  ASD 0.97 (0.85, 1.12) 0.72   0.84 (0.69, 1.02) 0.08 

Estimated Odds ratios (ORs) and 95% confidential intervals (CI) are shown per one unit 
increase in epigenetic age acceleration. ASD, Autism Spectrum Disorder; Non-TD, Non-
Typical Development; TD, Typical Development. 
aAdjusted for study site, child’s sex, top five ancestry principal components (PCs), and 
maternal or paternal education.  
 
 
 
 
 
 
 
 
 
 
 Table 3. Crude and adjusted associations between parental epigenetic age 
acceleration and child Social Responsiveness Scale (SRS) total raw scores at 36 
months of age 
  Crude model  Adjusted modela 
  beta (95% CI) p-value  beta (95% CI) p-value 
Maternal epigenetic age acceleration     
   Horvath's clock -0.71 (-1.80, 0.37) 0.19  -0.33 (-1.42, 0.76) 0.55  
   Hannum's clock -0.70 (-2.05, 0.66) 0.31  -0.53 (-1.93, 0.88) 0.46 
   PhenoAge 0.03 (-1.05, 1.12) 0.95  0.42 (-0.66, 1.49) 0.44 
Paternal epigenetic age acceleration     
   Horvath's clock -0.22 (-1.40, 0.95) 0.71  -0.61 (-1.86, 0.63) 0.33 
   Hannum's clock -0.04 (-1.34, 1.26) 0.95  -0.79 (-2.12, 0.54) 0.24 
   PhenoAge -0.02 (-1.3, 1.28) 0.98  -0.26 (-1.50, 0.99) 0.68 

Estimated beta coefficients and 95% confidential intervals (CI) are shown per one unit increase in 
epigenetic age acceleration.  
aAdjusted for study site, child’s sex, ancestry principal components (PCs), and maternal or paternal 
education 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 4. Crude and adjusted associations between parental epigenetic age acceleration 
and child Mullen Scales of Early Learning (MSEL) Early Learning Composite (ELC) 
scores collected at 12 months and 36 months of age 
  Crude model  Adjusted modela 
  beta (95% CI) p-value  beta (95% CI) p-value 
MSEL-ELC scores at 12 
months      

Maternal epigenetic age acceleration     
   Horvath's clock -0.35 (-1.58, 0.89) 0.58  -0.38 (-1.66, 0.90) 0.55  
   Hannum's clock -1.19 (-2.74, 0.36) 0.13  -1.66 (-3.28, -0.04) 0.04 
   PhenoAge -0.27 (-1.51, 0.98) 0.67  -0.49 (-1.76, 0.78) 0.45 
Paternal epigenetic age acceleration     
   Horvath's clock 0.57 (-0.63, 1.77) 0.35  1.05 (-0.20, 2.30) 0.10 
   Hannum's clock -0.71 (-2.09, 0.67) 0.31  -0.17 (-1.57, 1.23) 0.80 
   PhenoAge 0.21 (-1.18, 1.60) 0.76  0.63 (-.72, 1.97) 0.35 
MSEL-ELC scores at 36 
months      

Maternal epigenetic age acceleration     
   Horvath's clock 0.15 (-0.66, 0.97) 0.71  0.17 (-0.06, 0.96) 0.67 
   Hannum's clock 0.34 (-0.73, 1.41) 0.53  0.31 (-0.74, 1.36) 0.56 
   PhenoAge 0.002 (-0.81, 0.81) 0.99  0.11 (-0.66, 0.89) 0.77 
Paternal epigenetic age acceleration     
   Horvath's clock -0.05 (-1.02, 0.92) 0.92  0.43 (-0.50, 1.36) 0.36 
   Hannum's clock -0.25 (-1.33, 0.82) 0.64  0.45 (-0.54, 1.44) 0.37 
   PhenoAge -0.20 (-1.31, 0.92) 0.73  0.56 (-0.43, 1.56) 0.26 

Note: MSEL, Mullen Scales of Early Learning; ELC, early learning composite. Estimated beta 
coefficients and 95% confidential intervals (CI) are shown per one unit increase in epigenetic age 
acceleration.  



aAdjusted for study site, child’s sex, top 5 ancestry principal components (PCs), and maternal or paternal 
education 
 
 
 
 
  



Table 5. Associations between parental epigenetic age acceleration and child 
Vineland Adaptive Behaviors Scale (VABS) scores at 36 months of age 
  Crude model  Adjusted modela 
  beta (95% CI) p-value  beta (95% CI) p-value 
Maternal epigenetic age acceleration     
   Horvath's clock 0.05 (-0.47, 0.57) 0.85  0.02 (-0.53, 0.56) 0.96  
   Hannum's clock 0.36 (-0.30, 1.02) 0.28  0.15 (-0.56, 0.86) 0.68 
   PhenoAge 0.06 (-0.45, 0.58) 0.81  0.03 (-0.51, 0.57) 0.91 
Paternal epigenetic age acceleration     
   Horvath's clock 0.12 (-0.64, 0.40) 0.64  0.14 (-0.43, 0.71) 0.63 
   Hannum's clock -0.19 (-0.76, 0.38) 0.51  0.08 (-0.53, 0.69) 0.79 
   PhenoAge 0.02 (-0.55, 0.59) 0.94  0.28 (-0.31, 0.86) 0.34 

Estimated beta coefficients and 95% confidential intervals (CI) are shown per one unit increase in 
epigenetic age acceleration.  
aAdjusted for study site, child’s sex, top 5 ancestry principal components (PCs), maternal or paternal 
education, and additionally maternal age/paternal age. 
  



 
Figure 1. Correlations between parental chronologic age and epigenetic age. Maternal 
chronologic age compared to: A) Horvath predicted epigenetic age, B) Hannum predicted 
epigenetic age, C) PhenoAge estimates. Paternal chronologic age compared to: D) Horvath 
epigenetic age estimates, E) Hannum epigenetic clock estimates, and F) PhenoAge estimates. 
Scatterplot shows regression line and 95% confidence intervals. P-value refers to the significance 
level of the spearman correlation 
 
 




