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Abstract 

The thesis project is developed to create a platform for autonomous driving research and 

education purposes. The main goal of this study is to present a complete and adequate way for 

building a platform with a drive-by-wire system and sensor packages that are both 

comprehensive and appropriate for testing and deploying machine-learning-based algorithms on 

a scaled vehicle. The vehicle platform addresses reproducibility issues, onboard processing 

capability restrictions, vehicle scale, and system cost with the existing related vehicle platforms. 

Our vehicle platform system integrates both drives-by-wire and an autonomous system enabled 

with sensor packages in an easy-to-implement format. The platform is a generic and multilevel 

system, with flight controller programs combined with a GPS module handling the mid to high-

level motor controls and a laptop powered by a graphics processing unit (GPU) capable of 

handling the advanced and more complex algorithms. The vehicle platform is validated by 

employing it in a deep-learning-based behavioral cloning study. The platform's affordability and 

adaptability would benefit broader research and the education community.
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Chapter 1: Introduction 

1.1 Background 

The autonomous driving system has enormous importance to the future of transportation 

systems. Thus, as the year progresses, different aspects of the research have been conducted to 

achieve a fully autonomous system in the driving sector. With the advancement in technology 

and the increase in time spent in automobiles, this time must be as enjoyable as possible. In 

addition, the rise in technology has called for more avenues where autonomous vehicles have 

been more critical than ever before. For instance, most delivery services, such as Doordash, 

Amazon, and FedEx, have contributed hugely to the development of fully autonomous vehicles. 

Most importantly, driving is a mechanical activity that requires attention and focus, a change in 

the mood while using drugs, medications, or other substances that can impair the perception of 

the environment. Therefore, automating the driving system will eliminate human mistakes and 

significantly decrease traffic congestion.  

As the autonomous vehicle community increases, one major issue is that there are not 

enough people and platforms for research. As a result of the low turnout of people and research 

platforms, it's taking longer to bring a fully autonomous vehicle to market. Over the last decade, 

there have been numerous platforms to aid autonomous driving research and education. 

However, most existing platforms are challenging to replicate, leading to decreased interest in 

autonomous driving system platforms.  

The proposed solution is to create a vehicle system platform that will aid research and 

education purposes in the autonomous driving system, which will improve the existing 
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autonomous vehicle platforms in design simplicity, modification necessity, and cost-

effectiveness.  

1.2 Motivation  

The F1TENTH is a good platform for autonomous driving systems, but reproducing the 

system was challenging. Although there are instructions on replicating the system, the problem is 

that it is designed with different embedded components, and getting those components are 

challenging to readily unavailable.  

Over the last decade, there have been numerous platforms for the drive-by-wire system 

for research and education purposes in automated driving systems. However, most platforms 

need to improve in simplification and long time useability. The complication with designing 

those platform systems is that they are challenging to reproduce and have onboard processing 

capability restrictions. First, materials are always problems because the system is designed with 

multiple embedded components, which might be out of the store or out of production. In addition 

to the system's reproducibility, the platforms are scaled small and need to be more cost-effective.  

Regarding the onboard processing capability restrictions, most existing platforms are 

powered by the NVIDIA Jeston series of embedded computers. However, with constant 

improvement, previously used versions do not have the update for enabling the evolving capacity 

of the deep learning and computer vision API(Application Programming Interface). Although the 

NVIDIA Jeston family has shown reasonable performance with the small existing vehicle 

platforms, there are more viable solutions with a full-scale vehicle platform. 

The research aims to find a solution to the problem discussed in the previous paragraphs, 

creating a simplified, cost-effective, long-time useability and better-scaled vehicle platform for 

an automated driving system. 



3 
 

1.2.1 Research Objectives  

1. Design a vehicle that can accommodate a human driver to control the speed, throttle, 

and steering information. 

a. The vehicle platform will have fewer components and be easy to replicate. 

b. The vehicle platform will have a sizeable open-source community to assist 

with modifications. 

2. The vehicle platform will be cost-effective and would be appropriately scaled to 

enable indoor and outdoor applications 

3. The vehicle platform will be cable of implementing other advanced driving system 

algorithms. 

1.3 Organization 

The background information, motivation, and research objective of the thesis are 

presented in Chapter 1. Chapter 2 presents the related work, and Chapter 3 will discuss the 

history and present state of the art of autonomous systems regarding self-driving vehicles. 

Chapter 4 introduces the system overview and divides the system into two main areas: drive by 

wire system and an autonomous driving system. Chapter 5 dives into the system drive by wire 

system, explaining the hardware design and components of the system. In Chapter 6, the thesis 

examines the autonomous system and elaborates on the systems architecture. Chapter 7 discusses 

neural networks and their various implementation in the system. In Chapter 8, the result of the 

different experiments will be discussed. Chapter 9 will be the discussion and future work section. 

Finally, Chapter 10 summarizes the conclusions of the entire thesis.  
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Chapter 2: Related Work 

The MIT racecar [1], also known as the Rapid Autonomous Complex-Environment 

Competing Ackermann-steering Robot, is an open-source instructional platform that includes an 

autonomous model vehicle and a course on basic robotics. In 2014, Sertac Karaman, Mike 

Boulet, Owen Guldner, Michael Lin, and the MIT racecar were founded. The first mobile robot 

created for education, the RACECAR, included a potent Graphics Processing Unit (GPU). The 

NVIDIA Jetson Tegra K1 computer was used in the first batch of RACECARs. The NVIDIA 

Jetson Tegra X and, eventually, the NVIDIA Jetson Xavier computers were used in later 

iterations. Since then, the RACECAR platform has been used in numerous MIT courses and 

research projects and has encouraged several related projects around the nation. Add-ons, like an 

IMU and a Lidar camera, allow for customization. The vehicles also have a VESC wheel 

odometer, an open-source Electronic Speed Control component that controls speed. Despite 

having a GitHub repository and being an open platform, it necessitates substantial programming 

on the developer's part to carry out each task. 

The Turtlebot 3 [2] is a compact, differentially driven mobile platform with a relatively 

low price that runs on ROS. It is a multi-partner open-source collaborative project assembled 

from premium modular parts [3]. It is based on an extendable chassis that has been 3D printed 

and is managed by a powerful controller and Single Board Computer. The Turtlebot's primary 

sensor is a low-cost LIDAR that can conduct SLAM and navigational tasks. Other sensors, such 

as RGB and RGBD cameras supported by ROS software modules, can also be added. By 



5 
 

connecting a manipulator module, it can function as a mobile manipulator. In graduate teaching 

and research, the Turtlebot has been employed successfully. 

The Leo Rover [4] is a reliable open-source platform for autonomous research in outside 

settings. It can be modified by adding extras like a manipulator, GPS module, camera, or IMU. 

Four separate DC gear motors propel the robot, and its suspension system is driven by a Core 2 

ROS driver board and Raspberry Pi. Despite having a GitHub repository and being an open 

platform, it necessitates substantial programming on the developer's part to carry out each task. 

Thus, its scope is different than that of educational boards. 

Robotnik's Summit-XL [5] platform is a robust, adaptable framework built on a four-

wheel skid-steering configuration with a high load capacity. Using Mecanum wheels, it is simple 

to convert it to an omnidirectional configuration. It has an IMU and can connect to a laser 

scanner and a camera. It is appropriate for research and surveillance and has a built-in radio 

transmitter for remote operation. It is programmed using open ROS architecture and is controlled 

by a PC. The Summit-XL is a midrange model of the industrial-grade robots that Robotnik 

makes. 

F1TENTH [6] is an international community of researchers, engineers, and autonomous 

systems enthusiasts. It was first established in 2016 at the University of Pennsylvania, but it has 

now expanded to numerous other institutions around the world. F1TENTH car is an open-source 

project developed for a community of researchers and students. The NVIDIA Jetson TX2 and 

Traxxas Ford Focus chassis serve as the foundation for the hardware arrangement. In addition, it 

has a Hokuyo 10LX LIDAR sensor and a wheel odometer that operates on VESC 6, which aids 

in speed control. 
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Figure 2-1: Images of related robot platforms. 

Table 2-1: Related work: target group, cost, scale, and technology. 

Name Platform
Appro-
ximate 

Cost ($)

Open 
Source 

Sensors ROS Controller/
CPU

Programmi
ng Tools

Car Scale

Turtlebot3 [2] Education 800 YES

Camera, 
LIDAR, 

acc, gyro, 
magn

YES
Raspberry 

Pi + 
OpenCR

Block-
based/

1/12th

Leo Rover [4]
Research/ 
industry

2500 YES

Fish-eye 
camera, 
wheel 

encoders

YES

Raspberry 
Pi + Core2 
ROS (low 

level)

ROS 
Programmin

g
1/10th

Summit-XL [5] Industry 15000 YES

3D 
camera, 
Laser 

scanner + 
optional 
sensors

YES
Intel 

processor/P
C

ROS 
Programmin

g
1/8th

MIT-racecar [1]
Research/ 
Education

2600 YES

3D 
camera, 
Laser 

scanner + 
optional 
sensors

YES
NVIDIA 

Jetson Nano

ROS 
Programmin

g
1/10th

F1TENTH [6]
Research/ 
Education 

3400 YES

 Laser 
scanner + 
optional 
sensors

YES
NVIDIA 

Jetson NX

ROS 
Programmin

g
1/10th
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Chapter 3: State of the Art  

3.1 Introduction  

In the 1860s, Robert Whitehead invented the self-propelled torpedo, the first known 

guidance system [7]. The self-propelled system is designed to propel towards a target and 

interlock to the target location. The self-propelled torpedo guidance system raises the idea of a 

self-propelling system [7]. The first autonomous car was dated to an exhibition at the 1939 New 

York world’s fair. In the exhibit, Norman Bel Geddes, General Motors designer, created the first 

self-driving car, an electric vehicle guided by radio-controlled electromagnetic fields generated 

with magnetized metal spikes embedded in the roadway. General Motors was able to make this 

concept a reality in 1959. [8] The car was designed with a sensor attached to the front. The 

sensor is called a pick-up coil, which detects the current flowing through a wire embedded in the 

road. The sensor allows the vehicle to move along the metal rod; the current could be 

manipulated to steer the vehicle wheel left or right.  

The design from 1959 was improved in 1977 by a Japanese company [9]. They improved 

the idea with a camera system that relayed data to a computer to process images of the road. 

However, this vehicle could only travel at speeds below 20 mph. An improvement to the system 

came from the Germans a decade later in the form of the VaMoRs, a vehicle outfitted with 

cameras that could drive itself safely at 56 mph [9]. As technology improved, so did self-driving 

vehicles’ ability to detect and react to their environment. 

 



8 
 

In 2005, the second edition of the DARPA (Defense Advanced Research Project Agency) 

Grand Challenge was a massive milestone for the autonomous driving industry after the failure 

of the first edition of the challenge in 2004 [10]. This competition consisted of a long-distance 

race with a two million dollar prize for the winner, in which its participants could only be 

autonomous vehicles. The competition's main goal was to encourage the collaboration of experts 

in many diverse technological fields from private companies and academic institutions to get 

them to improve the technology by sharing information between them [10]. After the failure of 

the first edition of DARPA, DARPA's second edition laid the groundwork for the future of the 

self-driving vehicle. There were 195 vehicles enrolled, with 23 of the vehicles classified for the 

main event. Five of the cars made it to the final round, which Volkswagen Touareg from the 

University of Stanford named “Stanley” emerged as the winner. Stanley covered 212km (132 

miles) in 6 hours and 53 minutes. The DARPA 2005 made a difference by providing incentives 

and motivation for various industries to research, test, and implement self-driving cars [10].  

3.2 Artificial Intelligence   

The study of artificial intelligence aims to comprehend and create intelligent beings. 

Even though Warren McCulloch and Walter Pitts produced the first work, now acknowledged as 

Artificial Intelligence in 1943, it is one of the newest and most well-liked topics in science and 

engineering [11].  

In 1950, the article "Computing Machinery and Intelligence" introduced the Turing Test, 

machine learning, genetic algorithms, and reinforcement learning. The article was one of the first 

to present the concept of Artificial intelligence [12]. Two years after the article, Marvin Minsky 

and Dean Edmonds, Havard students,  built the first neural network computer called the SNARC. 
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SNARC used 3000 vacuum tubes and an automatic pilot mechanism from a B-24 bomber to 

simulate a network of 40 neurons [12].  

In 1956, the field of artificial intelligence was born at Dartmouth College by John 

McCarthy, Marvin Minsky, Claude Shannon, and Nathaniel Rochester. They organized a two-

month workshop to fully introduce the concept of AI  in which six more people participated [11].  

The introduction of the internet helped expands the field of artificial intelligence, which 

became a web-based application, a tool used by all the tech giants today. For example, the 

system creates a  recommendation system with very different approaches; however, it uses the 

recommendation approach based on previous search data and likes regarding genres. For 

example, Netflix uses the system to recommend movies, TV shows, etc. On the other hand, 

Spotify and Amazon base their suggestions only on similar items the user has already listed.   

Over the years, the AI community has evolved from algorithms improvement to more of 

a data-driven system because data availability increases every second.   James Hays and Alexei 

A. Efros explained an example of the effect of the data-driven approach. They developed an 

algorithm to complete images with holes by finding similar images in the database. The 

algorithms do not require labeling the images previously [13]. Instead, the algorithm used the 

GIST scene descriptor to group semantically similar scenes (city, sea, buildings, forests, etc.) and 

for place recognition. Although, when the dataset uses ten thousand images, the result is poor 

compared to when the image dataset was increased to two million images, the results improved 

drastically. 
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Figure 3-1: Scene completion algorithm [13]. 

 

3.3 Computer Perception and Relative Problem  

Human has been able to identify object shape, patterns of light, and object formation 

without the influence of the background in the image. For example, humans can differentiate the 

number of people that appear in a picture, their genders, names, guess the age, or even their 

mood by their facial expressions or gestures. The process of identifying and differentiating 

between patterns in images is called perception. Humans perceive the world in three dimensions 

without any difficulty. The process of teaching intelligence to machines and making them 

understand the things humans do is called Computer Vision. 

Computer Vision has been an essential part of perception in self-driving vehicles in the 

past year. Image is a 2D matrix of pixel intensities of shape (row, column). There have been 

various techniques to recover the tridimensional shape and appearance of the images developed 

by computer vision investigators during the latest years. One of those techniques is overlapping 

hundreds of images from a different perspectives. From the overlapping model, object movement 

can be identified by the computer. However, even with these technological advances, it is still 

difficult for the computer to interpret an image as humans do. 

Over the last three decay, machine learning and deep learning techniques have improved 

the ability of computers to understand images and extract information from the visualization of 
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the data. One first problem is image classification. A classification problem involves classifying 

images into two or more classes. For example, the binary classification problem involves two 

classes for which the neural network's last layer will contain one neuron with a sigmoid 

activation function. 

In the 1950s, the image classification problem was tackled with the Havard Mark 1 

perceptron machine for image classification. However, the algorithm was effective in data-

structured but not in classifying different geometric shapes. Decades later, a supervised learning 

model that analyzes data for classification and regression analysis was developed in bell 

laboratories called SVM algorithms. The SVM algorithm was able to tackle high-dimensional 

data with a minimum amount of samples, such as small image datasets.  

In the 1990s, the first convolutional neural networks were inspired by Neocognitron. The 

introduction of the CNNs model revolutionized computer vision and even significantly improved 

after the first GPU implementation of a CNN described in 2006 by K. Chellapilla [14] . The 

result was four times faster than the equivalent implementation on the CPU. 

 

Figure 3-2: Operation of the CNN Model [15]. 
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3.4 Autonomous Vehicle  

According to the society of automotive engineers (SAE International), the terms 

autonomous vehicles or driverless cars are often used erroneously in the industrial perception of 

the terms, and people's understanding of the term is wrong. Therefore, the term autonomous 

vehicle or driverless cars is substituted for “driving automation” and “driving automation 

system.” However, driving automation can be confused with vehicles that are operated by human 

drivers and automated driving systems (ADS). With the help of the National Highway Traffic 

Safety Administration (NHTSA), the automated driving system is divided into five achievable 

levels. The automated driving system level is often referred to as Driving Automation levels in 

SAE J 3016-2021. Figure 3-3 summarizes the SAE J3016. 

 

Figure 3-3: SAE J3016 summary table [16]. 
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3.4.1 Level 0 - No Driving Automation 

The majority of the vehicles available today are in this category. Level 0 has no driving 

automation system implies that the human driver performs the entire driving tasks. Regardless of 

the notion of no automation system, the vehicle in this category may have a system designed to 

help the driver make the best judgment during driving. An example of such a system is the 

emergency braking system. The emergency braking system in the vehicle is based on the 

proximity of objects with the sensors. Therefore allows the vehicles to apply brakes when 

needed. However, the emergency braking system does not drive the vehicle. Consequently, it 

does not qualify as an automation level. 

3.4.2 Level 1 - Driving Assistance 

The first level of automation is level 1. This level requires a fully engaged driver when 

the vehicle is in operation. However, the system provides continuous assistance with either 

acceleration or steering. An example of this system is the adaptive cruise control, which allows 

the vehicle to keep a safe distance behind the next car while maintaining a constant acceleration.   

3.4.3 Level 2 - Partial Driving Automation  

The term for level 2 is commonly referred to as the advanced driver assistance 

system(ADAS). Similar to Level 1 but characterized by both simultaneous vehicle motion 

control. The vehicle can control both accelerating/decelerating and steering. The vehicles in this 

category fall short of a self-driving system because it requires the driver remains fully attentive 

to take over when needed. For example, the tesla autopilot and Cadillac from general motors 

with the supercruise systems qualify as Level 2. Vehicles with highway pilots qualify as level 2. 
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3.4.4 Level 3 – Conditional Automation 

From a human perspective, the difference between level 2 to level 3 is subtle, but from 

the technology perspective, it is regarded as a great leap forward in the self-driving industry. 

Vehicles are categorized as level 3 and include environmental detection capabilities that allow 

them to make an informed decision, such as accelerating past a slow-moving vehicle [17]. 

However, the human override feature is included. The systems perform the majority of the 

driving tasks while the human driver remains fully engaged for takeover. The 2019 Audi A8L 

arrives with a driving system called the  Traffic Jam Pilot, which combines a lidar scanner with 

advanced sensor fusion and processing power with built-in component fail redundancies [17].  

The US mandate for autonomous vehicles is to keep the driver engaged. Thus, the Audi 

A8L is classified as a level 2 automation in the United States, which preclude the key features for 

level 3 functionality. However, the Audi A8L vehicles in Europe are classified as level  3 

automation. 

3.4.5 Level 4 – High Automation 

The major difference between Level 3 and Level 4 automation is that in the system in 

level 4, the vehicle can operate without expecting a user to respond to a request to intervene. In 

level 4, the system is fully responsible for driving tasks within limited service areas while 

occupants act only as passengers. However, a human still has the option to operate the vehicle 

manually. Examples of level 4 vehicles are NAVYA shuttles, cabs,  and Waymo taxis. 

3.4.6 Level 5 – Full Automation  

In Level 5, the system is fully responsible for driving tasks while occupants act only as 

passengers [18]. Vehicles in this do not require any steering wheels or acceleration/braking 

pedals. They will be free from geofencing, able to go anywhere and do anything that an 
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experienced human driver can do. Fully autonomous cars are undergoing testing in several 

pockets of the world [17]. 

 

Figure 3-4: SAE J3016 summary and year projection [16]. 
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Chapter 4: System Overview 

The system is named OSCAR_PX4 (Open-Source robotic Car Architecture for Research 

and Education based on Pixhawk 4). The system design is a drive-by-wire system. In this case, a 

drive-by-wire system is a system that can control the steering, throttle, and brake 

programmatically without using any extra mechanical actuators. The Pixhawk 4 flight controller 

eliminated multiple embedded components previously used on related projects. The Pixhawk 4 

flight controller is integrated with MAVLink for message protocol communication. The 

MAVLink communication protocol is developed with ROS (Robotic Operating System) nodes to 

communicate with ROS packages. The package that aids the communication between MAVLink 

and ROS is called MAVROS. The Pixhawk 4, also known as PX4, is suitable for this project 

because it has MAVROS software integrated with the board, allowing ROS topics, nodes, and 

packages to be used. 

 The EFI V Twin High-Speed Ride-On Car was chosen for a low budget with indoor and 

outdoor capability. The vehicle has four motors, and the power rate of each motor is 12 volts and 

45 watts. A 12-volt battery powers the entire vehicle system. The Sabertooth 2x32 motor driver 

is a powerful motor driver for the motors inside the EFI V Twin High-Speed Ride-On Car. 

Sabertooth motor driver is a dual channel motor driver capable of supplying 32 amps to two 

motors, with peak currents of up to 64 amps per motor [19].  

The process of combining, configuring, and communicating the Pixhawk 4 with software 

components and the Sabertooth motor drive is called the OSCAR_PX4 system. The combination 

and configuration setup instructions can be found in Appendix B:. The system has two working 
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modes. The first mode is used when a person wants to control the car remotely, collect driving 

data and assist the driving system. This mode is called the Manuel mode. The driver has 

complete functional control of the vehicle through the joystick F710 attached to the interface 

computer. The interface computer sends control data via the joystick to the Pixhawk 4; the 

Pixhawk 4 converts the control signal to a PWM signal with proper output to motor drive, 

allowing complete control of the car’s braking, throttle, and steering. See Figure 4-1. 

 

Figure 4-1: Manual mode setup. 

The second mode is the autonomous mode. The vehicle can follow a pre-determent path 

and avoid collision without human intervention. This system mode integrates the sensor 

packages into the drive-by-wire system. A camera placed at the vehicle’s bumper sends a direct 

feed to a companion computer integrated with ROS and MAVROS. The image from the 

environment with the driving data is sent to the neural network to process the information. It 

predicts the driving data based on the input image, sends predicted driving data to the PX4 via 

MAVROS, and converts it to the PWM signal for the motor drive, as shown in Figure 4-2.  

The human driver drives the vehicle to collect training or driving data during the manual 

mode. The driving data will include the throttle, steering, and brake, images from the front 
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camera, and the odometry data from the vehicle's position. The driving data are stored for the 

training and testing phase of the neural network, as shown in Figure 4-3. In Figure 4-4, the 

Oscar_PX4 system plugin with the vehicle to implement the modes described for the system.  

 

Figure 4-2: Autonomous mode setup. 

 

Figure 4-3: End-to-end driving. (a) A human driver drives a vehicle as we collect driving data. (b) The driving data, 
including the front camera images with synchronized control signals, are saved in storage. The collected data must 
have all the necessary features that can be expected in a testing phase of the neural network. (c) The training station 

is where a neural network is trained with the collected data to associate input with output. (d) The trained neural 
network is deployed to the AI chauffeur, who drives the vehicle using inferred steering angles, throttle, and brakes 

[20]. 
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Figure 4-4: The OSCAR_PX4 system plugin with EFI V Twin High-Speed Ride-On Car. 

4.1 Bill of Materials  

The bill of materials (BOM) is the list of hardware used and the price at the time of the 

execution, as shown in  Table 4-1. The huge problem in an autonomous vehicle system is road 

testing because of its economic implications. Road testing is costly. Therefore, designing a less 

expensive system is a useful solution to accelerate the production of the autonomous system. 

Furthermore, the Oscar_px4 vehicle platform is a flexible system, thus allowing different sensors 

fusion to be easy to integrate.  
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Table 4-1: Bill of Materials. 

Item Description Q't Price Total
Camera Intel Realsense L515 1 USD 550 USD 550

Pixhawk 4 
Pixhawk flight controllers with 2MB flash 

memory and 512KB RAM 1 USD 150 USD 150

Pixhawk 4 GPS Module
UBLOX M8N module, IST8310 compass, tri-

colored LED indicator, and a safety switch 1 USD 40 USD 40

 Holybro Power Board PM07
Power distribution board with a PCB current 

120 A output and 7~15 v input voltage 1 USD 18 USD 18

Sabertooth dual 32A motor driver
32A continuous, 64A peak per channel 6-30V 

nominal, 33.6V absolute maximum 1 USD 130 USD 130

HC-020K encode
Double Speed Measure Module with 

Photoelectric Encoder  1 USD 8 USD 8
Logitech F10 Wireles 2.4GHz Wireless Controller 1 USD 40 USD 40
Electric Ride-On Car 4 Wheel Motor drive with 2*12 v battery 1 USD 320 USD 320

Total of core items USD 1256.00 USD 1256.00

Optional Items 

Laptop
i7 i770HQ 2.8GHZ 16GB RAM with GTX 

1060 TI 6 GB GDDR 1 USD 1250 USD 1250

Total of optional Items USD 1250.00 USD 1250.00  
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Chapter 5: Hardware 

This section will elaborate on the hardware used in the project, explain their 

implementation requirements, and how they were implemented.  

5.1  Pixhawk 4 

Pixhawk 4 is an advanced autopilot designed and made in collaboration with Holybro and 

the Auterion team [21]. It is an inexpensive flight controller suitable for academic and 

commercial developers. It features the most advanced processor technology from 

STMicroelectronics, sensor technology from Bosch,  InvenSense, and a Nuttreal- time operating 

system, delivering incredible performance, flexibility, and reliability for controlling any 

autonomous vehicle. In addition, the Pixhawk 4’s microcontroller now has a 2MB flash memory 

and 512KB RAM with the power and RAM resources, allowing it to implement complex 

algorithms and models. 

High-performance, low-noise IMUs on board, is designed for stabilization applications. 

Data-ready signals from all sensors are routed to separate interrupt and timer capture pins on the 

autopilot, permitting precise timestamping of sensor data. The added vibration isolations enable 

more accurate readings, allowing vehicles to reach better flight performance. 

The two external SPI buses and six associated chip select lines allow additional sensors 

and SPI-interfaced payload. In addition, four I2C buses are dedicated for external use, and two 

are grouped with serial ports for GPS/Compass modules.  
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Pixhawk 4 is designed with easy-to-plug connectors making it easy to interact with 

various sensors; Figure 5-1 shows the function of each connector. Table 5-1 explains the detailed 

specifications of the Pixhawk 4. 

 

Figure 5-1: Pixhawk 4 Connectors [21]. 

Table 5-1: Pixhawk 4 Specifications [21].  

Specification
Voltage Ratings Mechanical Data

Main FMU Processor: STM32F76 (32 bit ARM® Cortex® 
M7, 216 MHz Processor running NuttX RTOS)

Power module output: 
4.9~5.5V

Dimensions: 44x84x12mm

Abundant connectivity options for additional peripherals 
(UART, I2C, CAN)

Max input voltage: 6V
Weight(plastic case): 
33.3g

Redundant power supply inputs and automatic failover Max current sensing: 120A
Weight(aluminum case): 
49g

External safety button for easy motor activation
USB Power Input: 
4.75~5.25V

Sensors with higher temperature stability Servo Rail Input: 0~36V
Multicolor LED indicator
Integrated vibrations isolation
High-power, multi-tone piezo audio indicator
microSD card for long-time high-rate logging
16 PWM outputs

Electrical Data
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5.1.1 Pixhawk 4 Configuration for OSCAR_PX4 System 

For the OSCAR_PX4 design, there are some steps to set up the Pixhawk 4: 

The first is to connect to the power module 1 connector (see Figure 5-1). Connecting to 

the power module is to interchange power from the power management board (PM07) with the 

Pixhawk 4. The connector provides 5v power output from the Pixhawk 4. 

The second is to connect to the Main output connector (I/O PWM) (see Figure 5-1, 

labeled 11). The purpose of the connection is to provide the power management board (PM07) 

with I/O PWM outputs. In this case, the importance of the PWM outputs is to access the 8 PWM 

output from the 16 PWM outputs provided by the Pixhawk 4. In addition, PWM (pulse width 

modulation) is needed as a pulse signal to drive the motor controller. 

Next is the connection to the GPS module (see Figure 5-1, labeled 15). The purpose of 

the connection is to provide the vehicle with a GPS sensor ( Figure 5-2). The complete wiring of 

the system is in Appendix B:  

 

Figure 5-2: GPS sensor [22]. 
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Figure 5-3: Pixhawk 4 wiring. 

5.2 Power Management Board PM07 

The Power Management Board (PM07 Board) serves the purpose of a Power Module and 

a Power Distribution Board [23]. In addition to providing regulated power to Pixhawk 4 and the 

ESCs, it sends information to the px4 about the battery’s voltage and current supplied to the 

flight controller and the motors. As discussed in the previous section, Pixhawk 4 and PM07 

board works together. The board's primary purpose is to expand and manage the power function 

of the Pixhawk 4. 
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Figure 5-4: Power management board with Pixhawk 4 output schematics [24]. 

Table 5-2: PM07 with Pixhawk4 pins and connections [24]. 
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5.2.1 Materials for Pixhawk 4 and PM07 Board 

Several materials are needed to integrate Pixhawk 4 and PM07 to make the process easy. 

The materials used for OSCAR_PX4 Pixhawk and PM07 connection are: 

1. Soldering iron 

2.  Solder 

3. Soldering iron tips 

4. Soldering iron holder and cleaning sponge 

5. Wire stripper 

6. Clips to hold your work 

7. Exhaust fan 

8. Magnifying Glasses 

9. Male-to-male jumper wires 

10. Male-to-female jumper wires 

11. AWG Hook up Primary Wire( for the motors and motor drives) 

 

 

Figure 5-5: Material Pixhawk 4 and PM07 connections. 
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5.3 Sabertooth 2x32 [19] 

Sabertooth 2x32 is a dual-channel motor driver capable of supplying 32 amps to two 

motors, with peak currents of up to 64 amps per motor. It can be operated from radio control, 

analog, TTL serial, or USB inputs. It uses regenerative drive and braking for efficient operation 

[19]. In addition, the sabertooth has various operating modes which allow custom operation, such 

as switching between radio control, computer-driven inputs, and emergency stop or panel control 

overrides. 

The sabertooth can be used for a closed-loop position or speed control with an encoder or 

analog feedback. In addition, the driver can be monitored in real-time, making debugging more 

accessible and faster. 

Table 5-3: Saberbooth Specifications [19]. 
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Figure 5-6: Sabertooth pinout functions [19]. 

 

 

Figure 5-7: DIP Switches configurations [19]. 

For the Oscar_px4 design, there are some steps for wiring between the sabertooth and PM07 

board: 

 The first is to connect s1 on the sabertooth to the M2 in the power management 

board. This is the PWM output signal that controls the throttle signal. 
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The second is to connect s2 on the sabertooth M4 in the power management board. This 

is the PWM output signal that controls the steering signal.  

 The third is to connect 0v on the sabertooth to the ground on the power management 

board. The ground connection is vital to create a reference point for the output signal. Without 

the ground, the s1 and s2 would not send signals to the motor drive (sabertooth). 

On Sabertooth, M1A and M1B are connected to the throttle motor. On Sabertooth, M2A 

and M2B are connected to the steering motor. On Sabertooth, B+ and B- are connected to the 

12V battery (to drive the motors). On Sabertooth, DIP switches 1 and 2 are in the OFF and ON 

positions, respectively. These disable the analog control mode and enable the radio control mode. 

On Sabertooth, DIP switch 3 is the OFF mode. These indicate that power s supplied with 

a battery, protecting the board against the excess flow of current. On Sabertooth, DIP switch 4 is 

the OFF mode. These indicate the independent mode, which allows the signal from s1 and s2 

(PWM signal) to be controlled independently.   On Sabertooth, DIP switch 5  is in the ON mode. 

These indicate the linear mode, which allows the signal from s1 and s2 (PWM signal) to be 

controlled with a linear function. Finally, on Sabertooth, DIP switch 6 is in the ON mode. These 

indicate the Bi-directional mode, which allows the signal from s1 and s2 (PWM signal) to be 

controlled with positive and negative signs.    

5.4 System Housing  

Designing a secure system to house the component is essential. There are two 3d models 

intended for the oscar_px4; the first is to house the Pixhawk and power management board; the 

second provides housing for the motor controller. The current version of the model can be 

downloaded here.  
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Figure 5-8: Sabertooth case. 

 

 

Figure 5-9: Pixhawk 4 
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Figure 5-10: Complete drive-by-wire system. 

5.5 HC-020k Encoder for Steering Control   

The HC-020k encoder [25] is a photoelectric speed measurement module; it utilizes a 

spoked sensor disk and IR transmitter/receiver to measure the motor's rotation speed. It’s useful 

to sense the motor’s position and velocity. The HC-020k encoder takes an input of 5V. The 

connection mode is red 5V, and the black to GND with the third pin has the output voltage. The 

output voltage is digital output which ranges between 0V and 5V. 0V is when the beam is 

unblocked, allowing light to pass through it, and 5V is when the beam is closed. The flight 

controller can read the pulse train to determine the rotation of the motor. H2-020k encoder has a 

3-pin header connector (with pull-up equipped input) that can be connected to different probe 

types. The sensor/probe hardware needs a pulse signal. The signal input accepts +5V TTL logic 

or open collector outputs. The maximum pulse frequency is 20 kHz with a 50 percent duty cycle. 
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The probe connector provides a +5V power supply from the I²C bus, the maximum power which 

could be used is limited by the RC filter. 

HC-020k encoder is helpful in determining the steering angle or position. The steering 

control configurations are PWM signals sent from px4 to the motor drive needed to control the 

steering angle. Knowing the steering angle information is critical to measure the amount of 

power the motor drive needs to turn and its turning directions. 

 

Figure 5-11: HC-020K encoder [25]. 

 

Figure 5-12: Schematic for HC-020k encoder setup [25]. 
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The first step is knowing the max steering angle of the vehicle column in the left and 

right directions. For oscar_px4 (electrical toy) maximum steering angle to the right and left of 

our vehicle is 22.5 deg.   The second is to connect the three pins from the encoder to the AUX 

output from PM07. Next, attach the wheel disk sensor to the steering column. 

 

Figure 5-13: Maximum angle measurement from the vehicle motor and steering column. 

 

Figure 5-14: Spoked sensor disk for the wheel encoder. 
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Figure 5-15: The ground view of the vehicle where the steering column is located. 

 

 

Figure 5-16: Image of the vehicle and the steering column location. 
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5.6 EFI V Twin High-Speed Ride-On Car 

The EFI V Twin High-Speed Ride-On Car is the body of the vehicle which is 

approximately 1/4th scale electric ride-on car. The vehicle uses an Ackermann steering geometry 

arrangement, which allows the wheel to turn inner and outer at appropriate angles. Figure 5-17 

and Table 5-4 show the vehicle body and its specifications.  

Table 5-4: Vehicle Specifications [26]. 

Dimensions: 130 cm x 94 cm x 83 cm Speed: 3-7 km/h.
Seat width: 58 cm Drive: 4 x Motor 12V 45W

Sprung axles Battery: 2x12 V
Soft EVA wheels Charging time: 5-8 hours

Weight: 38,00 kg. Max load: up to 35 kg, 
tested load capacity: 55 kg

The driving time: 2 to 3 hours, depending 
on the weight and the terrain  

 

Figure 5-17: EFI V Twin High-Speed Ride-On Car [26]. 
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Chapter 6: Software 

This section will be about the software used in the project, explaining their 

implementation requirements and how they were implemented. 

6.1 ROS 

ROS (Robot Operating System) is a set of software libraries and tools to help software 

developers create robot applications [27]. It provides services from a typical operating system, 

such as hardware abstraction, device drivers and controls, libraries, visualizers, message-passing 

between processes, implementation from commonly used functionality, and package 

management. In addition, ROS is an open-source platform that makes sharing and collaboration 

of robotic applications easy. 

There are various goals for developing the ROS framework: First, a platform for sharing 

and collaboration for robotic application platform; a framework designed to be abstract as 

possible to make code written for ROS transferable to other robotic software frameworks; to 

make the ROS framework is easy to implement in any modern programming language; it is 

designed with a built-in test framework for diagnosis and visualization, and it's designed for 

large runtime systems and significant development processes.  

The ROS platform currently runs entirely on Unix-based platforms. Software for ROS is 

primarily tested on Ubuntu and Mac OS X systems, though the ROS community has been 

contributing support for Fedora, Gentoo, Arch Linux, and other Linux platforms [27]. 
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6.2 MAVLINK 

MAVLink is a lightweight messaging protocol for communicating with drones and 

between onboard drone components [28]. It’s a binary telemetry protocol designed for resource-

constrained systems and bandwidth-constrained links. The MAVLink follows a modern hybrid 

publish-to-subscribe and point-to-point design pattern: The data streams are published as topics, 

while configuration sub-protocols are point-to-point with retransmission. 

MAVLink has code generator software libraries for specific programming languages, 

created from XML message definitions, and can be used by drones, ground control stations, and 

other MAVLink systems to communicate [29]. 

The key features of using MAVLink are as follows: MavLink is very efficient because it 

doesn’t require any additional framing. It is very well suited for applications with limited 

communication bandwidth. MAVLink is very reliable because it has proven to be resilient since 

2009. It has been able to communicate between different vehicles, ground stations, nodes, and 

challenging communication channels with high latency and noise. MAVLink runs on various 

microcontrollers/operating systems with multiple programming languages. It supports up to 255 

concurrent systems on the network. 

6.3 MAVROS 

MAVROS is an extendable communication node between MAVLink and ROS with the 

UDP proxy for Ground Control Station [30]. The communication features include 

communication with autopilot via serial port, UDP proxy for Ground Control Station, 

mavlink_ros compatible ROS topics (Mavlink.msg), plugin system for ROS-MAVLink 

translation, parameter manipulation tool, and waypoint manipulation tool. 
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6.4 QGroundControl  

QGroundControl provides flight control and mission planning for any MAVLink-enabled 

drone. Its primary goal is ease of use for professional users and developers. The px4 platform 

designed has an open source provides integrating the system with the different airframes, such as 

rover, in this case, making it easy to implement and change the airframe parameters. The process 

of configuring the vehicle is loading firmware, setting the Airframe, sensors configuration, 

joystick, and parameter settings.
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Chapter 7: Implementation 

This section will elaborate on the components of implementation after designing the 

Oscar_px4 communication modes and discuss various neural networks and algorithms used in 

the experimental sections of the project.  

7.1 Connection Interface  

The connection interface is the stage after the configuration of the oscar_px4 in Appendix 

B:. The connection involves the Laptop, Remote control, Vehicle, and oscar_px4.  

7.1.1 Laptop Computer 

Complex perception and control algorithms based on deep learning libraries are executed 

on a GPU-powered computer. Therefore, running the algorithms on a laptop with good speed and 

GPU memory capacity is essential. The experiment was tested on a laptop Acer Predator Helios 

300 powered by GTX 1060 6GB GDDR5; therefore, it is recommended to use GTX 1060 6Gb 

GDDR5 or above.  

7.1.2 Remote Control 

A Logitech F710 2.4 GHz wireless controller is used to send joystick commands that are 

translated to the control signals.  

7.2 Communication  

This subsection will explain connecting and communicating with the entire system.  

• The first is to connect the nano receiver from the joystick to the computer. The 

connection will register to the computer as \dev\input\js*. The start "*" symbol 

indicates the number the device registered. However, if only one joystick device 
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is connected to the computer, it registers as \dev\input\js0. The  "ls \dev\input\js*" 

command helps to check where the device is registered. 

• The second is to connect the USB cable from the intelRealsense camera to the 

USB 3.0 port on the computer. Note: if the camera is not connected to a USB 3 

and above, the camera can not function. 

• In the oscar_px4 hardware system, connect the micro-USB from the pixhawk4 to 

the computer. The connection will register as "/dev/ttyACM0".  

• In the oscar_px4 hardware system, connect the labeled throttle motor to the 

electric vehicle motor and connect the labeled steering motor to the electric 

vehicle motor connection. Then, connect the power from the motor drive to the 

12-v battery attached to the vehicle. 

• Then start the QgroundControl for the GUI interface. 

7.3  Validation  

The validation subsection elaborates on how a deep-learning-based research algorithm 

works with the OSCAR_PX4 system. Front-facing images must be captured and stored along 

with steering angles and throttle values information in the deep-learning-based behavior cloning 

system described on the Oscar page. The camera sensor provides the environment's perception. 

The manual control system enables the vehicle to be remotely controlled by a human driver’s 

steering and throttle actions. The neural network model's actions after training were tested in the 

ELB's hallways. 

7.3.1 System Architecture 

The deep-learning neural network system architecture utilized to achieve end-to-end 

learning for vehicle control is shown in Figure 7-1. A human driver physically drove the vehicle 
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through the ELB hallway, collecting image sensor data with the encoder readings from the 

steering wheel during the data-gathering stage. The data collected was then fed into the neural 

network model for training. The results from training the neural network deploy to the vehicle’s 

control system. Then, the OSCAR_PX4 system autonomously drove the vehicle through 

different paths. 

 

Figure 7-1: The system architecture of end-to-end behavioral cloning. (a) Data acquisition system: (a-1) human 
driver. (a-2) vehicle platform with the camera sensor. (a-3) collected data (images, steering, and throttle). (b) Neural 

network training: (b-1) input data. (. (b-2) steering angle prediction. (b-3) errors are fed to the neural network. (c) 
Testing the trained neural network: (c-1) trained neural network deployed. (c-2) vehicle platform. (c-3) steering 

angle predictions from the neural network are fed to the vehicle platform [20]. 
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7.3.2 Data Acquisition 

The primary task of the data acquisition process was to collect data for training the 

models. In order to collect images while measuring the steering and throttle actions, the Oscar 

px4 vehicle was driven along the ELB hallways. Six rounds were conducted to gather pictures 

and as much data as possible to get good results because the halls have a curved path with a few 

straight stretches. Therefore, the model's output depends on the data's quality. The vehicle is 

driven close to the center of the hallway during the data collection. Figure 7-2 shows a sample of 

RGB images collected with the Intelrealsense camera.  

 

Figure 7-2: Examples of images collected from the camera. 

7.3.3 Training Neural Network  

The neural network for camera input was built using Keras. It is crucial to pre-process the 

data following the data acquisition process. The quality of the trained network depends on the 

quality of the data. Therefore, even with a small amount of poor data, the weights in the network 

may not be updated to optimized values. The results will lead to a significant discrepancy 

between projected and actual values, increasing the value of the cost function. The network 

model's cost function was calculated using mean squared error (MSE). The output of the trained 

model depends on the quality of the data. Therefore, it is necessary to filter out the bad-quality 

data collected. For example, the vehicle occasionally slammed into the wall due to the 
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narrowness of some of the halls it passed through. Consequently, at the pre-processing step, the 

data where the vehicle crash occurred was eliminated from the training data. 

The steering readings range from −1 to 1, and the throttle value range from 0 to 1, where 

0 means no throttle control. The network used mean squared error as a cost function. 70% of the 

data was used for training and 30% for validation. 

Table 7-1 shows the architecture of the network for the camera model. The same 

architecture of Sharma [38] was used for the model, which only runs with RGB information. The 

number of images used for training this network was 180,000. The first layer is the batch 

normalization layer, followed by the 2D convolution layer and fully connected layers. 

Table 7-1. Network architecture for the camera model [20]. 
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Chapter 8: Results  

8.1 Manuel Mode 

Experiments were designed to show successful operations of the vehicle using a remote 

controller to collect images from a camera. Figure 8-1 illustrates how the OSCAR_PX4 Vehicle 

platform accepts orders from the joystick while presenting sensor data using the 3D visualization 

tool (RViz). 

8.2 Neural Network 

The control system was divided into three sections based on environment information for 

validation: left turn, right turn, and straight pathways. The autonomous driving capabilities of the 

car were compared with those of the manual mode. The vehicle's performance in each of the 

three portions of the section was evaluated using the two control modes ( Offboard mode and 

Manual mode). 

The vehicle's driving performance was depicted in Figure 8-4 for each control mode 

executing a left turn, right turn, and straight drive, respectively. The performance data's statistical 

average and standard deviation are based on five rounds of driving test data. In this study, error 

bars are utilized to show the uncertainty or error corresponding to the variation of the result from 

the average value for each model’s driving data. Figure 7-3 shows the OSCAR_PX4 vehicle 

driving autonomously, heading to a right-turn path. 
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Figure 8-1:  Rviz screen with multiple ROS nodes to use sensor packages. (Left): Remote control. (a) A screenshot 
of the ROS Visualization and our remote control ROS node. (b) A remote controller in action. Video: 

https://www.youtube.com/watch?v=DxVYBfYuDPo. 

 

Figure 8-2: Comparing the validation set to the training set based on mean squared error. 

 

Figure 8-3: True value vs. Prediction result from testing the model. 

https://www.youtube.com/watch?v=DxVYBfYuDPo
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Figure 8-4: The vehicle performance during neural network testing. (a) A screenshot of the Visualization interface 
turning right for actual and predicted data. (b)  A screenshot of the Visualization interface turning left for actual data 

and predicted data. (c) A screenshot of the Visualization interface moving straight for actual and predicted data.   

 

 

Figure 8-5: OSCAR_PX4 steering right and light while driving autonomously. (a) Right turn to avoid the wall. (b) 
Left turn to avoid the wall. Video:  https://www.youtube.com/watch?v=iN4jbnmJ2Cc. 

https://www.youtube.com/watch?v=iN4jbnmJ2Cc
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Chapter 9: Discussion and Future Work  

The research objectives section discussed the benefits and motivation of developing the 

OSCAR_PX4 platform. In summation, due to the high cost and safety concerns, employing a 

full-scale vehicle platform for research and educational purpose in autonomous driving systems 

is not a viable solution. Therefore, suitable alternatives, such as scaled vehicles and simulation 

environments, are required. Constraints like sensor package restrictions and computation 

problems are hard to eliminate in embedded systems for scaled vehicles. Although simulation is 

important, hardware-in-the-loop (HIL) testing of perception and control algorithms is essential. 

The Oscar_px4 platform overcomes all of these concerns while providing a viable alternative to 

employing a full-scale vehicle, as shown in Table 9-2.  

The experiment results indicate that driving the OSCAR_PX4 vehicles using a remote 

controller to collect data from the camera sensor was a successful operation. These tests would 

not have been possible if the platform had not been well-designed. The Oscar px4 platform was 

considered appropriate for research applications requiring high computational capacity from the 

results of the end-end neural network algorithms. 

Further work, the system can include a second neural network based on LiDAR data. In 

addition,  add a sensor fusion to a third neural network model to fuse the data between the 

camera and the LiDAR. Similarly, test and create diverse experiments for indoor and outdoor 

applications (e.g., path planning). Furthermore, using a GPS sensor fused to the OSCAR_PX4 

for waypoint navigation. 
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Table 9-1: Comparing related vehicle platforms with OSCAR_PX4 

Name Platform
Appro-
ximate 

Cost ($)

Open 
Source Region ROS

Controller/C
PU

Programmi
ng Tools Car Scale

Turtlebot3 [2] Education 800 YES Indoor YES
Raspberry Pi 
+ OpenCR

Block-
based/

1/12th

Leo Rover [4]
Research/ 
industry

2500 YES
Indoor/ 
Outdoor

YES
Raspberry Pi 
+ Core2 ROS 

(low level)

ROS 
Programmin

g
1/10th

Summit-XL [5] Industry 15000 YES
Indoor/ 
Outdoor

YES
Intel 

processor/PC

ROS 
Programmin

g
1/8th

MIT-racecar 
[1]

Research/ 
Education

2600 YES Indoor YES
NVIDIA 

Jetson Nano

ROS 
Programmin

g
1/10th

F1TENTH [6]
Research/ 
Education 

3400 YES Indoor YES
NVIDIA 

Jetson NX

ROS 
Programmin

g
1/10th

OSCAR_PX4
Research/ 
Education 

1200 YES
Indoor/ 
Outdoor

YES
PC+Pixhawk

4

ROS 
Programmin

g
1/4th

 

Table 9-2: Comparing different options for drive-by-wire system development. 

Full-Scale Vehicle RC-Based Car
Simulation 

Environment
OSCAR_PX

4
Cost High Low Low Low

Saftey Concerns High Low Low Low
HIL Yes Yes No Yes

Onboard Computer Yes No N/A Yes
Deep-Learning 

Capabilities Yes No Yes Yes  
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Chapter 10: Conclusion  

This paper presents the design and transformation of a mid-low level car platform 

equipped with various sensors with an affordable budget for testing autonomous vehicle 

algorithms and ADAS systems. The platform designed here is scalable and economically viable 

(approximate cost is shown in Table 4-1). The present sensors can be upgraded and substituted 

according to the user’s requirements. Other workable options or a new version can be used to 

replace the lower control section made possible by Pixhawk 4. The Pixhawk 4, however, is a 

cable system that can be used for inside and outdoor experiments. In addition, better-

performance laptops can take the role of the higher computation part. The study emphasizes the 

usage of ROS and Mavros, which allows to visualization of messages in numerical and visual 

formats with the help of a visualization tool, in addition to passing messages and controls across 

processes on different computing platforms. 

Finally, the validation of the OSCAR_PX4 was conducted using deep-learning-based 

algorithms. The OSCAR_PX4 platform will be utilized for research and education, enabling the 

entire user community to contribute to the ADAS/AD study fields by testing and validating 

numerous unique algorithms.
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Appendices 
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Appendix A: Installations  

A.1: ROS 

The OSCAR_PX4 was tested on the melodic as the ROS DISTRO. Other versions of the 

ROS can be located in the ROS website 

• sudo sh -c 'echo "deb http://packages.ros.org/ros/ubuntu $(lsb_release -sc) main" > 
/etc/apt/sources.list.d/ros-latest.list' 

• sudo apt install curl 

• curl -s https://raw.githubusercontent.com/ros/rosdistro/master/ros.asc | sudo apt-
key add - 

• sudo apt update 

• sudo apt install ros-melodic-desktop-full 

• echo "source /opt/ros/melodic/setup.bash" >> ~/.bashrc 

• source ~/.bashrc 

• sudo apt install python-rosdep python-rosinstall python-rosinstall-generator python-
wstool build-essential 

• sudo apt install python-rosdep 

• sudo rosdep init 

• rosdep update 

A.2: MAVROS 

The MAVROS and MAVLink can be installed using the following commands. The 

commands work for all ROS 1 DISTRO.  

• sudo apt-get install ros-$ROS_DISTRO-mavros ros-$ROS_DISTRO-mavros-extras 

• wget 
https://raw.githubusercontent.com/mavlink/mavros/master/mavros/scripts/install_geogr
aphiclib_datasets.sh 

• chmod a+x install_geograph  

• sudo ./install_geographiclib_datasets.sh iclib_datasets.sh 

http://wiki.ros.org/ROS/Installation
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A.3: Intel RealSense   

The camera used in Oscar_px4 is the Intel RealSense L515 camera. The following 

commands will help install Intel RealSense SDK packages and ROS packages. 

• sudo apt-key adv --keyserver keyserver.ubuntu.com --recv-key 
F6E65AC044F831AC80A06380C8B3A55A6F3EFCDE || sudo apt-key adv --keyserver 
hkp://keyserver.ubuntu.com:80 --recv-key F6E65AC044F831AC80A06380C8B3A55A6F3EFCDE 

• sudo add-apt-repository "deb https://librealsense.intel.com/Debian/apt-repo 
$(lsb_release -c 

• sudo apt-get install librealsense2-dkms 

• sudo apt-get install librealsense2-utils  

• sudo apt-get install ros-$ROS_DISTRO-realsense2-camera  

• sudo apt-get install ros-$ROS_DISTRO-realsense2-description 

To test if the packages are properly installed, run the following commands. 

• realsense-viewer 

• roslaunch realsense2_camera rs_camera.launch  

• rostopic list  

A.4: Clone the Oscar repository  

The oscar page explains the installation process and instructions for the project process. 

A.4.1: Install anaconda 

In the oscar page, the conda environment is used to install the libraries and python 

packages needed for the project. Therefore, installing anaconda must be done before 

cloning the repository.  

• sudo apt-get update 

• sudo apt-get install curl  

• sudo apt-get install git  

• cd /tmp 

• curl {O https://repo.anaconda.com/archive/Anaconda3-2020.02-Linux-x86_64.sh  

• sha256sum Anaconda3-2020.02-Linux-x86_64.sh  

https://github.com/jrkwon/oscar/tree/devel_mrover
https://repo.anaconda.com/archive/Anaconda3-2020.02-Linux-x86_64.sh
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• bash Anaconda3-2020.02-Linux-x86_64.sh 

A.4.2: Clone oscar  

• sudo apt-get update 

•  sudo apt-get install curl 

• sudo apt-get install git 

• git clone -b devel_mrover https://github.com/jrkwon/oscar.git --recursive 

• sudo apt install ros-$ROS_DISTRO-fake-localization 

• sudo apt install ros-$ROS_DISTRO-joy 

• cd oscar 

• conda env create --file config/conda/environment.yaml 

• conda activate oscar 

• source ./setup.bash 

A.5: QgroundControl  

For the oscar_px4, QgroundControl was the ground station interface used to visualize the 

communication between MAVLink, MAVROS, and sensors connected to Pixhawk 4. 

A.5.1: Before installation 

• sudo usermod -a -G dialout $USER sudo apt-get remove modemmanager -y 

• sudo apt install gstreamer1.0-plugins-bad gstreamer1.0-libav 
gstreamer1.0-gl -y sudo apt install libqt5gui5 -y 

A.5.2: Restart the computer 

• sudo reboot now 

A.5.3: Download QGroundControl.AppImage. 

A.5.4: Installation 

• chmod +x ./QGroundControl.AppImage 

• ./QGroundControl.AppImage 

 

https://d176tv9ibo4jno.cloudfront.net/latest/QGroundControl.AppImage
https://d176tv9ibo4jno.cloudfront.net/latest/QGroundControl.AppImage
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Appendix B: Configuration and Setup  

The QGroundControl requires some configuration and setup for the initial setup. 

B.1: QgroundControl Setup  

B.1.1: Loading Firmware 

For the firmware, choose PX4 Pro Stable Release v1.12, and follow the prompt. Note 

that any version above v1.12 would work. 

 

Figure B-1: Loading Firmware. 

B.1.2: Airframe. 

Select the Airframe in PX4: After connecting the QGroundControl with the vehicle. 

Select the QGroundControl icon and vehicle setup and click the Airframe as shown in Figure 

B-2. Then, select the generic ground vehicle, as shown in Figure B-3. Click Apply in the 

following prompt to save the settings and restart the vehicle. 
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Figure B-2: Vehicle Airframe. 

 

Figure B-3: Generic Ground Vehicle. 

B.1.3: Sensors Configuration 

The Sensor Setup section allows the configuration and calibration of the vehicle’s 

compass, gyroscope, and accelerometer. The available sensors are displayed as a list of buttons 

beside the sidebar, as shown in Figure B-4. Sensors marked with green are already calibrated, 

while sensors marked with red require calibration before arming the vehicle. Sensors with no 

light are simple settings with default values that you may choose not to calibrate 
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1. Compass: The process guides the vehicle's position in several sets of orientations 

and rotates the vehicle about the specified axis. 

2. The calibration process is to click on the button for each sensor to start and 

follow the prompt. 

3. Accelerometer: The accelerometer calibration process is to place and hold the 

vehicle in several orientations and follow the prompt. 

 

Figure B-4: Sensors Configuration 

B.1.4: Joystick. 

In the absence of an RC transmitter or a Radio channel controller, the joystick is a good 

substitute. For the Joystick support in PX4, the default parameter must change from COM RC IN 

MODE to 1 -Joystick/No RC Checks. This enables the joystick and disables the RC parameter 

check for arming the vehicle. 

The joystick needs to be calibrated and configured for ground rover settings. On 

QGroundControl, after connecting to a vehicle(px4) and joystick using the USB port o the 

computer. In the vehicle setup on QGroundControl, the Gear icon indicating the joystick should 

be selected as shown in Figure B-5 and follow settings as shown in Figure B-5 and Figure B-6. 
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Some additional options are available in the Advanced tab. These options are useful for 

specific, unusual setups, increasing sensibility, and handling noisy joysticks. Center stick is zero 

throttles: Centered or lowered stick sends 0 in MANUAL CONTROL z, raised stick sends 1000 

as shown in figure 8 

 

Figure B-5: Joystick Setup 

 

Figure B-6: Joystick Advanced Setup. 

B.1.5: Parameters 

The Parameters screen allows finding and modifying any of the parameters associated 

with the vehicle. To change the value of a parameter, click on the parameter row in a group or 

search list, as shown in Figure B-7. These will open a side dialog, which allows updating the 

parameters (the dialog provides additional detailed information about the parameter) 
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Figure B-7: Parameters 
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