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1  |  INTRODUC TION

Interactions between animals and their microbiomes, the commu-
nity of microbes that live on or in host tissues, can exert selective 
pressure on hosts (Gould et al., 2018; Rosshart et al., 2017), mi-
crobes (Garud et al., 2019; Guo et al., 2019), or both (Abdul Rahman 
et al., 2015; Barroso- Batista et al., 2015; Moeller et al., 2016). The gut 
microbiome in particular impacts host health, including by protect-
ing hosts from parasites (Duvallet et al., 2017; Rosshart et al., 2017; 
Stough et al., 2016). This function is shared by the microbiomes of 
other mucosal membranes that interact with the host's external 
habitat (Jani & Briggs, 2018; Knutie et al., 2017; Planet et al., 2016; 
Takeuchi et al., 2021). Despite the clear importance of the gut and 
other mucosal microbiomes to the survival and fitness of individ-
ual hosts, the field lacks a consensus on the expected broad- scale 
patterns of host- microbiome evolutionary interactions (Hird, 2017; 
Sharpton, 2018). Empirical studies of host- microbe relationships 

across the tree of life have findings ranging from tight symbiosis 
(Jahnes & Sabree, 2020; Kim et al., 2016) to coevolutionary arms 
races (Cable & van Oosterhout, 2007; Eizaguirre et al., 2012; 
Sarabian et al., 2018). Here, we use the correlation between host ge-
netic diversity and cloacal microbiome phylogenetic diversity across 
a reptile community to interrogate possible evolutionary processes 
in host- microbiome interactions. We describe a plausible predicted 
direction of the correlation between microbiome diversity and host 
genetic diversity if higher- diversity microbiomes provide an adaptive 
advantage to the host and the host genes that structure the micro-
biome are dependent on heterozygosity for their function. We then 
compare those predictions to our observed data (Figure 1).

Many studies, particularly in humans and mammalian model 
organisms, find correlations between host genotypes and gut mi-
crobiome structure (Cahana & Iraqi, 2020; Goodrich et al., 2016) 
and signals of heritability in the bacteria lineages present in gut 
microbiomes (Grieneisen et al., 2021; Moeller et al., 2017). These 
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studies strongly indicate that adaptive evolution by the host is one 
of the mechanisms structuring microbiome communities, either 
through maintaining vertically inherited microbial lineages or by 
determining how horizontally acquired lineages are filtered by the 
host. Simultaneously, broadscale phylogenetic studies show that 

mammals tend to have more phylogenetic signal in their gut microbi-
omes than other tetrapods (Song et al., 2020; Youngblut et al., 2019), 
possibly indicating that different mechanisms structure microbial 
communities outside of mammals. Determining the degree to which 
adaptive evolution by the host structures microbial communities 
across vertebrates and narrowing down the potential mechanisms 
which do so is a major challenge in fully integrating host– microbe 
interactions into broader ecological and evolutionary studies. As 
a further complication to field studies in particular, environmental 
drivers of gut microbiome assembly are important in all vertebrate 
systems (Gacesa et al., 2022; Kim et al., 2021; Wu et al., 2018). Here, 
we draw on macroecological concepts to identify patterns we would 
expect to see if hosts were evolving to maximize microbiome diver-
sity (Figure 1a). Although we cannot directly test functional ques-
tions, this approach allows us to rule out potential processes that are 
inconsistent with our observed data. In addition, we use an explor-
atory science approach to identify patterns within our microbiome 
communities that could explain our broadscale findings.

The specific analyses in our study are motivated by a set of 
broader ecoevolutionary questions, which will require testing using 
a variety of sources of evidence. These types of questions are key 
to understanding the relationships between hosts and microbiomes 
at large ecological and evolutionary scales. For example, we could 
ask about the expected standing diversity of the genes within a 
host species that are most likely to be selected on by the cloacal 
microbiome. This would determine the speed and magnitude of re-
sponse to selection in the host population. Relatedly, what is the 
expected rate of adaptive change (if any) of host genetic drivers of 
microbiome structure over evolutionary time? Finally, what are some 
characteristics of host genes that might drive host- microbiome in-
teractions on evolutionary time scales (Hird, 2017; Shapira, 2016; 
Sharpton, 2018)? Integrating evidence supporting answers to these 
large- scale questions across empirical data sets and different ap-
proaches will allow the field to develop a coherent set of predictors 
for the ecoevolutionary role of the host- microbiome unit.

To generate predictions, we draw on a community ecology hy-
pothesis that higher diversity biological communities can be more 
stable and resilient than low- diversity communities (de Mazancourt 
et al., 2013; Lehman & Tilman, 2000; Mougi & Kondoh, 2012). If this 
argument holds true for microbiomes, higher diversity should pro-
vide a fitness advantage to the host (Figure 1a), because diversity 
maximizes the microbiome's effectiveness at delivering consistent, 
reliable metabolic services (Gould et al., 2018; Kohl et al., 2014; 
Rosshart et al., 2017). In humans, low diversity in the microbiome is 
correlated with multiple disease states (Durack & Lynch, 2019; Kriss 
et al., 2018; Michail et al., 2012). In some cases, severe disease can 
occur when low- diversity microbiomes are invaded by opportunis-
tically pathogenic bacteria (Chang et al., 2008), and can be treated 
by artificially returning the microbiome to a higher- diversity state 
(Seekatz et al., 2014). In wild vertebrates, low microbiome diversity 
can correlate with human- induced stressors (Amato et al., 2013; 
Barelli et al., 2015), indicating that host lineages might experience 
selection to maximize microbiome diversity. If this is the case, we 

F I G U R E  1  Possible relationships between host genetic diversity 
and microbiome phylogenetic diversity to test evolutionary 
hypotheses. (a) We identify the evolutionary process of interest, 
describe the pattern that process should generate, and describe 
how we will measure the pattern. While other assembly 
processes could account for the patterns we discuss, we focus on 
process that could be driven by host genetics. (b) Four possible 
outcomes show how selective processes might drive the host-
microbiome relationship. Higher than expected phylogenetic 
diversity of microbiome lineages (blue lines, first column) points 
toward a fitness benefit of cloacal microbiome diversity, while 
lower than expected phylogenetic diversity does not (red lines, 
second column). Correlation of microbiome diversity and host 
heterozygosity would be consistent with positively selected, 
high-diversity gene (bottom row) maintaining the host-microbiome 
relationship. We predict that the microbiome will be over-dispersed 
and show microbiome diversity correlated with host heterozygosity 
(black box). [Colour figure can be viewed at wileyonlinelibrary.com]
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should be able to observe higher microbiome phylogenetic di-
versity within hosts than would be expected by chance (shown in 
Figure 1b column 1). Here, we use observed phylogenetic diversity 
of our microbial lineages compared to the expected outcome of a 
random sample of all lineages present. Our observed values should 
be larger than the expected randomized outcome if our hypothesis is 
correct (Proches et al., 2006). However, there are exceptions to the 
observation that microbiome diversity correlates with host health, 
such as animals in disturbed habitats exhibiting higher- diversity 
microbiomes than those in more intact habitat (Huang et al., 2018; 
Littleford- Colquhoun et al., 2019; Phillips et al., 2018), and dietary 
specialists optimizing fitness with a low- diversity, consistent micro-
biota (Dill- McFarland et al., 2016; Greene et al., 2021). These excep-
tions underscore the need for systematic tests of the pattern in host 
communities outside the laboratory.

The hypothesis that higher host heterozygosity could be re-
lated to higher microbiome diversity is similarly biologically plausi-
ble. Vertebrate hosts interact with their gut microbiome through a 
variety of heterozygosity- dependent systems, including the innate 
and adaptive immune systems (Milligan- Myhre et al., 2016; Postler 
& Ghosh, 2017; Rudman et al., 2019; Small et al., 2017), the olfactory 
and taste receptors (Carey & Lee, 2019; Harmon et al., 2021; Khan 
et al., 2015; Leung & Covasa, 2021; Pluznick, 2014), and the nuclear 
receptor genes (Little et al., 2022; Ning et al., 2019; Sivaprakasam 
et al., 2017). These gene categories often occur in large families 
of similar but nonidentical copies derived from gene duplication 
events, as greater diversity in the proteins they encode allows the 
host to recognize a larger number of substrates. In addition, this 
type of gene can undergo rapid pseudogenization, leading to both 
functional and nonfunctional alleles for each gene copy circulating 
in a population. As a result, individuals with lower heterozygosity 
are more likely to have two pseudogenized alleles at a given locus, 
thereby reducing their overall sensory repertoire (Hasin et al., 2008; 
Hasin- Brumshtein et al., 2009).

Because a variety of host gene families interact with the gut mi-
crobiome, using a genome- wide estimate of heterozygosity provides 
an approach that is agnostic to the function of any particular family. 
In addition, field- based studies indicate that genome- wide hetero-
zygosity can be predictive of selective outcomes. Previous studies 
have shown correlations between genome- wide heterozygosity and 
fitness or disease prevalence in reptiles (Shaner et al., 2013). Other 
studies have shown correlations between neutral- allele heterozy-
gosity and MHC heterozygosity (Elbers et al., 2017; Santonastaso 
et al., 2017), although the pattern is not found in every population 
investigated (Hacking et al., 2018). Both the variation in outcomes 
of neutral allele- MHC diversity correlations and the variety of 
gene families that depend on underlying diversity to drive function 
demonstrate that the microbiome- host genomic heterozygosity re-
lationship requires further empirical testing.

We collected samples of host genetic material and cloacal micro-
biomes from lizards and snakes in the Peloncillo Mountains in south-
western New Mexico during June and July of 2015. This community 
has high species diversity, increasing our chances of capturing a 

range of host heterozygosity levels (Grundler et al., 2019). In addi-
tion, squamate reptiles lack the shifts to herbivory that drive micro-
biome assembly across the mammalian phylogeny, thereby reducing 
potential confounding factors in our work (Harrison et al., 2021; 
Ley et al., 2008; Youngblut et al., 2019). We sampled a host com-
munity of 18 lizard and snake species with a large range of varia-
tion of host genetic diversity both within and between species 
(Table 1), including three lineages of clonal teiid lizards (Reeder 
et al., 2002). The clonal lizards arise from hybridization events be-
tween two diploid parent species, leading the triploid lineages to 
have high within- individual heterozygosity but little to no diversity 
between conspecifics. In addition, we have a range of dietary spe-
cializations represented. Horned lizards in the genus Phrynosoma are 
relatively specialized on ants (Lemos- Espinal et al., 2004; Meyers 
et al., 2006; Montanucci, 1989; Pianka & Parker, 1975), while other 
members of the family Phrynosomatidae are generalist insecti-
vores. Dietary specialization is correlated with reduced gut micro-
biome diversity in some vertebrate taxa (Dill- McFarland et al., 2016; 
Greene et al., 2021), although the pattern is not universal (Bolnick, 
Snowberg, Hirsch, et al., 2014). Additionally, our single location, 
cross- community sampling allows for testing host- microbiome di-
versity hypotheses at both inter-  and intraspecific levels without 
the potential confounding effects of geographical variation (Amato 
et al., 2013; Barelli et al., 2015; Ingala et al., 2019).

Reptiles, like most other vertebrates but unlike mammals, tend 
to have gut microbiomes dominated by bacteria from the phylum 
Proteobacteria, with a lower proportion of the community com-
prised of Firmicutes, Bacteroidetes, and Actinobacteria (Colston & 
Jackson, 2016). We sampled the reptiles using a minimally invasive 
cloacal swab, a common approach in reptile cloacal microbiome 
studies (Colston et al., 2015). Among tetrapods, all orders except 
mammals have a cloaca, an opening that houses the terminus of the 
digestive, urinary, and reproductive tracts. The cloacal microbiome 
is seeded in part by the lower intestinal microbiome but includes 
aerobic lineages that can survive in its semi- oxygenated environ-
ment (Grond et al., 2018). The cloacal microbiome is distinct from 
the lower gut and faecal microbiome, with some studies finding 
little correlation between the communities (Kers et al., 2019; Lee 
et al., 2020; Williams & Athrey, 2020), while others do find sim-
ilarities (Andreani et al., 2020; Berlow et al., 2020; Bodawatta 
et al., 2020; Zhou et al., 2020). The cloacal mucosa is integral to 
health in reptiles, with a variety of pathogens causing symptomatic 
infection in the area (Curtiss et al., 2015; Johne et al., 2002; Styles 
et al., 2004; Tillis et al., 2021). In addition, the cloacal microbiome 
in lizards seeds eggshells with antifungal microbial lineages, a key 
fitness benefit (Bunker et al., 2021). For these reasons, we predict 
host- level selection enabling some degree of host control over the 
assembly and function of cloacal microbiomes.

In our sampled community, we hypothesize that individual mi-
crobiomes will show inflated phylogenetic diversity relative to ran-
dom expectations (Figure 1b, left column). We further hypothesize 
that host heterozygosity should be correlated with microbiome 
diversity (Figure 1b, lower row). Identifying this relationship will 
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provide evidence about the standing host genetic diversity available 
for selection due to host- microbiome interaction and the expected 
rate of change of microbiome structure over evolutionary time. If mi-
crobiome assembly is driven by heterozygosity- dependent, quickly 
evolving gene families, we would expect host- driven rapid adaptive 
evolutionary change to the microbiome structure. If assembly in-
stead is more driven by conserved host genes, host genetic controls 
on microbiome structure should evolve more slowly. We further 
investigate possible mechanisms behind our observed results using 
descriptive approaches to identify instances in which our empirical 
outcomes differ from random community assembly expectations.

2  |  MATERIAL S AND METHODS

2.1  |  Sample collection

During May and June of 2015, we conducted surveys for squamate 
reptiles (snakes and lizards) on Antelope Pass in the Peloncillo moun-
tains in New Mexico (Table 1, Table S1). We surveyed for approxi-
mately 8 h a day between sunrise (between 6:00 and 6:30 AM) and 
sunset (between 8:00 and 8:30 PM). We avoided sampling during the 
heat of the day to reduce stress on the animals. For each captured 
individual, we recorded species, snout- vent length (SVL), mass, date 
and time of capture, and GPS coordinates (Table S1). We took a tis-
sue sample (tail tip for lizards, ventral scute clip for snakes) and a 
cloacal swab from each animal. We inserted a sterile rayon urethral 
swab (MW113 by Medical Wire & Equipment) fully into the cloaca 
but not into the lower digestive tract and left it in for a count of five. 
If the animal was large enough, we moved the swab to cover the 

entire cloaca. By gently applying pressure to the lower abdomen of 
the animals, we were able to slightly evert the cloacal mucosa and 
insert the swabs without touching skin.

Tissues and swabs were stored in at ambient temperature in 
RNALater in the field and carried with the researchers in a back-
pack to avoid direct sunlight. At the end of each day, samples were 
deposited in a shaded but not climate- controlled storage location 
for the duration of the field season. Samples were stored at −20°C 
upon returning to the laboratory. We captured at least one individual 
from 18 snake and lizard species (Table S1). They fell into six major 
taxonomic groups, the lizard families Teiidae, Phrynosomatidae, 
Eublepharidae, and Crotaphytidae, and the snake families Vipirdae 
and Colubridae. We collected under New Mexico Game and Fish 
permit 3606 issued to Michael Grundler, and University of Michigan 
UCUCA protocol no. PRO00006234. UCUCA is the equivalent of 
the more commonly used IACUC acronym.

We sequenced host DNA for 104 individuals and then sequenced 
microbiome DNA for 94 of those individuals, for a total of 94 individ-
uals with attempted sequencing for both data types. We eliminated 
some individuals due to either host or microbiome sequencing failing 
our quality control checks, retaining 63 individuals with high- quality 
sequences for both microbiome and host DNA (Table 1, Table S1). 
We used a RADseq approach to quantify host heterozygosity. 
RADseq heterozygosity values correlate with values derived from 
other marker types such as microsatellites, other sources of SNP 
data, and whole genome sequences (Bradbury et al., 2015; Cariou 
et al., 2016; Lemopoulos et al., 2019). RADseq heterozygosity values 
also correlate with metrics of census population size in lizard spe-
cies that are ecologically similar to some of our focal taxa (Singhal 
et al., 2017). For microbiome diversity, we used a metabarcoding 

TA B L E  1  Host- species level characteristics. Provides taxonomic and ecological information and sample size per host species

Family Genus Species Reproductive strategy Sample size Diet

Teiidae Aspidocelis flagellicaudum Clonal 2 Arthropods

Teiidae Aspidocelis sonorae Clonal 9 Arthropods

Teiidae Aspidocelis uniparens Clonal 6 Arthropods

Teiidae Aspidocelis tigris Sexual 8 Arthropods

Vipiridae Crotalus atrox Sexual 1 Vertebrates

Colubridae Coluber bilineatus Sexual 1 Vertebrates

Crotaphytidae Crotaphytus collaris Sexual 5 Both

Phrynosomatidae Cophasaurus texanus Sexual 2 Arthropods

Eublepharidae Coleonyx variegatus Sexual 3 Arthropods

Crotaphytidae Gambelia wislizenii Sexual 1 Both

Colubridae Pituophis catenifer Sexual 2 Vertebrates

Phrynosomatidae Phrynosoma cornutum Sexual 4 Arthropods

Phrynosomatidae Phrynosoma modestum Sexual 5 Arthropods

Colubridae Rhinochilus lecontei Sexual 1 Arthropods

Phrynosomatidae Sceloporus clarkii Sexual 4 Both

Colubridae Salvadora hexalepis Sexual 4 Vertebrates

Phrynosomatidae Urosaurus ornatus Sexual 3 Arthropods

Phrynosomatidae Uta stansburiana Sexual 2 Arthropods
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approach with the widely used 16S rRNA V4 barcode region, which 
provides phylogenetic resolution across broad taxonomic scales 
(Kozich et al., 2013).

2.2  |  Laboratory methods

We extracted total DNA from tissue samples and cloacal swabs 
using DNeasy Blood and Tissue spin column kits from Qiagen. We 
prepared the tissue DNA according to a RADseq protocol from 
Peterson et al. (2012), using the restriction enzymes EcoR1 and 
Msp1. DNA fragments up to 400 bp in length were sequenced on an 
Illumina HiSeq platform using version four reagents over two paired 
end runs at the University of Michigan Sequencing Core Facility. 
For bacteria metabarcoding, we used an Illumina MiSeq platform at 
the University of Michigan Microbiome Core Facility to barcode a 
252 bp sequence from the V4 region of the 16S rRNA gene (Kozich 
et al., 2013). The library was prepared by the core and sequenced 
in a single lane with a negative (water) and positive (extracted DNA 
from a mock community) control.

2.3  |  Bioinformatic pipelines

For our RADseq data, we used a modification of the pipeline pre-
sented in Singhal et al. (2017). This pipeline was tested against pyRAD 
(Eaton, 2014) and determined to provide more reliable estimates of 
heterozygosity (Singhal et al., 2017, Supporting Information). We 
first removed low- quality sequences and adapter sequences using 
Trimmomatic version 0.33 (Bolger et al., 2014) and assembled the 
reads using Rainbow version 2.0.4 (Chong et al., 2012). We then gen-
erated a separate pseudogenome for each host individual by cluster-
ing the assembled reads using vsearch (Rognes et al., 2016). Finally, 
we mapped the raw reads back to the pseudogenome using bwa 
version 0.7.12 (Li & Durbin, 2009) and called SNPs and indels using 
the GATK function haplotypeCaller (McKenna et al., 2010; Poplin 
et al., 2017). Assembling per- individual rather than per- species pseu-
dogenomes allowed us to avoid biases introduced by variation in the 
number of fragments per individual and differences in sample size 
between species (Cariou et al., 2016). Using the GATK haplotype-
Caller function allowed us to specify the ploidy of the hosts as an 
input variable for the program. Using published values, we specified 
that our unisexual species were triploid (Reeder et al., 2002), while 
the other hosts were diploid. We retained all sequenced DNA frag-
ments with a read depth greater than 20 and called heterozygote 
bases when the rarer of the two alleles was represented in more than 
40% of the reads for diploids or when the rarest of the three alleles 
was represented in more than 20% of the reads for triploids. We 
retained host individuals that had more than 100 DNA fragments of 
a length greater than 200 bp that passed our filters (Table S1).

For the bacterial 16S rRNA metabarcode data from cloacal swabs, 
we used the program mothur version 1.48 (Schloss et al., 2009). For 
our 94 microbiome samples and the negative sequencing control, we 

made contigs from our paired- end sequences, selected fragments 
within 8 bp of our target 252 bp length, and removed reads with ho-
mopolymers over eight bp long or with ambiguous base calls. We 
then aligned the sequences against the reference bacteria in the 
SILVA 16S rRNA database release 138 (Quast et al., 2012; Yilmaz 
et al., 2014), and removed the sequences that did not overlap the 
target alignment region on the reference data set or aligned with less 
that 80% similarity. We removed chimeric sequences then obtained 
the taxonomic classification of our remaining sequences by align-
ing them against the June 2020 RDP data release (Cole et al., 2014; 
Wang et al., 2007). We retained only those sequences that aligned 
to bacteria references. We clustered sequences at a 97% similarity 
threshold to obtain operational taxonomic units (OTUs) using the 
OptiClust algorithm (Westcott & Schloss, 2017), then assigned a 
final taxonomic classification to our OTUs using the RDP data set. 
We used this set of OTUs in all further analyses. Finally, we gen-
erated a phylogenetic tree using the clearcut command (Sheneman 
et al., 2006).

Using a custom script in R, we removed the 12 OTUs that oc-
curred in the negative control from our data set. Following visual 
inspection of the distribution of sample sizes, we retained the data 
from all hosts with more than 2000 total sequences. The thresh-
old of 2000 reads occurred at a natural breakpoint in our histogram 
of sequences recovered per host (Figure S1A). We also plotted rar-
efaction curves (Figure S1B) using the rarecurve function in the R 
package vegan (Oksanen et al., 2018). Because some of our down-
stream analyses are vulnerable to unbalanced sample sizes (Gotelli 
& Colwell, 2001), we rarefied our host- by- OTU matrix to 2000 se-
quences per host using the rrarefy command from vegan.

The largest sequencing depth for any OTU that occurred in the 
negative control was two. We therefore set all OTU calls in our data 
set with sequencing depths less than four to zero. This threshold 
conservatively accounted for potential rates of index hopping that 
could have caused the sequences to appear in our negative control. 
We also modified mothur output files to generate a taxonomy file 
for the OTUs, a fasta file with one representative sequence per OTU 
taken from the first listed sequence name in the OptiClust output, 
and a phylogenetic tree of the OTUs. Custom scripts and input files 
are available on Dryad (10.5061/dryad.f7m0cfxzb).

2.4  |  Quantifying host heterozygosity

We quantified host heterozygosity by finding the mean proportion 
of heterozygous sites in each RADseq DNA fragment for each host 
(Table S1), a method shown to reduce bias relative to measuring 
heterozygosity at polymorphic sites only (Schmidt et al., 2021). To 
determine whether we were using an adequate number of frag-
ments to retrieve a reliable heterozygosity measure, we calculated 
a running average heterozygosity by sequentially adding frag-
ments from one to the total number recovered for each individual 
(Figure S1C). We determined the number of fragments necessary 
for the running average heterozygosity value to be within 0.001 

https://doi.org/10.5061/dryad.f7m0cfxzb
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of the final value recovered for that host individual (grey bar in 
Figure S1C). We produced these values with a custom script using 
the vcfR package (Knaus & Grünwald, 2017). For each host, we re-
corded the total number of fragments recovered and the number 
of fragments necessary to achieve a stable heterozygosity esti-
mate (Table S1).

2.5  |  Microbiome alpha and beta diversity

To calculate alpha (within- host) diversity, we used the phyloge-
netically informed Faith's diversity index implemented in picante 
(Kembel et al., 2010). To test for subkilometre landscape level pro-
cesses that might lead to correlation between low host genetic di-
versity and lower microbiome diversity within our sampled area, we 
used a Procrustes analysis implemented in the R package vegan. We 
tested a geographic distance matrix of sampling locations against a 
pairwise Bray- Curtis community distance matrix and used the func-
tion protest to identify whether a significant correlation existed. To 
assess the degree to which microbiomes cluster by host taxon, we 
performed a PERMANOVA using the adonis2 function from the R 
package vegan. We tested host family and host heterozygosity as 
explanatory variables. Understanding the degree of host phyloge-
netic clustering in microbiomes allowed us to construct appropriate 
null distributions for microbiome richness comparisons. Since sam-
ples were stored at ambient temperature in the field for a variable 
length of time, we included storage length as an additional explana-
tory variable. In addition to the PERMANOVA, we regressed micro-
biome OTU species richness and phylogenetic diversity against the 
time the samples were stored at ambient temperature. If there was 
a correlation, we would be concerned that our analyses would be 
impacted by sample degradation.

2.6  |  Relationship between microbiome 
diversity and host heterozygosity

We used the R package nlme to perform a phylogenetic general-
ized least squares model to test whether host heterozygosity or 
diet significantly predicted cloacal microbiome phylogenetic diver-
sity (Pinheiro et al., 2022; Pinheiro & Bates, 2000). We retained tips 
from a squamate wide phylogenetic tree that either matched our 
host species or were the nearest available proxy (Tonini et al., 2016). 
Since there were no instances in which two sexually reproducing 
sampled host species were more related to each other than to a spe-
cies included in the tree, no branch lengths were altered by this ap-
proach. Only one of our three clonal whiptail species, A. uniparens, 
was represented on the tree. We used A. uniparens to represent both 
A. sonorae and A. flagellicaudus, as all three lineages share the same 
parent species (Reeder et al., 2002). We used the host phylogeny as 
a correlation structure in the PGLS. To visualize host phylogenetic 
signal in cloacal microbiome diversity, we plotted the average micro-
biome diversity for each species on a phylogenetic tree.

We used a null model approach to determine whether observed 
gut microbiome community phylogenetic diversity was higher or 
lower than a random expectation. We used the ses.pd function in 
the R package vegan to perform 10,000 randomization runs and 
9999 iterations of the taxon labels of our host- by- OTU community 
matrix. The function reports observed phylogenetic diversity, the 
mean phylogenetic diversity of the randomized communities, and a 
p- value reflecting the quantile of the observed compared to the ran-
domized samples. Since our phylogenetic generalized least squares 
(PGLS) and PERMANOVA found phylogenetic signal in cloacal mi-
crobiome diversity and composition, we repeated the randomization 
on subsampled matrices representing the OTUs found in each of 
our three most abundant host families: Teiidae, Phrynosomatidae, 
and Colubridae. For each family, we removed any OTUs that did not 
occur in any of our samples from that family, so existing OTUs could 
not be randomized into those taxa. We examined the within- family 
subsets because we were concerned that randomizing across the 
full community could produce signatures of lower than expected 
phylogenetic diversity purely due to host phylogenetic signal in gut 
microbial communities, and sampling from within single host families 
would be less prone to this bias as it would account for some of the 
evolutionary history driving such an effect.

For visualization purposes, we generated a community- wide null 
expectation for microbiome phylogenetic diversity. To test for the 
relationship between Faith's diversity and species richness in our 
samples, we performed a linear model in base R. Since our species 
richness and Faith's phylogenetic diversity values were significantly 
correlated, we improved visual comparability between samples by 
dividing our phylogenetic diversity values by species richness. We 
randomly permuted values in the rows of our host- by- OTU matrix 
using the R function “sample”. We calculated individual phylogenetic 
diversity values from the resampled matrix. For our 1000 random 
draws, we recorded the number of times the true phylogenetic di-
versity value for each host was greater than the values calculated 
from a random permutation of that host's read depth values on the 
full OTU matrix. We then found the mean of the corrected diversity 
values for each run, repeated the procedure 1000 times, and found 
the mean of those 1000 means. For each of our three focal host 
families, we subsampled 1000 subsets of seven individuals each to 
generate a family- specific null expectation for diversity. We chose 
the cutoff to match the size of the smallest of the three sample sizes. 
For each subsample, we then followed the procedure outlined for 
the full data set.

2.7  |  Within- host microbiome community structure

In our previous analyses, we found that gut microbiomes tended to 
be phylogenetically under- dispersed relative to random expecta-
tions. To further explore patterns in the community structure that 
might drive this observation, we calculated pairwise Euclidean se-
quence distances between all OTU sequences in each host. We 
used the dist.alignment command the R package seqinr (Charif & 
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Lobry, 2007), which reports the square root of the measured pair-
wise distance. We squared the output to regain the true distance 
values. For comparison, we drew equal numbers of OTUs from 
our full community and found the pairwise distances between the 
OTUs. Visual inspection of the true- community histograms relative 
to the null community histograms showed a shift toward lower val-
ues across the distribution (Figure 4a,b). To test the strength and 
generality of this pattern, we compared the mean value of each 
host's pairwise distances to 100 richness- matched random draws 
and determined how many of the random means were lower than 
the true mean. We excluded hosts with fewer than 10 OTUs for this 
approach.

To better understand the drivers of this pattern as a potential ex-
planation for our observation of lower than expected phylogenetic 
diversity of cloacal microbiome communities, we tested whether 
host- specificity by the OTUs could explain our observed differ-
ences. To do so, we took all OTUs that occurred in more than one 
host and found the mean pairwise distance of those OTUs from all 
other OTUs in each community. Then we took the mean of those 
means. We plotted these values against the total patristic distance, 
or total length of all branches connecting a set of tips on a tree, of all 
hosts the OTU occupied. Since the total number of hosts could drive 
total patristic distance, we also plotted the mean values against the 
total number of occurrences of each OTU in our data set. For both 
comparisons, we performed a linear model in base R.

3  |  RESULTS

3.1  |  Host heterozygosity

We calculated the proportion of heterozygous sites per nucleotide 
in each host as the independent variable in our analyses. To deter-
mine whether the number of fragments available was adequate to 
reach a reliable value, we identified the number required to achieve 
a value within 0.001 of the final heterozygosity value in each indi-
vidual. Host heterozygosity ranged from 0.004– 0.019 sites per bp 
(Figure 2a, Table S1). All individuals had more fragments than neces-
sary to reach a measure within 0.001 of the full- sample heterozygo-
sity value (Table S1).

3.2  |  Microbiome diversity

As a dependent variable, we calculated a phylogenetically informed 
alpha diversity for our cloacal microbiome communities. The values 
of the Faith's diversity index of the cloacal microbiome communi-
ties ranged from 0.137 to 7.706 (Figure 2b, Table S1). Our Procrustes 
analysis found no significant spatial structuring of microbiome com-
munity distances (p = .399, correlation = 0.123). Our PERMANOVA 
found significant clustering according to host family (p = .001, 
R2 = 0.190), but not host heterozygosity (p = .632, R2 = 0.011) or 
time kept at field ambient temperature (p = .414, R2 = 0.014). Neither 

Faith's diversity (p = .979, R2 = −0.016) or species richness (p = .816, 
R2 = −0.015) in our retrieved communities showed a correlation with 
time stored at field ambient temperature.

3.3  |  Relationship between microbiome 
diversity and host heterozygosity

Our PGLS found no significant correlation between microbiome 
phylogenetic diversity and host heterozygosity (p = .760) or diet 
(p = .500). Microbiome diversity did show host phylogenetic signal 
(Pagel's lambda = 0.772). To test whether microbiomes were under-  
or over- dispersed relative to null expectations, we used a randomi-
zation test implemented with the ‘ses.pd’ function in the R package 
vegan. For the full host- by- OTU matrix, we found that our observed 
Faith's diversity values were smaller than the mean value of the ran-
domizations for all but one individual. Forty- nine of 63 microbiomes 
had p- values less than .05. When we applied a Bonferroni correction 
to the 0.05 p- value for corrected significance level of 0.0008, 27 mi-
crobiomes were still below the threshold. For the within- Colubridae 
comparisons, all eight observed microbiome diversity values were 
smaller than the mean of the randomizations. Seven of eight had p- 
values below .05 and six of eight had p- values below the Bonferroni 
corrected value of 0.007. For the Phrynosomatidae, all 20 observed 
microbiome diversity values were below the mean for the rand-
omizations, with 15 reaching significance at p = .05 and 10 at the 
Bonferroni- corrected p = .0025. For the Teiidae, 24 of 25 microbi-
omes diversities were lower than the mean of the randomizations, 
with 19 of 25 having a significant p- value at .05 and 16 of 25 reach-
ing significance at the corrected p- value of .002.

For visualization (Figure 3), we permuted the rows of our host- 
by- OTU matrix and found the mean Faith's phylogenetic diversity 
values for the individuals in the permuted matrix, then repeated the 
permutations 1000 times. For all values in the figure, we divided the 
Faith's diversity value by the species richness of the microbiome 
to increase visual comparability. The relationship between species 
richness and phylogenetic diversity was highly significant in a linear 
model (p < 2.2 × 10−16, adjusted R2 = 0.964). The mean of the 1000 
permuted values was 0.119. All but six individual values were lower 
than the mean (Figure 3a). Due to the host phylogenetic signal in our 
data set, we repeated the randomization on the OTUs present in sets 
seven confamilial hosts drawn from our three most abundant host 
families, the Teiidae, Phrynosomatidae, and Colubridae. The values 
of the mean randomized phylogenetic diversity within families were 
lower than the overall mean value, with Teiidae being 0.097 (two 
individuals from the family above), Phrynosomatidae 0.117 (three in-
dividuals above), and Colubridae 0.103 (two individuals above).

3.4  |  Within- host microbiome community structure

We found that 29 of the 49 hosts for which we compared mean pair-
wise sequence distance between OTUs had a smaller mean distance 
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than 90% of the matched null communities (Table S1). This outcome 
indicates that low microbiome phylogenetic diversity in some hosts 
could be driven by groups of microbes with closer- than- expected 
genetic distances that tend to cooccur in microbiomes. This pattern 
could be due to microbes that specialize on specific host lineages. 
To test this possibility, we found the mean distance between each 
OTU and the OTUs with which they co- occur. This value should be 
lower in OTUs that tend to co- occur in related groups. We compared 
these values to the mean patristic distances between hosts in which 
the OTUs occurred. Patristic distances should be smaller for host- 
specific microbes. We found that Proteobacteria and Firmicutes 
tended to have lower mean pairwise distances than Bacteroidetes, 
and that small average pairwise distances are not restricted to 
OTUs with low patristic distances (Figure 4c). The linear model for 
this comparison has a p- value of .0036, but an R2 of only 0.0294, 
showing a very weak relationship. In particular, some Proteobacteria 

OTUs with low pairwise distances are widespread across hosts in 
our sample (Figure 4d), indicating that these OTUs may drive a por-
tion of our observed skew in mean pairwise distances relative to the 
null distributions. The linear model for this comparison was not sig-
nificant (p = .209), and also had a very low correlation coefficient 
(R2 = 0.0023).

4  |  DISCUSSION

We tested whether a biologically plausible hypothesized correlation 
between the heterozygosity of reptile genomes and the diversity of 
their cloacal microbiomes could be detected in a natural host com-
munity. Using a single community with a range of host heterozygosity 
values allowed us to focus on patterns of host and microbe diversity 
without the confounding factor of landscape- scale processes that 

F I G U R E  2  Both genetic diversity and 
gut microbiome diversity varies within and 
between host species. (a) Host diversity 
varies within and between species, with 
heterozygosity values for each host family 
distributed through the total observed 
range. (b) Microbiome phylogenetic 
diversity shows variation within host 
species as well as phylogenetic signal 
across the host tree. [Colour figure can be 
viewed at wileyonlinelibrary.com]
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could impact both host genetics and microbiome diversity (Amato 
et al., 2013; Barelli et al., 2015; Ingala et al., 2019). We found no 
evidence of a correlation between host heterozygosity and micro-
biome phylogenetic diversity. In addition, we showed that microbi-
ome communities were phylogenetically under- dispersed relative to 

random expectations, specifically including more groups of closely 
related OTUs than would be expected by chance (Figure 1, Figure 3). 
We had hypothesized that a phylogenetically over- dispersed micro-
biome would reflect a history of selection on the host lineage toward 
recruiting diverse cloacal microbes and that a positive correlation 

F I G U R E  3  Gut microbiome diversity is not correlated with host genetic diversity and is under- dispersed relative to random expectations. 
(a) Our observed outcome does not show evidence of a positive correlation of gut microbiome and host genetic diversity, as would be 
expected if gut microbiome diversity increased host fitness and heterozygosity- dependent genes drove gut microbiome diversity. (b) Gut 
microbiomes are phylogenetically under- dispersed relative to random samples from the total regional pool of bacteria (dashed grey line), 
or size- matched samples of the three most abundant host families (dashed coloured lines) and gut microbiome phylogenetic diversity is not 
correlated with host genetic diversity. [Colour figure can be viewed at wileyonlinelibrary.com]
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between host heterozygosity and cloacal microbiome diversity 
would indicate that host- microbiome interaction was driven by spe-
cific categories of host genes that rely on diversity for their func-
tion (Figure 1) (Bolnick, Snowberg, Caporaso, et al., 2014; Khan 
et al., 2019, 2015; Sumiyama et al., 2002).

4.1  |  Potential sources of error and bias

We sampled the semi- oxygenated habitat of the reptile cloaca 
(Grond et al., 2018), which has a distinct microbiota relative to the 
gut (Kers et al., 2019; Lee et al., 2020; Williams & Athrey, 2020). As 
such, our results should be interpreted with caution for microbial 
communities in the gut or other environments within the host. In 
addition, sampling error due to variation in swabbing, extraction ef-
ficacy, or PCR error could reduce our ability to detect correlations in 
our data (Bonk et al., 2018; Pollock et al., 2018). Finally, we used a 
reduced- representation approach to sequence host DNA (Peterson 
et al., 2012). Since restriction enzyme cut sites vary across species 
and even at the individual level, the DNA fragments we recovered 
from this process are not homologus across hosts. Further study of 
the microbiome- host heterozygosity relationship is necessary, incor-
porating microbiome communities from a range of tissues and differ-
ent host DNA markers.

In addition to sources of bias, we may have failed to detect a 
correlation due to decoupling of heterozygosity between our hy-
pothesized target genes and the background heterozygosity of the 
host genome. In some instances, local selection can maintain high 
heterozygosity at immune genes even when neutral loci lose diver-
sity (Knafler et al., 2017; Oliver & Piertney, 2012; Strand et al., 2012). 
In addition, cloacal microbiome diversity maintenance might be 
more critical to host survival at particularly physiologically stress-
ful times. Examples of stressors known to impact gut microbiomes 
in vertebrates include heat stress (Chen et al., 2018; Sepulveda & 
Moeller, 2020) and the changes in physiology associated with hiber-
nation (Carey et al., 2013; Tang et al., 2019; Tong et al., 2020). Since 
we sampled only during spring and early summer, when food was 
relatively abundant and conditions were less stressful, we may have 
failed to confirm relationships that are detectable under different 
circumstances. Further work will be necessary to fully understand 
the vertebrate microbiome's response to external stressors and the 
fitness consequences of the interaction between host and microbi-
ome during stressful conditions.

In addition, codiversification and adaptation by some microbial 
lineages to specific host taxa could drive our observed lower than 
expected phylogenetic diversity (Figure 3), particularly when cou-
pled with possible phylogenetically conserved dietary ecology in the 
hosts (Youngblut et al., 2019), although this effect may be weaker 
outside of mammalian hosts (Harrison et al., 2021). If specialization 
to host taxa was the major driver of our observed signal of signifi-
cantly low phylogenetic diversity in our full host- by- OTU matrix, we 
would expect that our family- specific randomizations would show a 

greater proportion of microbiomes within the expected distribution 
of random samples, as they would account for a portion of the host 
evolutionary signal driving the pattern in the full data set. We did not 
find this to be the case, indicating that our observed patterns were 
not driven by codiversification alone (Figure 3b).

4.2  |  Selection on the host genome 
by the microbiome

Several mechanisms could explain our finding that cloacal microbi-
ome phylogenetic diversity is uncorrelated with host heterozygosity, 
including both environmental and host- driven processes. Focusing 
on host- driven mechanisms, positive correlations between micro-
biome diversity and host genetic diversity seem to be observed in 
the literature when host heterozygosity is low, either due to natu-
ral processes (Couch et al., 2020), or because the study uses ge-
netically identical laboratory animals (Khan et al., 2019; Kubinak 
et al., 2015). More- heterozygous host populations tend to show 
absent or even negative correlations between gut microbiome di-
versity and host genetic diversity (Bolnick, Snowberg, Caporaso, 
et al., 2014; Steury et al., 2019). Given this context, it is possible that 
hosts with even lower genetic diversity than those that appear in our 
samples would experience reduced fitness due to low microbiome 
diversity. As an alternate but not mutually exclusive explanation, 
transcriptomic studies between populations of hosts displaying dis-
tinct gut microbiome communities often identify expression levels 
of more- conserved host genes as key correlates of gut microbiome 
composition (Milligan- Myhre et al., 2016; Rudman et al., 2019; Small 
et al., 2017). Our results may provide an additional line of evidence 
that this category of more conserved genes are key in managing the 
host- microbiome relationship, as host heterozygosity is not directly 
related to their function.

If further studies confirm the generality of the finding that more 
conserved host genes tend to impact host- associated microbiome 
community structure, it may explain a common finding that verte-
brate gut microbiome community structure tends to be consistently 
differentiated between hosts from different families, but less so be-
tween hosts within a family, particularly when dietary differences 
are accounted for (Amato et al., 2019; Gaulke et al., 2018; Groussin 
et al., 2017; Kropáčková et al., 2017; Moeller et al., 2012; Nishida & 
Ochman, 2018; Phillips et al., 2012). Vertebrate- wide comparative 
analyses indicate that the host- family level differentiation pattern 
is frequent among nonmammalian vertebrates, while mammals may 
more often show finer- scale phylogenetic signal in host– microbe in-
teractions (Song et al., 2020; Youngblut et al., 2019). The hypothesis 
that more conserved, slower- changing genes determine gut micro-
biome structure is consistent with family- level microbiome distinc-
tions, as conserved genes are less likely to vary between members 
of the same genus then they are between members of different fam-
ilies (Jiggins & Hurst, 2003; Milligan- Myhre et al., 2016; Mukherjee 
et al., 2009).
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4.3  |  Microbiome phylogenetic 
community structure

To identify possible drivers of our observed pattern of lower- than- 
expected phylogenetic diversity in microbiome communities, we ex-
amined the phylogenetic structure of cloacal microbiomes relative to 
null expectations. Within individual cloacal microbiomes, the signal 
of low phylogenetic diversity may have been driven by clusters of re-
lated bacteria, particularly some widespread OTUs from the phylum 
Proteobacteria (Figure 4c,d). Given the large host breadth of these 
OTUs and the lack of signal with host patristic distance, host speci-
ficity by microbes is unlikely to completely explain our observed 
low phylogenetic diversity. We explored two nonmutually exclusive 
hypotheses that could fit our observation, although other mecha-
nisms such as habitat filtration could also apply. First, some bacteria 
might alter the host environment for their own establishment, thus 
facilitating colonization by related bacteria (Bragonzi et al., 2012; 
Burmølle et al., 2014; Rathi et al., 2015; Shiri et al., 2013). Second, 
the host immune response might favour a less diverse cloacal mi-
crobiome. Most vertebrates go through a juvenile period of high 
lineage turnover in their microbiomes (Hornef & Torow, 2020). As 
hosts become adults, their microbiome settles to a more consistent 
community, with the host immune system “learning” a set of per-
mitted OTUs and mounting immune defences against other bacteria 
(Erturk- Hasdemir et al., 2019), perhaps favouring genetically or eco-
logically similar groups of bacteria.

Given our finding that the most widespread bacterial lineages 
in our samples also tended to have low mean pairwise distances 
(Figure 4d), we propose a re- examination of assumptions behind the 
ecology and host benefits of widespread OTUs. The ubiquity of a 
bacterial OTU within a host species has been used as a proxy for 
that OTU's importance to host health or fitness (Hernandez- Agreda 
et al., 2017; Khan et al., 2019; Shade & Handelsman, 2012; Zhu 
et al., 2010). Differences in ecological generalism are another rea-
son to apply caution to assumptions about the health impacts of fre-
quently detected bacteria OTUs (Vieira- Silva et al., 2016). Bacterial 
ecology, including dormancy capabilities (Locey et al., 2020; Xu 
et al., 2022) and dispersal ability (Moeller et al., 2017; Stothart 
et al., 2021), can heavily influence habitat breadth in a taxon, and 
should be considered when interpreting OTU host breadth in eco-
logical or evolutionary terms.

5  |  CONCLUSIONS

Our observed outcomes of no correlation between host heterozy-
gosity and gut microbiome diversity and significantly lower than 
expected phylogenetic diversity in microbiomes are consistent with 
and provide additional context to frequently encountered patterns 
across vertebrate host- microbiome evolutionary studies. First, mi-
crobiome differences are often best predicted by the allelic states 
or expression levels of more conserved (immune and nonimmune) 
host genes (Jiggins & Hurst, 2003; Milligan- Myhre et al., 2016; 

Mukherjee et al., 2009; Rudman et al., 2019; Small et al., 2017). 
Second, vertebrate gut microbiomes, particularly outside of mam-
mals, often differ predictably at the host family level, but not below 
when dietary differences are accounted for (Amato et al., 2019; 
Gaulke et al., 2018; Groussin et al., 2017; Kropáčková et al., 2017; 
Moeller et al., 2012; Nishida & Ochman, 2018; Phillips et al., 2012). 
We argue that these empirical outcomes could have implications 
for the expected standing diversity for the genes involved in host- 
microbiome interaction, and hence the evolvability of the host- 
microbiome unit.

More fully incorporating cloacal and other host- associated mi-
crobiomes into ecology and evolutionary biology can shed light on 
a wide variety of natural processes. Through metabolic services to 
their hosts, gut microbes can impact ecosystem- scale processes, 
for example by altering trophic webs (Amato et al., 2015; Kohl 
et al., 2014) or curtailing community- wide impacts of epidemic dis-
ease (Smith- McKenna et al., 2014). On smaller scales, gut microbi-
omes facilitate host- lineage adaptation to new resources, opening 
up larger geographic ranges (Kohl et al., 2014) and novel ecological 
niches (Alberdi et al., 2016; Moeller et al., 2014). Reptile microbi-
omes contain many lineages that are acquired through environmen-
tal interactions or horizontal transfer (Kohl et al., 2017). Clarifying 
the host genetic or other mechanisms that govern potentially adap-
tive community assembly in the horizontally acquired portions of the 
microbiome is a key challenge for the field.

Together, our findings suggest testable principles for future 
studies on host- microbiome evolution. First, predictable differ-
entiation of cloacal microbiome communities between vertebrate 
host lineages may occur on longer timescales than speciation pro-
cesses. If evidence supports the first claim, then community- wide 
host- associated microbial diversity might be better predicted by 
host family diversity than host species diversity. These observations 
could suggest that losing host families, but not host species, from 
a community is likely to reduce the regional diversity of cloacal mi-
crobiome lineages. Second, the literature includes examples of quick 
adaptations to novel environments or resources via host- associated 
microbiomes (Alberdi et al., 2016; Kohl et al., 2014). If our hypothe-
ses above are upheld by empirical work, such rapid adaptations may 
be maintained by mechanisms other than direct interaction between 
host genotype and microbial lineages. Understanding potential 
mechanisms may be key for conservation planning and a establishing 
a broader understanding of the biology of host– microbe interactions 
in vertebrates.
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