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1 Abstract

The purpose of this paper is to find a notion of comparative distortion (abbrevi-
ated CD in this paper) between two map projections. In historical mathematical
cartography, and emphasis has been placed on (1) projecting the globe onto a
flat surface and (2) quantifying the necessary distortion that came from it. This
paper forms a method to compute some notion of comparative distortion, which
is a way to quantify how ”different” two maps are in terms of distortion. The
premise of the methodology is to form a mathematical model that most closely
follows human intuition about when graphs are different and how different they
are, because ”difference” between maps is something inherently subjective.

Procedurally, this is done by dissecting each map into a finite number of
points and then quantifying distortion at each of those points. Each map can
then be thought of a matrix or vector with a finite number of distortion entries,
and two maps can be compared by comparing their vectors.

The method of comparison involves taking the difference of a group of maps’
distortion vectors, and then taking the magnitude of that difference vector. This
represents some Euclidean notion of ”distance” between two maps and some
intuitive notion of how ”different” they are. It is consistent with qualitative
intuition about map differences and it preserves ordinality, so any maps that
are closer together than any other maps will be reflected quantitatively. Overall,
this method is successful in modeling intuition about comparative distortion.

2 Literature Review

There actually has been a limited amount of economic discussion about map-
making and the effects of distortion. In 2020, for example, Abhishek Nagaraj
and Scott Stern published a paper called ”The Economics of Maps” in , The
Journal of Economic Perspectives, published by the American Economic Asso-
ciation. They present an argument regarding the supply and demand for maps
themselves, but they argue that maps have been used by economists in every
sector of the study including urban economics, economic history, public finance,
and political economics. They’re used to understand a spatial distribution of re-
sources and form practical/logistical plans of government services. It also helps
them understand the different economic decision makers that interact with each
other by understanding proximity and separation.
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However, little has been studied about the actual maps used and how those
could be improved/affected. There have been sparse arguments made, like the
one above, about how important maps are to economic decision making, but
not about how the maps themselves function.

On the cartographic side, there has also been little discussion about compar-
ative distortion between map projections. There has been extensive discussion
about absolute distortion from the globe, which is helpful in determining bias
from reality. For example, in the book Coordinate Systems and Map Projec-
tions, D.H. Maling describes distortion in terms of area, angle, and bearing,
which are all from the globe. Many of these metrics have been widely studied
and are very available online for most notable map projections. However, these
are unhelpful when comparing two maps that have already been projected. This
paper will attempt to fill that niche by providing a quantitative way to eval-
uate comparative distortion, which is helpful when using several maps without
worrying about bias from a globe.

3 Overview

It is important to define comparative distortion. At its core, comparative distor-
tion is an intuitive, subjective, and qualitative evaluation of how different two
maps are from each other. For this paper, it’s how different the areas on the
map are from each other. This paper attempts to summarize that information
so it’s useful for comparison.

The most prolific mathematical object used in this paper are vectors, because
they’re a convenient way to organize information. Maps can be turned into
vectors, which can be compared to find some difference between them. Then,
using a magnitude, which is a convenient way to include all information in
a vector, the information can be summarized with one number. Because the
vectors would represent those maps, the difference between the vectors would
represent some quantitative notion of the difference between the two maps.

This methodology is useful because it’s actually consistent with intuition, as
it was intended to be. It preserves the fact that two of the same maps have no
comparative distortion, because they’re not different, and it ensures that two
maps that are intuitively more different than another pair of two maps will be
reflected by the mathematical analysis (it preserves ordinality).

This methodology also extends to more than just two maps. In fact, one
can used a generalized version of the original formula to compare any amount
of map sets, not just maps. This is done simply by adding up all values from all
possible combinations of map comparisons. This also obeys the same intuition
as above, because it preserves the fact that a group of the same map would have
no comparative distortion and it preserves ordinality.

This analysis could prove useful to policymakers, who could use it to ac-
quire or choose a more consistent group of maps, often used to make geopoliti-
cal/geoeconomic decisions, to make more consistent decisions.
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4 Assumptions

For this paper, it is important to note that very map can be overlain with some
grid involving some coordinate system. Because every map exists in a two-
dimensional plane, it can be described with some two-dimensional coordinate
system.

For this paper, all rectangular maps with length will be described using a
Euclidean coordinate system, with the origin in the bottom left corner. It is
not important where the origin is because this analysis is comparative, so as
long as they are consistent, the analysis will still be rigorous. One example of a
rectangular map is the Mercator projection, overlain with a Euclidean graticule
of longitude and latitude. Also, all circular maps will be described with polar
coordinates, with the origin in the center of the map.

It’s also important to note that the way to calculate distortion is not speci-
fied here. This way, the method can be generalized for area distortion, angular
distortion, etc. Note that it’s not guaranteed that such a method of calculating
distortion even exists, because this is simply a theoretical framework for a com-
parative analysis. It is not a data-based model, so its base-level assumptions
are all debatable but will be taken axiomatically for this paper.

5 Comparing Two Maps

To analyze the distortion of some group of maps comparatively, it will be im-
portant to come up with some way to quantify their distortion, and then find
some notion of comparison that is consistent with intuition.

Methodologically, we make the claim that the more information one can
gather about the distortion of a map, the more accurate the resulting measure
will be, so it would be optimal to gather as much information as possible. In
context, this would ideally mean gathering information about distortion at every
singly point on the map. .

To do so, note that each map can be represented at a matrix, with distortion
information at each point on the map being an entry. (To calculate ”distortion
information,” use some accepted metric of distortion that can be evaluated at a
single point, like the area of Tissot’s indicatrix, or some equivalent for angular
distortion). Here, ”point” is described as the intersection between two lines
on a Euclidean grid, or between some radius and angular line on a polar grid.
Of course, on these grids, there are infinite points, so theoretically, the matrix
would be ∞ x ∞, which is not practically useful. Because of this, it is important
in execution to pick a finite number of points on each map. It is not important
what that number is, only that the number of points on compared maps are the
same.

To pick the number of points on a rectangular map, choose n vertical lines
and m horizontal lines. There will be a resulting number of n ∗ m points (in-
tersections). For a circular maps, choose n radial circles and m angular lines.
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There will be a resulting number of n ∗m points. From this form, we will form
a vector, which will allow us to perform algebraic operations on the map easily.
To form the map vector, enter the distortion values into an (n*m) x 1 vector
in some deterministic order. Be sure to form the vector for all compared maps
in the same order, starting at the same point. Only compare maps of the same
shape to each other. This will be called the map’s distortion vector

Illustratively, consider the following example for some rectangular map M
with distortion values represented in the rectangular matrix below. . Each
distortion entry on horizontal line i and vertical line j is denoted dij . In this
case, thew vector was formed by stacking all of the columns of the map’s matrix
on top of each other from left to right.

d11 · · · d1n
...

. . .
...

dn1 · · · dnn

 =



d11
...

dn1
...
...

d1n
...

dnn


Now, to calculate comparative distortion (CD), it is necessary to find some

measure of separation between the two maps, which are now represented by
their distortion vectors. There exists a natural and simple way to describe the
separation between two vectors: difference. Simply by subtracting the two vec-
tors, we can obtain a quantitative notion of how ”different” their distortions are
at each point. This vector will from now be called the difference vector between
two maps. The difference vector is a useful way to visualize the difference in
distortion at many places on the map, but it is not a concise way to under-
stand overall comparative distortion between the two maps. To find this, we
will take the magnitude of the difference vector, which gives us one number to
describe the difference between the two maps, and includes all information from
all points on the two maps.

To calculate the difference between two vectors, take the difference between
each of their components. To calculate the magnitude, take the square root of
the sum of the squares of all components:

m1

...
mn

−

p1...
pn

 =

m1 − p1
...

mn − pn
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∥

m1

...
mn

 ∥ =
√

(m1)2 + . . .+ (mn)2

For the rest of this paper, define function d(M,P ) = ∥m⃗− p⃗∥ as the function
that computes the comparative distortion between the two maps. In a Euclidean
sense, this can be thought of the ”distance” between the two maps, which could
each be represented as vectors pointing to points in some n ∗ m dimensional
Euclidean space.

6 Usefulness

Now that we have provided the reasoning for forming a map’s distortion ma-
trix, and then its distortion vector, as well as using difference as a measure of
comparison, we need to see if these methodological steps actually serve a use-
ful purpose. To do this, we need to consider whether they are consistent with
our intuition about what comparative distortion should look like qualitatively,
because then we can be confident that the quantitative measure works as as it
should. Specifically, there is one question we need to answer:

1. Does this measure preserve ordinality? (For the comparisons between
maps, does the measure accurately measure when some maps have more
comparative distortion than others?)

We first consider our only edge case: when there is no comparative distortion.
This would happen when we have two of the exact same map, because there is
no difference between the two maps. Assume that if one map is a linear scale
of the other (that is, it’s a bigger or smaller version of the same map) that
it’s scaled up or down so it’s identical to the first map. Intuitively, we would
consider two maps that are a linear scaling of each other to be the same map,
so we should mathematically treat them as such. This is considered to be the
only edge case because there is no intuitive upper bound on how different two
maps can be.

In this case, the two maps, which are the same, would necessarily have the
same distortion vectors, because they have the exact same distortion at each
point. In this case, for two maps m⃗ and p⃗ that are the same, d(M,P ) =
∥m⃗ − p⃗∥ = d(M,M) = ∥m⃗ − m⃗∥ = 0, which says quantitatively that there is
zero comparative distortion between these two maps. This is consistent with
our intuition about maps with no comparative distortion.

Also, intuitively, this should be the minimal value comparative distortion. It
makes sense for two maps to have no comparative distortion, which is when they
are the same (there is no difference between them), but it is hard to imagine
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two maps with less difference than that. This indicates that this should be the
minimal value our function should take.

And it is. Because our comparative distortion is a magnitude of two vectors,
it can only be greater than or equal to 0. 0 is the minimal value it can take.
From now on, the mathematical notion of ”difference” being subtraction will
be refereed to as ”separation”, so it is not confused with the qualitative word
”difference” that refers to a quality of being ”not similar.”

For the general case, consider two maps with some comparative distortion.
Qualitatively, this would mean that when comparing some set of points on two
maps, the maps have separate values for distortion. Quantitatively, the more
separate those values are, the more comparatively distorted they should be.
Specifically, If two maps have very separate distortion values at a few points
or if they have somewhat separate values at many points, they should have a
high comparative distortion. This is the contextual notion of ordinality: two
maps are ”more separate” from each other than some other two maps if their
distortion values have a higher separation at more points, and the function
should reflect that.

In fact, the function does reflect that. Consider two sets of maps, M,P
and N,Q. Consider the first case where both sets of maps are different at the
same number of points i, but have different values of separation at each of those
points. Imagine the separation at all other points is 0 for simplicity. Suppose
now that M,P are more separate at each of those points than N,Q.

Illustratively, consider m⃗ and p⃗ of M and P that are different at i points
(and the same at all others). Here it is considered that all i components are
consecutive without loss of generality. Then m⃗− p⃗ =



m1

...
mr

...
mr+i

...
mk


−



m1

...
pr
...

pr+i

...
mk


=



0
...

mr − pr
...

mr+i − pr+i

...
0


Consider also n⃗ and q⃗ of N and Q that are different at i points. Here it

is considered that all i components are consecutive without loss of generality.
Then n⃗− q⃗ =
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n1

...
nr

...
nr+i

...
nk


−



n1

...
qr
...

qr+i

...
nk


=



0
...

nr − qr
...

nr+i − qr+i

...
0


with mw − pw > nw − qw, with r ≤ w ≤ r + i.

In that case, i components of m⃗− p⃗ are greater than the same i components
of n⃗− q⃗ . In that case, ∥m⃗−p⃗∥ > ∥n⃗− q⃗∥, because those i components contribute
more to ∥m⃗− p⃗∥ than the same i components contribute to ∥n⃗− q⃗∥.

Consider a second case where both sets have the same separation in distor-
tion at each point they’re separate, but they’re separate at a different number
of points. Imagine the difference at all other points is 0. Let M,P be different
at i points and N,Q be different at j points, i > j.

Illustratively, consider m⃗ and p⃗ of M and P that are different at i points.
Here it is considered that all i components are consecutive without loss of gen-
erality. Then m⃗− p⃗ =



m1

...
mr

...
mr+i

...
mk


−



m1

...
pr
...

pr+i

...
mk


=



0
...

mr − pr
...

mr+i − pr+i

...
0


Consider also n⃗ and q⃗ of N and Q that are different at j points. Here it

is considered that all j components are consecutive without loss of generality.
Then n⃗− q⃗ =
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n1

...
nr

...
nr+j

...
nk


−



n1

...
qr
...

qr+j

...
nk


=



0
...

nr − qr
...

nr+j − qr+j

...
0


with i > j.

In this case again, ∥m⃗ − p⃗∥ > ∥n⃗ − q⃗∥, because there are more points con-
tributing to ∥m⃗− p⃗∥ than there are contributing to ∥n⃗− q⃗∥.

Lastly, consider a case where the two maps are separate at a different number
of points, and the values of separation are different as well. In this case it is
ambiguous which set has more comparative distortion, but intuitively, we would
expect that the map with less different points would only have a higher value if
its values of separation are so high that they outweigh the fact that it has less
points.

Illustratively, consider m⃗ and p⃗ of M and P that are different at i points.
Here it is considered that all i components are consecutive without loss of gen-
erality. Then m⃗− p⃗ =



m1

...
mr

...
mr+i

...
mk


−



m1

...
pr
...

pr+i

...
mk


=



0
...

mr − pr
...

mr+i − pr+i

...
0


Consider also n⃗ and q⃗ of N and Q that are different at j points. Here it

is considered that all j components are consecutive without loss of generality.
Then n⃗− q⃗ =
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n1

...
nr

...
nr+j

...
nk


−



n1

...
qr
...

qr+j

...
nk


=



0
...

nr − qr
...

nr+j − qr+j

...
0


withmw−pw ̸= nw−qw and i > j. In this case it is ambiguous, if the components
nr − qr, . . . , nr+j − qr+j are higher, they’ll contribute more to ∥n⃗− q⃗∥. If that
amount is more than than mr −pr, . . . ,mr+i−pr+i contribute more to ∥m⃗− p⃗∥
, then the set N,Q will have more comparative distortion than M,P . This
is exactly what we would expect: if the values for those fewer points in N,Q
outweigh the many points in M,P , then the comparative distortion of N,Q
should have a higher value.

This shows that d preserves ordinality, if a set of maps is expected intuitively
to have higher comparative distortion than another set, it does.

7 Comparing Multiple Maps

Now, instead of considering two maps M and P , consider n sets of maps of
cardinality s: M1, . . . ,Mn, where Mi={Mi1, . . . ,Mis}, with Mi1, . . . ,Mis all
being maps in the set. Note: the maps are organized in separate sets because
its possible that in a real scenario, maps may be grouped in separate collections
that are being compared to each other.

it is possible to use the CD function d as described above to not only compare
any two maps, but all maps at once from all sets.

To logically extend d, we would intuitively want to compare every map
in one set to every map in the other, obtain a comparative distortion value
for each of those comparisons, and then somehow combine the comparative
distortion values. The simplest way to do that is to use d to compare all possible
combinations of maps, and add up all the comparative distortion values. To do
this most conveniently, define two functions. Note: The first function is defined
to make the second one more clear, but this could be done in one step. The
first function is an extension of d, now to deal with two sets of maps instead of
just two maps. Let this function D be defined as

D(Ma,Mb) =

s∑
i=1

s∑
j=1

d(Mai
,Mbj )
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Where Mdi describes the the ith map in set Md This is the sum of all
comparative distortions from all combinations of maps in sets Ma and Mb.

Then Define set function δ:

δ(M1, . . . ,Mn) =

n∑
i=1

n∑
j=1

D(Mi,Mj)

which sums the comparative distortion between all maps in all setsM1, . . . ,Mn.

For δ to satisfy a useful measure of comparative distortion between two sets
of maps, it has to answer question 1. The justification of this questions are
quick and a generalization of the two-map version.

For the edge case of question 1, consider a case where some map sets
M1, . . . ,Mn have no distortion. This would be a case when each map in all
sets are exactly the same. In this case, D(Mi,Mj) for all i, j = 0, and there-
fore δ(M1, . . . ,Mn) = 0, which is a consistent reflection of two sets with no
distortion.

To address the general case, notice that δ does preserve ordinality. It is intu-
itive that a map comparison δ(M1, . . . ,Mn) is more distorted than some other
map comparison δ(P1, . . . ,Pn) if the maps being compared in δ(M1, . . . ,Mn)
are more distorted from each other on average than maps in δ(P1, . . . ,Pn). (It
is unintuitive to distinguish between two groups of different sizes, so this case

will be omitted) Specifically, this would mean
∑n

j=1

∑n
i=1 D(Mi,Mj)

n2 , the arith-
metic mean of distortions between all maps in sets M1, . . . ,Mn is greater than∑n

j=1

∑n
i=1 D(Pi,Pj)

n2 , the mean distortion between all maps in sets P1, . . . ,Pn

Notice that

∑n
j=1

∑n
i=1 D(Mi,Mj)

n2
>

∑n
j=1

∑n
i=1 D(Pi,Pj)

n2
⇒

n∑
j=1

n∑
i=1

D(Mi,Mj) >

n∑
j=1

n∑
i=1

D(Pi,Pj)

⇒ δ(M1, . . . ,Mn) > δ(P1, . . . ,Pn)

This shows that δ preserves ordinality, because any group of maps that is
more distorted than any other group is reflected by the δ function intuitively. δ
is a useful function for comparing distortion between two sets of maps.

8 Discussion and Implications

This paper presents a theoretical argument for a model of comparative map dis-
tortion. It aims to quantify some intuitive, qualitative notion of how ”different”
or ”separate” groups of maps are from each other. It does this by organizing
each map’s distortion information into a vector, and then finding the difference
as a useful quantitative way to evaluate the difference between the two maps.
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The difference information is then summarized by a magnitude, which preserves
intuitive notions of ordinality when comparing any sets of maps, including when
it is generalized to some arbitrary finite number of maps being compared. Maps
are an extremely useful tool in international politics and economics. They help
policy makers visualize geographic relations between nations, which could help
them strategically position their resources or facilities. They may use a map
to place a strategic military base next to a hostile neighbor or position their
resource farming facilities away from borders as protection.

It also helps them analyze geographic relations between other relevant coun-
tries. Maps could possibly help them predict the strategic placement that other
leaders make, which could influence a military campaign, diplomatic act, or
plans for their own strategies.

Because maps are such a useful tool in international strategy, it is important
that the maps used are consistent with each other. Massive inconsistencies in
map type or quality could lead to contradictory assumptions about where bor-
ders are, how big some countries are, or where facility placements actually are.
The methodology in this paper can be used to evaluate whether a group of maps
used by policymakers is ”consistent” - similar to each other, or ”inconsistent”
- all different from each other. Not only could it be used to see consistency
of maps in a group, it can produce a number to show how different the maps
are, which could help policymakers evaluate relatively how consistent the maps
they’re using are with each other. It could allow policymakers to choose similar
maps, which would help them make better decisions, because they wouldn’t be
receiving contradictory evidence from different maps.
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