
Holmes Iris A (Orcid ID: 0000-0001-6150-6150) 
 
 

Phylogenetically under-dispersed gut microbiomes are not correlated with host genomic 

heterozygosity in a genetically diverse reptile community 

 

Running title: phylogenetically clustered gut microbiomes  

 

Authors: Iris A. Holmes1,2 and Michael C. Grundler1,3 

 

Institutions: 1) Museum of Zoology and Department of Ecology and Evolutionary Biology, 

University of Michigan, Ann Arbor, MI 48109 USA, 2) Cornell Institute of Host Microbe 

Interactions and Disease and Department of Microbiology, Cornell University, Ithaca, NY 14853 

USA, 3) Department of Ecology and Evolutionary Biology, University of California, Los 

Angeles, CA 90095 USA  

 

Corresponding Author: Iris A. Holmes, iah6@cornell.edu, 734-355-0190 

 

Author Contributions: Iris A. Holmes collected data in the field and lab, designed and 

performed the analyses, and wrote the initial manuscript. Michael C. Grundler collected data in 

the field, contributed to analysis design, and helped revise the manuscript. 

 

 

 

 

 

 

 

 

 

 

 

 

 

This is the author manuscript accepted for publication and has undergone full peer review but has
not been through the copyediting, typesetting, pagination and proofreading process, which may
lead to differences between this version and the Version of Record. Please cite this article as doi:
10.1111/mec.16733

This article is protected by copyright. All rights reserved.

http://orcid.org/0000-0001-6150-6150
mailto:iah6@cornell.edu
http://dx.doi.org/10.1111/mec.16733
http://dx.doi.org/10.1111/mec.16733


 2 

Abstract 

 While key elements of fitness in vertebrate animals are impacted by their microbiomes, 

the host genetic characteristics that factor into microbiome composition are not fully understood. 

Here, we correlate host genomic heterozygosity and gut microbiome phylogenetic diversity 

across a community of reptiles in southwestern New Mexico to test hypotheses about the 

behavior of host genes that drive microbiome assembly. We find that microbiome communities 

are phylogenetically under-dispersed relative to random expectations, and that host 

heterozygosity is not correlated with microbiome diversity. Our analyses reinforce results from 

functional genomic work that identify conserved host immune and non-immune genes as key 

players in microbiome assembly, rather than gene families that rely on heterozygosity for their 

function.  

 

Introduction 

Interactions between animals and their microbiomes, the community of microbes that live 

on or in host tissues, can exert selective pressure on hosts (Gould et al., 2018; Rosshart et al., 

2017), microbes (Garud, Good, Hallatschek, & Pollard, 2019; Guo et al., 2019), or both (Abdul 

Rahman et al., 2015; Barroso-Batista, Demengeot, & Gordo, 2015; Moeller et al., 2016). The gut 

microbiome in particular impacts host health, including by protecting hosts from parasites 

(Duvallet, Gibbons, Gurry, Irizarry, & Alm, 2017; Rosshart et al., 2017; Stough et al., 2016). 

This function is shared by the microbiomes of other mucosal membranes that interact with the 

host’s external habitat (Jani & Briggs, 2018; Knutie, Wilkinson, Kohl, & Rohr, 2017; Planet et 

al., 2016; Takeuchi, Fujiwara-Nagata, Katayama, & Suetake, 2021). Despite the clear importance 

of the gut and other mucosal microbiomes to the survival and fitness of individual hosts, the field 

lacks a consensus on the expected broad-scale patterns of host-microbiome evolutionary 

interactions (Hird, 2017; Sharpton, 2018). Empirical studies of host-microbe relationships across 

the tree of life have findings ranging from tight symbiosis (Jahnes & Sabree, 2020; J. K. Kim et 

al., 2016) to co-evolutionary arms races (Cable & van Oosterhout, 2007; Eizaguirre, Lenz, 

Kalbe, & Milinski, 2012; Sarabian, Curtis, & McMullan, 2018). Here, we use the correlation 

between host genetic diversity and cloacal microbiome phylogenetic diversity across a reptile 

community to interrogate possible evolutionary processes in host-microbiome interactions. We 

describe a plausible predicted direction of the correlation between microbiome diversity and host 
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genetic diversity if higher-diversity microbiomes provide an adaptive advantage to the host and 

the host genes that structure the microbiome are dependent on heterozygosity for their function. 

We then compare those predictions to our observed data (Figure 1).  

Many studies, particularly in humans and mammalian model organisms, find correlations 

between host genotypes and gut microbiome structure (Cahana & Iraqi, 2020; Goodrich et al., 

2016) and signals of heritability in the bacteria lineages present in gut microbiomes (Grieneisen 

et al., 2021; Moeller et al., 2017). These studies strongly indicate that adaptive evolution by the 

host is one of the mechanisms structuring microbiome communities, either through maintaining 

vertically inherited microbial lineages or by determining how horizontally acquired lineages are 

filtered by the host. Simultaneously, broad-scale phylogenetic work shows that mammals tend to 

have more phylogenetic signal in their gut microbiomes than other tetrapods (Song et al., 2020; 

Youngblut et al., 2019), possibly indicating that different mechanisms structure microbial 

communities outside of mammals. Determining the degree to which adaptive evolution by the 

host structures microbial communities across vertebrates and narrowing down the potential 

mechanisms which do so is a major challenge in fully integrating host-microbe interactions into 

broader ecological and evolutionary studies. As a further complication to field studies in 

particular, environmental drivers of gut microbiome assembly are important in all vertebrate 

systems (Gacesa et al., 2022; P. S. Kim et al., 2021; Wu et al., 2018). Here, we draw on 

macroecological concepts to identify patterns we would expect to see if hosts were evolving to 

maximize microbiome diversity (Figure 1A). Although we cannot directly test functional 

questions, this approach allows us to rule out potential processes that are inconsistent with our 

observed data. In addition, we use an exploratory science approach to identify patterns within our 

microbiome communities that could explain our broad-scale findings. 

The specific analyses in our study are motivated by a set of broader eco-evolutionary 

questions, which will require testing using a variety of sources of evidence. These types of 

questions are key to understanding the relationships between hosts and microbiomes at large 

ecological and evolutionary scales. For example, we could ask about the expected standing 

diversity of the genes within a host species that are most likely to be selected on by the cloacal 

microbiome. This would determine the speed and magnitude of response to selection in the host 

population. Relatedly, what is the expected rate of adaptive change (if any) of host genetic 

drivers of microbiome structure over evolutionary time? Finally, what are some characteristics of 
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host genes that might drive host-microbiome interactions on evolutionary time scales (Hird, 

2017; Shapira, 2016; Sharpton, 2018)? Integrating evidence supporting answers to these large-

scale questions across empirical datasets and different approaches will allow the field to develop 

a coherent set of predictors for the eco-evolutionary role of the host-microbiome unit. 

 

Microbiome diversity and host fitness 

To generate predictions, we draw on a community ecology hypothesis that higher 

diversity biological communities can be more stable and resilient than low-diversity 

communities (de Mazancourt et al., 2013; Lehman & Tilman, 2000; Mougi & Kondoh, 2012). If 

this argument holds true for microbiomes, higher diversity should provide a fitness advantage to 

the host (Figure 1A), because diversity maximizes the microbiome’s effectiveness at delivering 

consistent, reliable metabolic services (Gould et al., 2018; Kohl, Weiss, Cox, Dale, & Denise 

Dearing, 2014; Rosshart et al., 2017). In humans, low diversity in the microbiome is correlated 

with multiple disease states (Durack & Lynch, 2019; Kriss, Hazleton, Nusbacher, Martin, & 

Lozupone, 2018; Michail et al., 2012). In some cases, severe disease can occur when low-

diversity microbiomes are invaded by opportunistically pathogenic bacteria (Chang et al., 2008), 

and can be treated by artificially returning the microbiome to a higher-diversity state (Seekatz et 

al., 2014). In wild vertebrates, low microbiome diversity can correlate with human-induced 

stressors (Amato et al., 2013; Barelli et al., 2015), indicating that host lineages might experience 

selection to maximize microbiome diversity. If this is the case, we should be able to observe 

higher microbiome phylogenetic diversity within hosts than would be expected by chance 

(shown in Figure 1B column 1). Here, we use observed phylogenetic diversity of our microbial 

lineages compared to the expected outcome of a random sample of all lineages present. Our 

observed values should be larger than the expected randomized outcome if our hypothesis is 

correct (Proches et al 2006). However, there are exceptions to the observation that microbiome 

diversity correlates with host health, such as animals in disturbed habitats exhibiting higher-

diversity microbiomes than those in more intact habitat (Huang, Chang, Huang, Gao, & Liao, 

2018; Littleford‐Colquhoun, Weyrich, Kent, & Frere, 2019; J. N. Phillips, Berlow, & 

Derryberry, 2018), and dietary specialists optimizing fitness with a low-diversity, consistent 

microbiota (Dill-McFarland, Weimer, Pauli, Peery, & Suen, 2016; Greene et al., 2021). These 
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exceptions underscore the need for systematic tests of the pattern in host communities outside the 

laboratory. 

 

Relationship of host genetic diversity to microbiome diversity  

The hypothesis that higher host heterozygosity could be related to higher microbiome 

diversity is similarly biologically plausible. Vertebrate hosts interact with their gut microbiome 

through a variety of heterozygosity-dependent systems, including the innate and adaptive 

immune systems (Milligan-Myhre et al., 2016; Postler & Ghosh, 2017; Rudman et al., 2019; 

Small, Milligan-Myhre, Bassham, Guillemin, & Cresko, 2017), the olfactory and taste receptors 

(R. M. Carey & Lee, 2019; Harmon, Deng, & Breslin, 2021; I. Khan et al., 2015; Leung & 

Covasa, 2021; Pluznick, 2014), and the nuclear receptor genes (Little et al., 2022; Ning, Lou, 

Zhang, & Xu, 2019; Sivaprakasam, Bhutia, Ramachandran, & Ganapathy, 2017). These gene 

categories often occur in large families of similar but non-identical copies derived from gene 

duplication events, as greater diversity in the proteins they encode allows the host to recognize a 

larger number of substrates. In addition, this type of gene can undergo rapid pseudogenization, 

leading to both functional and non-functional alleles for each gene copy circulating in a 

population. As a result, individuals with lower heterozygosity are more likely to have two 

pseudogenized alleles at a given locus, thereby reducing their overall sensory repertoire (Hasin et 

al., 2008; Hasin-Brumshtein, Lancet, & Olender, 2009). 

Because a variety of host gene families interact with the gut microbiome, using a 

genome-wide estimate of heterozygosity provides an approach that is agnostic to the function of 

any particular family. In addition, field-based studies indicate that genome-wide heterozygosity 

can be predictive of selective outcomes. Previous studies have shown correlations between 

genome-wide heterozygosity and fitness or disease prevalence in reptiles (Shaner, Chen, Lin, 

Kolbe, & Lin, 2013). Other work has shown correlations between neutral-allele heterozygosity 

and MHC heterozygosity (Elbers, Clostio, & Taylor, 2017; Santonastaso et al., 2017), although 

the pattern is not found in every population investigated (Hacking, Stuart-Fox, Godfrey, & 

Gardner, 2018). Both the variation in outcomes of neutral allele-MHC diversity correlations and 

the variety of gene families that depend on underlying diversity to drive function demonstrate 

that the microbiome-host genomic heterozygosity relationship requires further empirical testing. 
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Study system 

We collected samples of host genetic material and cloacal microbiomes from lizards and 

snakes in the Peloncillo Mountains in southwestern New Mexico during June and July of 2015. 

This community has high species diversity, increasing our chances of capturing a range of host 

heterozygosity levels (Grundler, Singhal, Cowan, & Rabosky, 2019). In addition, squamate 

reptiles lack the shifts to herbivory that drive microbiome assembly across the mammalian 

phylogeny, thereby reducing potential confounding factors in our work (Harrison et al., 2021; 

Ley et al., 2008; Youngblut et al., 2019). We sampled a host community of 18 lizard and snake 

species with a large range of variation of host genetic diversity both within and between species 

(Table 1), including three lineages of clonal teiid lizards (Reeder, Cole, & Dessauer, 2002). The 

clonal lizards arise from hybridization events between two diploid parent species, leading the 

triploid lineages to have high within-individual heterozygosity but little to no diversity between 

conspecifics. In addition, we have a range of dietary specializations represented. Horned lizards 

in the genus Phrynosoma are relatively specialized on ants (Lemos-Espinal, Smith, & Ballinger, 

2004; Meyers, Herrel, & Nishikawa, 2006; Montanucci, 1989; Pianka & Parker, 1975), while 

other members of the family Phrynosomatidae are generalist insectivores. Dietary specialization 

is correlated with reduced gut microbiome diversity in some vertebrate taxa (Dill-McFarland et 

al., 2016; Greene et al., 2021), although the pattern is not universal (Bolnick, Snowberg, Hirsch, 

et al., 2014). Additionally, our single location, cross-community sampling allows for testing 

host-microbiome diversity hypotheses at both inter- and intraspecific levels without the potential 

confounding effects of geographical variation (Amato et al., 2013; Barelli et al., 2015; Ingala, 

Becker, Bak Holm, Kristiansen, & Simmons, 2019).  

 Reptiles, like most other vertebrates but unlike mammals, tend to have gut microbiomes 

dominated by bacteria from the phylum Proteobacteria, with a lower proportion of the 

community comprised of Firmicutes, Bacteroidetes, and Actinobacteria (Colston & Jackson, 

2016). We sampled the reptiles using a minimally invasive cloacal swab, a common approach in 

reptile cloacal microbiome studies (Colston, Noonan, & Jackson, 2015). Among tetrapods, all 

orders except mammals have a cloaca, an opening that houses the terminus of the digestive, 

urinary, and reproductive tracts. The cloacal microbiome is seeded in part by the lower intestinal 

microbiome but includes aerobic lineages that can survive in its semi-oxygenated environment 

(Grond, Sandercock, Jumpponen, & Zeglin, 2018). The cloacal microbiome is distinct from the 
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lower gut and fecal microbiome, with some studies finding little correlation between the 

communities (Kers, Fischer, Stegeman, Smidt, & Velkers, 2019; Lee et al., 2020; Williams & 

Athrey, 2020), while others do find similarities (Andreani, Donaldson, & Goddard, 2020; 

Berlow, Kohl, & Derryberry, 2020; Bodawatta, Puzejova, Sam, Poulsen, & Jønsson, 2020; Zhou 

et al., 2020). The cloacal mucosa is integral to health in reptiles, with a variety of pathogens 

causing symptomatic infection in the area (Curtiss et al., 2015; Johne et al., 2002; Styles, 

Tomaszewski, Jaeger, & Phalen, 2004; Tillis et al., 2021). In addition, the cloacal microbiome in 

lizards seeds eggshells with anti-fungal microbial lineages, a key fitness benefit (Bunker, Martin, 

& Weiss, 2021). For these reasons, we predict host-level selection enabling some degree of host 

control over the assembly and function of cloacal microbiomes. 

 

Study aims and predictions 

In our sampled community, we hypothesize that individual microbiomes will show 

inflated phylogenetic diversity relative to random expectations (Figure 1B, left column). We 

further hypothesize that host heterozygosity should be correlated with microbiome diversity 

(Figure 1B, lower row). Identifying this relationship will provide evidence about the standing 

host genetic diversity available for selection due to host-microbiome interaction and the expected 

rate of change of microbiome structure over evolutionary time. If microbiome assembly is driven 

by heterozygosity-dependent, quickly evolving gene families, we would expect host-driven rapid 

adaptive evolutionary change to the microbiome structure. If assembly instead is more driven by 

conserved host genes, host genetic controls on microbiome structure should evolve more slowly. 

We further investigate possible mechanisms behind our observed results using descriptive 

approaches to identify instances in which our empirical outcomes differ from random community 

assembly expectations. 

 

Materials and Methods 

 

Sample collection 

During May and June of 2015, we conducted surveys for squamate reptiles (snakes and 

lizards) on Antelope Pass in the Peloncillo mountains in New Mexico (Table 1, Table S1). We 

surveyed for approximately eight hours a day between sunrise (between 6:00 and 6:30 am) and 
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sunset (between 8:00 and 8:30 pm). We avoided sampling during the heat of the day to reduce 

stress on the animals. For each captured individual, we recorded species, snout-vent length 

(SVL), mass, date and time of capture, and GPS coordinates (Table S1). We took a tissue sample 

(tail tip for lizards, ventral scute clip for snakes) and a cloacal swab from each animal. We 

inserted a sterile rayon urethral swab (MW113 by Medical Wire & Equipment) fully into the 

cloaca but not into the lower digestive tract and left it in for a count of five. If the animal was 

large enough, we moved the swab to cover the entire cloaca. By gently applying pressure to the 

lower abdomen of the animals, we were able to slightly evert the cloacal mucosa and insert the 

swabs without touching skin.  

Tissues and swabs were stored in at ambient temperature in RNALater in the field and 

carried with the researchers in a backpack to avoid direct sunlight. At the end of each day, 

samples were deposited in a shaded but not climate-controlled storage location for the duration 

of the field season. Samples were stored at -20 °C upon returning to the lab. We captured at least 

one individual from 18 snake and lizard species (Table S1). They fell into six major taxonomic 

groups, the lizard families Teiidae, Phrynosomatidae, Eublepharidae, and Crotaphytidae, and the 

snake families Vipirdae and Colubridae. We collected under New Mexico Game and Fish permit 

3606 issued to Michael Grundler, and University of Michigan UCUCA protocol 

#PRO00006234. UCUCA is the equivalent of the more commonly used IACUC acronym. 

We sequenced host DNA for 104 individuals and then sequenced microbiome DNA for 

94 of those individuals, for a total of 94 individuals with attempted sequencing for both data 

types. We eliminated some individuals due to either host or microbiome sequencing failing our 

quality control checks, retaining 63 individuals with high-quality sequences for both microbiome 

and host DNA (Table 1, Table S1). We used a RADseq approach to quantify host heterozygosity. 

RADseq heterozygosity values correlate with values derived from other marker types such as 

microsatellites, other sources of SNP data, and whole genome sequences (Bradbury et al., 2015; 

Cariou, Duret, & Charlat, 2016; Lemopoulos et al., 2019). RADseq heterozygosity values also 

correlate with metrics of census population size in lizard species that are ecologically similar to 

some of our focal taxa (Singhal et al., 2017). For microbiome diversity, we used a metabarcoding 

approach with the widely used 16S rRNA V4 barcode region, which provides phylogenetic 

resolution across broad taxonomic scales (Kozich, Westcott, Baxter, Highlander, & Schloss, 

2013). 
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Laboratory methods 

We extracted total DNA from tissue samples and cloacal swabs using DNeasy Blood and 

Tissue spin column kits from Qiagen. We prepared the tissue DNA according to a RADseq 

protocol from Peterson, Weber, Kay, Fisher, & Hoekstra, 2012, using the restriction enzymes 

EcoR1 and Msp1. DNA fragments up to 400 bp in length were sequenced on an Illumina HiSeq 

platform using version four reagents over two paired end runs at the University of Michigan 

Sequencing Core Facility. For bacteria metabarcoding, we used an Illumina MiSeq platform at 

the University of Michigan Microbiome Core Facility to barcode a 252 bp sequence from the V4 

region of the 16S rRNA gene (Kozich et al., 2013). The library was prepared by the core and 

sequenced in a single lane with a negative (water) and positive (extracted DNA from a mock 

community) control. 

 

Bioinformatic pipelines 

 For our RADseq data, we used a modification of the pipeline presented in Singhal et al., 

2017. This pipeline was tested against pyRAD (Eaton, 2014) and determined to provide more 

reliable estimates of heterozygosity (Singhal et al., 2017, electronic supplementary material). We 

first removed low-quality sequences and adapter sequences using Trimmomatic v0.33 (Bolger, 

Lohse, & Usadel, 2014) and assembled the reads using Rainbow v2.0.4 (Chong, Ruan, & Wu, 

2012). We then generated a separate pseudogenome for each host individual by clustering the 

assembled reads using vsearch (Rognes, Flouri, Nichols, Quince, & Mahé, 2016). Finally, we 

mapped the raw reads back to the pseudogenome using bwa v.0.7.12 (Li & Durbin, 2009) and 

called SNPs and indels using the GATK function haplotypeCaller (McKenna et al., 2010; Poplin 

et al., 2017). Assembling per-individual rather than per-species pseudogenomes allowed us to 

avoid biases introduced by variation in the number of fragments per individual and differences in 

sample size between species (Cariou et al., 2016). Using the GATK haplotypeCaller function 

allowed us to specify the ploidy of the hosts as an input variable for the program. Using 

published values, we specified that our unisexual species were triploid (Reeder et al., 2002), 

while the other hosts were diploid. We retained all sequenced DNA fragments with a read depth 

greater than 20 and called heterozygote bases when the rarer of the two alleles was represented in 

more than 40% of the reads for diploids or when the rarest of the three alleles was represented in 
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more than 20% of the reads for triploids. We retained host individuals that had more than 100 

DNA fragments of a length greater than 200 bp that passed our filters (Table S1). 

 For the bacterial 16S rRNA metabarcode data from cloacal swabs, we used the program 

mothur v.1.48 (Schloss et al., 2009). For our 94 microbiome samples and the negative 

sequencing control, we made contigs from our paired-end sequences, selected fragments within 8 

bp of our target 252 bp length, and removed reads with homopolymers over eight bp long or with 

ambiguous base calls. We then aligned the sequences against the reference bacteria in the SILVA 

16S rRNA database release 138 (Quast et al., 2012; Yilmaz et al., 2014), and removed the 

sequences that did not overlap the target alignment region on the reference dataset or aligned 

with less that 80% similarity. We removed chimeric sequences then obtained the taxonomic 

classification of our remaining sequences by aligning them against the June 2020 RDP data 

release (Cole et al., 2014; Wang, Garrity, Tiedje, & Cole, 2007). We retained only those 

sequences that aligned to bacteria references. We clustered sequences at a 97% similarity 

threshold to obtain OTUs using the OptiClust algorithm (Westcott & Schloss, 2017), then 

assigned a final taxonomic classification to our OTUs using the RDP dataset. We used this set of 

OTUs in all further analyses. Finally, we generated a phylogenetic tree using the ‘clearcut’ 

command (Sheneman, Evans, & Foster, 2006).  

 Using a custom script in R, we removed the 12 OTUs that occurred in the negative 

control from our dataset. Following visual inspection of the distribution of sample sizes, we 

retained the data from all hosts with more than 2,000 total sequences. The threshold of 2,000 

reads occurred at a natural breakpoint in our histogram of sequences recovered per host (Figure 

S1 A). We also plotted rarefaction curves (Figure S1 B) using the ‘rarecurve’ function in the R 

package ‘vegan’ (Oksanen et al., 2018). Because some of our downstream analyses are 

vulnerable to unbalanced sample sizes (Gotelli & Colwell, 2001), we rarefied our host-by-OTU 

matrix to 2,000 sequences per host using the ‘rrarefy’ command from ‘vegan.’  

 The largest sequencing depth for any OTU that occurred in the negative control was two. 

We therefore set all OTU calls in our dataset with sequencing depths less than four to zero. This 

threshold conservatively accounted for potential rates of index hopping that could have caused 

the sequences to appear in our negative control. We also modified mothur output files to generate 

a taxonomy file for the OTUs, a fasta file with one representative sequence per OTU taken from 
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the first listed sequence name in the OptiClust output, and a phylogenetic tree of the OTUs. 

Custom scripts and input files are available on Dryad (doi.org/10.5061/dryad.f7m0cfxzb). 

 

Quantifying host heterozygosity 

 We quantified host heterozygosity by finding the mean proportion of heterozygous sites 

in each RADseq DNA fragment for each host (Table S1), a method shown to reduce bias relative 

to measuring heterozygosity at polymorphic sites only (Schmidt, Jasper, Weeks, & Hoffmann, 

2021). To determine whether we were using an adequate number of fragments to retrieve a 

reliable heterozygosity measure, we calculated a running average heterozygosity by sequentially 

adding fragments from one to the total number recovered for each individual (Figure S1 C). We 

determined the number of fragments necessary for the running average heterozygosity value to 

be within 0.001 of the final value recovered for that host individual (grey bar in Figure S1 C). 

We produced these values with a custom script using the ‘vcfR’ package (Knaus & Grünwald, 

2017). For each host, we recorded the total number of fragments recovered and the number of 

fragments necessary to achieve a stable heterozygosity estimate (Table S1). 

  

Microbiome alpha and beta diversity 

 To calculate alpha (within-host) diversity, we used the phylogenetically informed Faith’s 

diversity index implemented in ‘picante’ (Kembel et al., 2010). To test for sub-kilometer 

landscape level processes that might lead to correlation between low host genetic diversity and 

lower microbiome diversity within our sampled area, we used a Procrustes analysis implemented 

in the R package ‘vegan.’ We tested a geographic distance matrix of sampling locations against a 

pairwise Bray-Curtis community distance matrix and used the function ‘protest’ to identify 

whether a significant correlation existed. To assess the degree to which microbiomes cluster by 

host taxon, we performed a PERMANOVA using the adonis2 function from the R package 

‘vegan.’ We tested host family and host heterozygosity as explanatory variables. Understanding 

the degree of host phylogenetic clustering in microbiomes allowed us to construct appropriate 

null distributions for microbiome richness comparisons. Since samples were stored at ambient 

temperature in the field for a variable length of time, we included storage length as an additional 

explanatory variable. In addition to the PERMANOVA, we regressed microbiome OTU species 

richness and phylogenetic diversity against the time the samples were stored at ambient 
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temperature.  If there was a correlation, we would be concerned that our analyses would be 

impacted by sample degradation. 

 

Relationship between microbiome diversity and host heterozygosity 

We used the R package ‘nlme’ to perform a phylogenetic generalized least squares model 

to test whether host heterozygosity or diet significantly predicted cloacal microbiome 

phylogenetic diversity (Pinheiro & Bates, 2000; Pinheiro, Bates, & R Core Team, 2022). We 

retained tips from a squamate wide phylogenetic tree that either matched our host species or 

were the nearest available proxy (Tonini, Beard, Ferreira, Jetz, & Pyron, 2016). Since there were 

no instances in which two sexually reproducing sampled host species were more related to each 

other than to a species included in the tree, no branch lengths were altered by this approach. Only 

one of our three clonal whiptail species, A. uniparens, was represented on the tree. We used A. 

uniparens to represent both A. sonorae and A. flagellicaudus, as all three lineages share the same 

parent species (Reeder et al., 2002). We used the host phylogeny as a correlation structure in the 

PGLS. To visualize host phylogenetic signal in cloacal microbiome diversity, we plotted the 

average microbiome diversity for each species on a phylogenetic tree.  

We used a null model approach to determine whether observed gut microbiome 

community phylogenetic diversity was higher or lower than a random expectation. We used the 

‘ses.pd’ function in the R package ‘vegan’ to perform 10,000 randomization runs and 9,999 

iterations of the taxon labels of our host-by-OTU community matrix. The function reports 

observed phylogenetic diversity, the mean phylogenetic diversity of the randomized 

communities, and a p-value reflecting the quantile of the observed compared to the randomized 

samples. Since our PGLS and PERMANOVA found phylogenetic signal in cloacal microbiome 

diversity and composition, we repeated the randomization on subsampled matrices representing 

the OTUs found in each of our three most abundant host families: Teiidae, Phrynosomatidae, and 

Colubridae. For each family, we removed any OTUs that did not occur in any of our samples 

from that family, so existing OTUs could not be randomized into those taxa. We examined the 

within-family subsets because we were concerned that randomizing across the full community 

could produce signatures of lower than expected phylogenetic diversity purely due to host 

phylogenetic signal in gut microbial communities, and sampling from within single host families 
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would be less prone to this bias as it would account for some of the evolutionary history driving 

such an effect. 

For visualization purposes, we generated a community-wide null expectation for 

microbiome phylogenetic diversity. To test for the relationship between Faith’s diversity and 

species richness in our samples, we performed a linear model in base R. Since our species 

richness and Faith’s phylogenetic diversity values were significantly correlated, we improved 

visual comparability between samples by dividing our phylogenetic diversity values by species 

richness. We randomly permuted values in the rows of our host-by-OTU matrix using the R 

function ‘sample.’ We calculated individual phylogenetic diversity values from the resampled 

matrix. For our 1,000 random draws, we recorded the number of times the true phylogenetic 

diversity value for each host was greater than the values calculated from a random permutation 

of that host’s read depth values on the full OTU matrix. We then found the mean of the corrected 

diversity values for each run, repeated the procedure 1,000 times, and found the mean of those 

1,000 means. For each of our three focal host families, we subsampled 1,000 subsets of seven 

individuals each to generate a family-specific null expectation for diversity. We chose the cutoff 

to match the size of the smallest of the three sample sizes. For each subsample, we then followed 

the procedure outlined for the full dataset.  

 

Within-host microbiome community structure  

In our previous analyses, we found that gut microbiomes tended to be phylogenetically 

under-dispersed relative to random expectations. To further explore patterns in the community 

structure that might drive this observation, we calculated pairwise Euclidean sequence distances 

between all OTU sequences in each host. We used the dist.alignment command the R package 

‘seqinr’ (Charif & Lobry, 2007), which reports the square root of the measured pairwise 

distance. We squared the output to regain the true distance values. For comparison, we drew 

equal numbers of OTUs from our full community and found the pairwise distances between the 

OTUs. Visual inspection of the true-community histograms relative to the null community 

histograms showed a shift toward lower values across the distribution (Figure 4A, 4B). To test 

the strength and generality of this pattern, we compared the mean value of each host’s pairwise 

distances to 100 richness-matched random draws and determined how many of the random 
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means were lower than the true mean. We excluded hosts with fewer than 10 OTUs for this 

approach.  

To better understand the drivers of this pattern as a potential explanation for our 

observation of lower than expected phylogenetic diversity of cloacal microbiome communities, 

we tested whether host-specificity by the OTUs could explain our observed differences. To do 

so, we took all OTUs that occurred in more than one host and found the mean pairwise distance 

of those OTUs from all other OTUs in each community. Then we took the mean of those means. 

We plotted these values against the total patristic distance, or total length of all branches 

connecting a set of tips on a tree, of all hosts the OTU occupied.  Since the total number of hosts 

could drive total patristic distance, we also plotted the mean values against the total number of 

occurrences of each OTU in our dataset. For both comparisons, we performed a linear model in 

base R. 

 

Results 

 

Host heterozygosity 

We calculated the proportion of heterozygous sites per nucleotide in each host as the 

independent variable in our analyses. To determine whether the number of fragments available 

was adequate to reach a reliable value, we identified the number required to achieve a value 

within 0.001 of the final heterozygosity value in each individual. Host heterozygosity ranged 

from 0.004-0.019 sites per bp (Figure 2A, Table S1). All individuals had more fragments than 

necessary to reach a measure within 0.001 of the full-sample heterozygosity value (Table S1).   

 

Microbiome diversity 

As a dependent variable, we calculated a phylogenetically informed alpha diversity for 

our cloacal microbiome communities. The values of the Faith’s diversity index of the cloacal 

microbiome communities ranged from 0.137 to 7.706 (Figure 2B, Table S1). Our Procrustes 

analysis found no significant spatial structuring of microbiome community distances (p=0.399, 

correlation=0.123). Our PERMANOVA found significant clustering according to host family 

(p=0.001, R2 = 0.190), but not host heterozygosity (p=0.632, R2 = 0.011) or time kept at field 

ambient temperature (p=0.414, R2 = 0.014). Neither Faith’s diversity (p=0.979, R2 = -0.016) or 
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species richness (p=0.816, R2 = -0.015) in our retrieved communities showed a correlation with 

time stored at field ambient temperature. 

 

Relationship between microbiome diversity and host heterozygosity 

 Our PGLS found no significant correlation between microbiome phylogenetic diversity 

and host heterozygosity (p=0.760) or diet (p=0.500). Microbiome diversity did show host 

phylogenetic signal (Pagel’s lambda = 0.772). To test whether microbiomes were under- or over-

dispersed relative to null expectations, we used a randomization test implemented with the 

‘ses.pd’ function in the R package ‘vegan.’ For the full host-by-OTU matrix, we found that our 

observed Faith’s diversity values were smaller than the mean value of the randomizations for all 

but one individual. Forty-nine of 63 microbiomes had p-values less than 0.05. When we applied 

a Bonferroni correction to the 0.05 p-value for corrected significance level of 0.0008, 27 

microbiomes were still below the threshold. For the within-Colubridae comparisons, all eight 

observed microbiome diversity values were smaller than the mean of the randomizations. Seven 

of eight had p-values below 0.05 and six of eight had p-values below the Bonferroni corrected 

value of 0.007. For the Phrynosomatidae, all 20 observed microbiome diversity values were 

below the mean for the randomizations, with 15 reaching significance at p=0.05 and 10 at the 

Bonferroni-corrected p=0.0025. For the Teiidae, 24 of 25 microbiomes diversities were lower 

than the mean of the randomizations, with 19 of 25 having a significant p-value at 0.05 and 16 of 

25 reaching significance at the corrected p-value of 0.002. 

For visualization (Figure 3), we permuted the rows of our host-by-OTU matrix and found 

the mean Faith’s phylogenetic diversity values for the individuals in the permuted matrix, then 

repeated the permutations 1,000 times. For all values in the figure, we divided the Faith’s 

diversity value by the species richness of the microbiome to increase visual comparability.  The 

relationship between species richness and phylogenetic diversity was highly significant in a 

linear model (p < 2.2x10-16, adjusted R2 = 0.964). The mean of the 1,000 permuted values was 

0.119. All but six individual values were lower than the mean (Figure 3A). Due to the host 

phylogenetic signal in our dataset, we repeated the randomization on the OTUs present in sets 

seven confamilial hosts drawn from our three most abundant host families, the Teiidae, 

Phrynosomatidae, and Colubridae. The values of the mean randomized phylogenetic diversity 

within families were lower than the overall mean value, with Teiidae being 0.097 (two 
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individuals from the family above), Phrynosomatidae 0.117 (three individuals above), and 

Colubridae 0.103 (two individuals above).  

 

Within-host microbiome community structure 

We found that 29 of the 49 hosts for which we compared mean pairwise sequence 

distance between OTUs had a smaller mean distance than 90% of the matched null communities 

(Table S1). This outcome indicates that low microbiome phylogenetic diversity in some hosts 

could be driven by groups of microbes with closer-than-expected genetic distances that tend to 

cooccur in microbiomes. This pattern could be due to microbes that specialize on specific host 

lineages. To test this possibility, we found the mean distance between each OTU and the OTUs 

with which they co-occur. This value should be lower in OTUs that tend to co-occur in related 

groups. We compared these values to the mean patristic distances between hosts in which the 

OTUs occurred. Patristic distances should be smaller for host-specific microbes. We found that 

Proteobacteria and Firmicutes tended to have lower mean pairwise distances than Bacteroidetes, 

and that small average pairwise distances are not restricted to OTUs with low patristic distances 

(Figure 4C). The linear model for this comparison has a p-value of 0.0036, but an R2 of only 

0.0294, showing a very weak relationship. In particular, some Proteobacteria OTUs with low 

pairwise distances are widespread across hosts in our sample (Figure 4D), indicating that these 

OTUs may drive a portion of our observed skew in mean pairwise distances relative to the null 

distributions. The linear model for this comparison was not significant (p=0.209), and also had a 

very low correlation coefficient (R2 = 0.0023). 

 

Discussion 

 We tested whether a biologically plausible hypothesized correlation between the 

heterozygosity of reptile genomes and the diversity of their cloacal microbiomes could be 

detected in a natural host community. Using a single community with a range of host 

heterozygosity values allowed us to focus on patterns of host and microbe diversity without the 

confounding factor of landscape-scale processes that could impact both host genetics and 

microbiome diversity (Amato et al., 2013; Barelli et al., 2015; Ingala et al., 2019). We found no 

evidence of a correlation between host heterozygosity and microbiome phylogenetic diversity. In 

addition, we showed that microbiome communities were phylogenetically under-dispersed 
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relative to random expectations, specifically including more groups of closely related OTUs than 

would be expected by chance (Figure 1, Figure 3). We had hypothesized that a phylogenetically 

over-dispersed microbiome would reflect a history of selection on the host lineage toward 

recruiting diverse cloacal microbes and that a positive correlation between host heterozygosity 

and cloacal microbiome diversity would indicate that host-microbiome interaction was driven by 

specific categories of host genes that rely on diversity for their function (Figure 1) (Bolnick, 

Snowberg, Caporaso, et al., 2014; A. A. Khan et al., 2019; I. Khan et al., 2015; Sumiyama, 

Saitou, & Ueda, 2002).  

 

Potential sources of error and bias  

We sampled the semi-oxygenated habitat of the reptile cloaca (Grond et al., 2018), which 

has a distinct microbiota relative to the gut (Kers et al., 2019; Lee et al., 2020; Williams & 

Athrey, 2020). As such, our results should be interpreted with caution for microbial communities 

in the gut or other environments within the host. In addition, sampling error due to variation in 

swabbing, extraction efficacy, or PCR error could reduce our ability to detect correlations in our 

data (Bonk, Popp, Harms, & Centler, 2018; Pollock, Glendinning, Wisedchanwet, & Watson, 

2018). Finally, we used a reduced-representation approach to sequence host DNA (Peterson et 

al., 2012). Since restriction enzyme cut sites vary across species and even at the individual level, 

the DNA fragments we recovered from this process are not homologus across hosts. Further 

study of the microbiome-host heterozygosity relationship is necessary, incorporating microbiome 

communities from a range of tissues and different host DNA markers. 

 In addition to sources of bias, we may have failed to detect a correlation due to 

decoupling of heterozygosity between our hypothesized target genes and the background 

heterozygosity of the host genome. In some instances, local selection can maintain high 

heterozygosity at immune genes even when neutral loci lose diversity (Knafler, Grueber, Sutton, 

& Jamieson, 2017; Oliver & Piertney, 2012; Strand et al., 2012). In addition, cloacal microbiome 

diversity maintenance might be more critical to host survival at particularly physiologically 

stressful times. Examples of stressors known to impact gut microbiomes in vertebrates include 

heat stress (Chen et al., 2018; Sepulveda & Moeller, 2020) and the changes in physiology 

associated with hibernation (H. V. Carey, Walters, & Knight, 2013; Tang, Wang, Wan, & Fang, 

2019; Tong, Hu, Du, Bie, & Wang, 2020). Since we sampled only during spring and early 
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summer, when food was relatively abundant and conditions were less stressful, we may have 

failed to confirm relationships that are detectable under different circumstances. Further work 

will be necessary to fully understand the vertebrate microbiome’s response to external stressors 

and the fitness consequences of the interaction between host and microbiome during stressful 

conditions. 

 In addition, codiversification and adaptation by some microbial lineages to specific host 

taxa could drive our observed lower than expected phylogenetic diversity (Figure 3), particularly 

when coupled with possible phylogenetically conserved dietary ecology in the hosts (Youngblut 

et al., 2019), although this effect may be weaker outside of mammalian hosts (Harrison et al., 

2021). If specialization to host taxa was the major driver of our observed signal of significantly 

low phylogenetic diversity in our full host-by-OTU matrix, we would expect that our family-

specific randomizations would show a greater proportion of microbiomes within the expected 

distribution of random samples, as they would account for a portion of the host evolutionary 

signal driving the pattern in the full dataset. We did not find this to be the case, indicating that 

our observed patterns were not driven by codiversification alone (Figure 3B).  

 

Selection on the host genome by the microbiome 

Several mechanisms could explain our finding that cloacal microbiome phylogenetic 

diversity is uncorrelated with host heterozygosity, including both environmental and host-driven 

processes. Focusing on host-driven mechanisms, positive correlations between microbiome 

diversity and host genetic diversity seem to be observed in the literature when host 

heterozygosity is low, either due to natural processes (Couch et al., 2020), or because the study 

uses genetically identical lab animals (A. A. Khan et al., 2019; Kubinak et al., 2015). More-

heterozygous host populations tend to show absent or even negative correlations between gut 

microbiome diversity and host genetic diversity (Bolnick, Snowberg, Caporaso, et al., 2014; 

Steury, Currey, Cresko, & Bohannan, 2019). Given this context, it is possible that hosts with 

even lower genetic diversity than those that appear in our samples would experience reduced 

fitness due to low microbiome diversity. As an alternate but not mutually exclusive explanation, 

transcriptomic studies between populations of hosts displaying distinct gut microbiome 

communities often identify expression levels of more-conserved host genes as key correlates of 

gut microbiome composition (Milligan-Myhre et al., 2016; Rudman et al., 2019; Small et al., 
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2017). Our results may provide an additional line of evidence that this category of more-

conserved genes are key in managing the host-microbiome relationship, as host heterozygosity is 

not directly related to their function. 

 If further studies confirm the generality of the finding that more-conserved host genes 

tend to impact host-associated microbiome community structure, it may explain a common 

finding that vertebrate gut microbiome community structure tends to be consistently 

differentiated between hosts from different families, but less so between hosts within a family, 

particularly when dietary differences are accounted for (Amato et al., 2019; Gaulke et al., 2018; 

Groussin et al., 2017; Kropáčková et al., 2017; Moeller et al., 2012; Nishida & Ochman, 2018; 

C. D. Phillips et al., 2012). Vertebrate-wide comparative analyses indicate that the host-family 

level differentiation pattern is frequent among non-mammalian vertebrates, while mammals may 

more often show finer-scale phylogenetic signal in host-microbe interactions (Song et al., 2020; 

Youngblut et al., 2019). The hypothesis that more-conserved, slower-changing genes determine 

gut microbiome structure is consistent with family- level microbiome distinctions, as conserved 

genes are less likely to vary between members of the same genus then they are between members 

of different families (Jiggins & Hurst, 2003; Milligan-Myhre et al., 2016; Mukherjee, Sarkar-

Roy, Wagener, & Majumder, 2009). 

 

Microbiome phylogenetic community structure 

To identify possible drivers of our observed pattern of lower-than-expected phylogenetic 

diversity in microbiome communities, we examined the phylogenetic structure of cloacal 

microbiomes relative to null expectations. Within individual cloacal microbiomes, the signal of 

low phylogenetic diversity may have been driven by clusters of related bacteria, particularly 

some widespread OTUs from the phylum Proteobacteria (Figure 4C, 4D). Given the large host 

breadth of these OTUs and the lack of signal with host patristic distance, host specificity by 

microbes is unlikely to completely explain our observed low phylogenetic diversity. We explore 

two non-mutually exclusive hypotheses that could fit our observation, although other 

mechanisms such as habitat filtration could also apply. First, some bacteria might alter the host 

environment for their own establishment, thus facilitating colonization by related bacteria 

(Bragonzi et al., 2012; Burmølle, Ren, Bjarnsholt, & Sørensen, 2014; Rathi, Singh, Osbone, & 

Babu, 2015; Shiri et al., 2013). Second, the host immune response might favor a less-diverse 
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cloacal microbiome. Most vertebrates go through a juvenile period of high lineage turnover in 

their microbiomes (Hornef & Torow, 2020). As hosts become adults, their microbiome settles to 

a more consistent community, with the host immune system ‘learning’ a set of permitted OTUs 

and mounting immune defenses against other bacteria (Erturk-Hasdemir et al., 2019), perhaps 

favoring genetically or ecologically similar groups of bacteria. 

Given our finding that the most widespread bacterial lineages in our samples also tended 

to have low mean pairwise distances (Figure 4D), we propose a re-examination of assumptions 

behind the ecology and host benefits of widespread OTUs. The ubiquity of a bacterial OTU 

within a host species has been used as a proxy for that OTU’s importance to host health or fitness  

(Hernandez-Agreda, Gates, & Ainsworth, 2017; A. A. Khan et al., 2019; Shade & Handelsman, 

2012; Zhu, Wang, & Li, 2010). Differences in ecological generalism are another reason to apply 

caution to assumptions about the health impacts of frequently detected bacteria OTUs (Vieira-

Silva et al., 2016). Bacterial ecology, including dormancy capabilities (Locey et al., 2020; Xu et 

al., 2022) and dispersal ability (Moeller et al., 2017; Stothart et al., 2021), can heavily influence 

habitat breadth in a taxon, and should be considered when interpreting OTU host breadth in 

ecological or evolutionary terms. 

 

Conclusions 

Our observed outcomes of no correlation between host heterozygosity and gut 

microbiome diversity and significantly lower than expected phylogenetic diversity in 

microbiomes are consistent with and provide additional context to frequently encountered 

patterns across vertebrate host-microbiome evolutionary studies. First, microbiome differences 

are often best predicted by the allelic states or expression levels of more-conserved (immune and 

non-immune) host genes (Jiggins & Hurst, 2003; Milligan-Myhre et al., 2016; Mukherjee et al., 

2009; Rudman et al., 2019; Small et al., 2017). Second, vertebrate gut microbiomes, particularly 

outside of mammals, often differ predictably at the host family level, but not below when dietary 

differences are accounted for (Amato et al., 2019; Gaulke et al., 2018; Groussin et al., 2017; 

Kropáčková et al., 2017; Moeller et al., 2012; Nishida & Ochman, 2018; C. D. Phillips et al., 

2012). We argue that these empirical outcomes could have implications for the expected standing 

diversity for the genes involved in host-microbiome interaction, and hence the evolvability of the 

host-microbiome unit.  
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More fully incorporating cloacal and other host-associated microbiomes into ecology and 

evolutionary biology can shed light on a wide variety of natural processes. Through metabolic 

services to their hosts, gut microbes can impact ecosystem-scale processes, for example by 

altering trophic webs (Amato et al., 2015; Kohl et al., 2014) or curtailing community-wide 

impacts of epidemic disease (Smith-McKenna et al., 2014). On smaller scales, gut microbiomes 

facilitate host-lineage adaptation to new resources, opening up larger geographic ranges (Kohl et 

al., 2014) and novel ecological niches (Alberdi, Aizpurua, Bohmann, Zepeda-Mendoza, & 

Gilbert, 2016; Moeller et al., 2014).  Reptile microbiomes contain many lineages that are 

acquired through environmental interactions or horizontal transfer (Kohl et al., 2017). Clarifying 

the host genetic or other mechanisms that govern potentially adaptive community assembly in 

the horizontally acquired portions of the microbiome is a key challenge for the field.  

 Together, our finding suggests testable principles for future work on host-microbiome 

evolution. First, predictable differentiation of cloacal microbiome communities between 

vertebrate host lineages may occur on longer timescales than speciation processes. If evidence 

supports the first claim, then community-wide host-associated microbial diversity might be better 

predicted by host family diversity than host species diversity. These observations could suggest 

that losing host families, but not host species, from a community is likely to reduce the regional 

diversity of cloacal microbiome lineages. Second, the literature includes examples of quick 

adaptations to novel environments or resources via host-associated microbiomes (Alberdi et al., 

2016; Kohl et al., 2014). If our hypotheses above are upheld by empirical work, such rapid 

adaptations may be maintained by mechanisms other than direct interaction between host 

genotype and microbial lineages. Understanding potential mechanisms may be key for 

conservation planning and a establishing a broader understanding of the biology of host-microbe 

interactions in vertebrates. 
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Data Accessibility Statement 

Both 16S rRNA microbiome data and host RADseq data are available on NCBI’s Short Read 

Archive, as BioProject PRJNA746253 and PRJNA744273 respectively. We provide processed 

versions of several files available on DataDryad (doi:10.5061/dryad.f7m0cfxzb). These include 

vcf files of the RADseq sequences for each host, the 16S rRNA OTU reference sequences, the 

host-by-OTU table, and the 16S rRNA-derived phylogenetic tree used in our analyses. 

 

Figure and Table legends 

 

Figure 1: Possible relationships between host genetic diversity and microbiome 

phylogenetic diversity to test evolutionary hypotheses. A) We identify the evolutionary 

process of interest, describe the pattern that process should generate, and describe how we will 

measure the pattern. While other assembly processes could account for the patterns we discuss, 

we focus on process that could be driven by host genetics. B) Four possible outcomes that show 

how selective processes might drive the host-microbiome relationship. Higher than expected 

phylogenetic diversity of microbiome lineages (blue lines, first column) point toward a fitness 

benefit of cloacal microbiome diversity, in contrast to lower than expected phylogenetic diversity 

(red lines, second column). Correlation of microbiome diversity and host heterozygosity would 
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be consistent with positively selected, high-diversity gene (bottom row) maintaining the host-

microbiome relationship. We predict that the microbiome will be over-dispersed and show 

microbiome diversity correlated with host heterozygosity (black box). 

 

Figure 2: Both genetic diversity and gut microbiome diversity varies within and between 

host species. A) Host diversity varies within and between species, with heterozygosity values for 

each host family distributed through the total observed range. B) Microbiome phylogenetic 

diversity shows variation within host species as well as phylogenetic signal across the host tree. 

 

Figure 3: Gut microbiome diversity is not correlated with host genetic diversity and is 

under-dispersed relative to random expectations. A) Our observed outcome does not show 

evidence of a positive correlation of gut microbiome and host genetic diversity, as would be 

expected if gut microbiome diversity increased host fitness and heterozygosity-dependent genes 

drove gut microbiome diversity. B) Gut microbiomes are phylogenetically under-dispersed 

relative to random samples from the total regional pool of bacteria (dashed grey line), or size-

matched samples of the three most abundant host families (dashed colored lines) and gut 

microbiome phylogenetic diversity is not correlated with host genetic diversity.  

 

Figure 4: Low phylogenetic diversity within microbiome communities may be driven by a 

few widespread OTUs. The distribution of pairwise distances in a real gut microbiome 

community (A) and an equal number of randomly sampled OTUs from the regional pool (B), 

shows a larger number of shorter distances in the real community. C) Mean distance from other 

OTUs is not predicted by the mean patristic (branch length) distance between hosts in which the 

OTU occurs, as would be predicted if host specialization by groups of OTUs explained the signal 

of low phylogenetic diversity in the microbiome. D) A few widespread Proteobacteria lineages 

have low mean distance from other OTUs in their communities, indicating that these lineages 

may be one driver for our observed pattern of full microbiome communities.  

 

Table 1: Host-species level characteristics. Provides taxonomic and ecological information and 

sample size per host species. 
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Supplementary Figure and Table legends 

 

Table S1: Individual-level data. Columns 1-13 provide capture history and basic statistics for 

each host. Columns 14-20 provide data on individual-level genomic or microbiome parameters.  

 

Figure S1: Defining cutoffs for retaining individuals in analysis. A) Example of a 

heterozygosity accumulation curve for one individual. Dark line indicates heterozygosity 

measure at n fragments, grey bar indicates a range within 0.001 of the full-dataset heterozygosity 

value. B) Histogram of the number of reads in the 16S rRNA cloacal microbiome dataset for 

each individual. C) Species accumulation curves for the 16S rRNA cloacal microbiome data, 

with vertical line indicating the cutoff for retaining a host in the dataset.  

 

Figure S2: OTU and sequence-level phylum assignment of gut microbiomes across species.  

 

Figure S3: host family-level PERMANOVA based on microbiome Bray-Curtis distances 
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Family Genus Species Reproductive 
strategy 

Sample 
size 

Diet 

Teiidae Aspidocelis flagellicaudum clonal 2 arthropods 
Teiidae Aspidocelis  sonorae clonal 9 arthropods 
Teiidae Aspidocelis uniparens clonal 6 arthropods 
Teiidae Aspidocelis tigris sexual 8 arthropods 
Vipiridae Crotalus atrox sexual 1 vertebrates 
Colubridae Coluber bilineatus sexual 1 vertebrates 
Crotaphytidae Crotaphytus collaris sexual 5 both 
Phrynosomatidae Cophasaurus texanus sexual 2 arthropods 
Eublepharidae Coleonyx variegatus sexual 3 arthropods 
Crotaphytidae Gambelia wislizenii sexual 1 both 
Colubridae Pituophis  catenifer sexual 2 vertebrates 
Phrynosomatidae Phrynosoma cornutum sexual 4 arthropods 
Phrynosomatidae Phrynosoma modestum sexual 5 arthropods 
Colubridae Rhinochilus lecontei sexual 1 arthropods 
Phrynosomatidae Sceloporus clarkii sexual 4 both 
Colubridae Salvadora hexalepis sexual 4 vertebrates 
Phrynosomatidae Urosaurus ornatus sexual 3 arthropods 
Phrynosomatidae Uta stansburiana sexual 2 arthropods 
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