BIOMARKERS

PODIUM PRESENTATION

Alzheimer's & Dementia®

NEUROIMAGING

Sex and APOE-ε4 carrier effects on early-onset Alzheimer's disease pathology

Paige E. Logan ¹ Sára Nemes ¹ Leonardo Iaccarino ² Nidhi S. Mundada ³
Renaud La Joie 3 Paul Aisen 4 Jeffrey L. Dage 1 Ani Eloyan 5 Anne M. Fagan 6
Tatiana M. Foroud ¹ Constantine Gatsonis ⁵ Dustin B. Hammers ¹ Clifford R. Jack
Jr. 7 Joel H. Kramer 3 Robert Koeppe 8 Andrew J. Saykin 1 Arthur W. Toga 9
Prashanthi Vemuri 7 Alireza Atri 10 Gregory S. Day 11 Ranjan Duara 12
Neill R. Graff-Radford ¹¹ Lawrence S. Honig ¹³ David T. Jones ⁷
Joseph C. Masdeu ¹⁴ Mario F. Mendez ¹⁵ Chiadi U. Onyike ¹⁶ Emily J. Rogalski ¹⁷
Sharon Sha ¹⁸ Robert W. Turner ¹⁹ Kyle B. Womack ⁶ Maria C. Carrillo ²⁰
Gil D. Rabinovici ³ Bradford C. Dickerson ²¹ Liana G. Apostolova ¹

¹Indiana University School of Medicine, Indianapolis, IN, USA

Abstract

Background: Previously, we found that female sex is associated with greater pathology burden in early-onset Alzheimer's disease (EOAD) in the Longitudinal EOAD Study (LEADS). Here, we have expanded our analyses by adding APOE-ε4 carrier status as a further predictor of EOAD pathologic burden.

Method: We included 180 EOAD LEADS participants with available APOE genotype, Flortaucipir PET, Florbetaben PET, and MRI data. Demographic and biomarker differences were analyzed using ANOVA. EOAD participants were split by sex and APOE-ε4 carrier status. Box plots were created in R and a voxel-wise multiple linear regression in SPM12 yielded statistical brain maps of gray matter density (GMD), amyloid and tau burden.

Result: Compared to males, EOAD females showed significantly greater global amyloid uptake (mean SUVR, p=0.002) and greater tau SUVR in the MetaROI, Braak 3&4 and 5&6 regions (p=0.0007, p=0.001, p=0.01, resp., Table 1). Female APOE-ε4 carriers showed greater tau SUVR in Braak regions 1&2 than female non-carriers (p<0.01, Figure 2B). Male APOE-ε4 carriers showed trend-level thinner entorhinal cortex than male non-carriers (p=0.06, Figure 1). Interestingly however, female APOE-ε4 noncarriers showed greater global amyloid SUVR than female carriers (p<0.01, Figure 2A). Further, APOE-£4 non-carriers showed significantly thinner medial temporal cortices than carriers in both sexes (M, p<0.05; F, p<0.01). Male APOE-ε4 non-carriers

²Avid Radiopharmaceuticals, Philadelphia, PA,

³University of California, San Francisco, San Francisco, CA, USA

⁴Alzheimer's Therapeutic Research Institute. University of Southern California, San Diego,

⁵Brown University, Providence, RI, USA

⁶Washington University School of Medicine, St. Louis, MO, USA

⁷Mayo Clinic, Rochester, MN, USA

⁸University of Michigan, Ann Arbor, MI, USA

⁹Laboratory of Neuro Imaging (LONI), University of Southern California, Los Angeles, CA, USA

¹⁰Banner Sun Health Research Institute/Banner Health, Sun City, AZ, USA

¹¹Mayo Clinic, Jacksonville, FL, USA

¹² Mount Sinai Medical Center, Miami Beach, FL, USA

¹³Columbia University Irving Medical Center, New York, NY, USA

- ¹⁴Houston Methodist Research Institute, Houston, TX, USA
- ¹⁵University of California, Los Angeles, Los Angeles, CA, USA
- ¹⁶ Johns Hopkins University School of Medicine, Baltimore, MD, USA
- ¹⁷Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- ¹⁸ Stanford University School of Medicine, Stanford, CA, USA
- $^{19} George\,Washington\,University,Washington,$ DC. USA
- ²⁰Alzheimer's Association, Chicago, IL, USA
- ²¹Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA

Correspondence

Paige E. Logan, Indiana University School of Medicine, Indianapolis, IN, USA. Email: pailogan@iu.edu

also showed significantly lower mean cortical thickness than male carriers (p<0.05, Figure 1). Female APOΕ-ε4 non-carriers showed trend-level lower mean cortical thickness than female carriers (p=0.06, Figure 1). The FWE corrected SPM12 maps showed significantly greater GM atrophy in the right temporal lobe and greater amyloid burden in a right lateralized occipitoparietal pattern in female APOE-ε4 non-carriers compared to female carriers. Further, male APOE-ε4 non-carriers showed greater tau uptake in the left frontal lobe than male carriers (Figure 3).

Conclusion: These results suggest that APOE-ε4 non-carrier status is associated with greater atrophy, amyloid and tau deposition in EOAD. This might be due to the presence of other strong genetic drivers of disease pathology in EOAD.