
Received: 22 March 2022 Revised: 13 September 2022 Accepted: 15 September 2022

DOI: 10.1002/nme.7127

R E S E A R C H A R T I C L E

An asynchronous variational integrator for the phase field
approach to dynamic fracture

Zongwu Niu1 Vahid Ziaei-Rad1,2 Zongyuan Wu1 Yongxing Shen1,3

1University of Michigan – Shanghai Jiao
Tong University Joint Institute, Shanghai
Jiao Tong University, Shanghai, China
2Department of Environmental
Informatics, Helmholtz Centre for
Environmental Research – UFZ, Leipzig,
Germany
3Shanghai Key Laboratory for Digital
Maintenance of Buildings and
Infrastructure, Shanghai, China

Correspondence
Yongxing Shen, University of
Michigan – Shanghai Jiao Tong University
Joint Institute, Shanghai Jiao Tong
University, Shanghai 200240, China.
Email: yongxing.shen@sjtu.edu.cn

Funding information
National Natural Science Foundation of
China, Grant/Award Number: 11972227;
Natural Science Foundation of Shanghai,
Grant/Award Number: 19ZR1424200

Abstract
The phase field approach is widely used to model fracture behaviors due to the
absence of the need to track the crack topology and the ability to predict crack
nucleation and branching. In this work, the asynchronous variational integrator
(AVI) is adapted for the phase field approach of dynamic brittle fracture. The
AVI is derived from Hamilton’s principle and allows each element in the mesh
to have its own local time step that may be different from others’. While the
displacement field is explicitly updated, the phase field is implicitly solved, with
upper and lower bounds strictly and conveniently enforced. In particular, two
important variants of the phase field approach, the AT1 and AT2 models, are
equally easily implemented. Several benchmark problems are used to study the
performances of both the AT1 and AT2 models, and the results show that the AVI
for the phase field approach significantly speeds up the computational efficiency
and successfully captures the complicated dynamic fracture behavior.
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1 INTRODUCTION

Dynamic fracture refers to crack development processes accompanied by fast changes in applied loads and rapid crack
propagation, where inertial forces play an important role during the evolution. Application examples of dynamic fracture
include drop tests of electronic devices,1 oil recovery,2 and impact of automotive laminated glass.3

Dynamic fracture of solids has been extensively studied.4-7 Over the past decades, various numerical methods8 to simu-
late dynamic fracture have been proposed, which can be classified into two groups: discrete approaches and smeared-crack
ones. A discrete approach explicitly describes the crack topology, such as the extended finite element method,9 cohesive
zone model,10 element deletion method,11 cracking element method,12 and phantom nodes method,13 just to name a few
in the context of dynamic fracture. Conversely, a smeared-crack approach represents the crack by a smeared crack band,
which includes the gradient damage model,14 the thick level set approach,15 and so on.

The regularized variational fracture method,16 also called the phase field method for fracture, belongs to the group
of smeared-crack approaches. It originates from Griffith’s energetic theory and was developed based on the variational
approach to brittle fracture by Francfort and Marigo.17 The formulation solves crack problems by minimizing an energy
functional that consists of the elastic energy, the external work, and the crack surface energy. This way, crack evolution is
a natural outcome of the solution. The phase field method possesses the following advantages: (1) the crack evolves natu-
rally and there is no need of a crack tracking algorithm; (2) there is no need of additional criterion for crack branching and
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merging; (3) the implementation is straightforward even for complicated crack problems in 3D. These advantages facili-
tate its application for various fracture problems, such as shell fracture,18 beam fracture,19 and carbon dioxide fracturing.20

For details about the implementation of this approach, we refer the reader to the work by Shen et al.21

For dynamic fracture, Borden et al.22 combined the phase field method with isogeometric analysis with local adaptive
refinement to simulate dynamic brittle fracture. Nguyen and Wu23 presented a phase field regularized cohesive zone
model for dynamic brittle fracture. Hao et al.24,25 developed the formulations for high-speed impact problems for metals,
accounting for volumetric and shear fracture.

However, the phase field model suffers from high computational cost partly because of the small critical time step,
which, in turn, results from the necessary fine spatial discretization near the crack to resolve the regularization length
scale. In order to overcome this challenge, various schemes to accelerate such computation have been proposed. Tian
et al.26 presented a multilevel hybrid adaptive finite element phase field method for quasi-static and dynamic brittle frac-
ture, wherein the refinement is based on the crack tip identified with a certain scheme. Ziaei-Rad and Shen27 developed a
parallel algorithm on the graphical processing unit with a time adaptivity strategy to speed up the computation. Li et al.28

proposed a variational h-adaption method with both a mesh refinement and a coarsening scheme based on an energy cri-
terion. Engwer et al.29 proposed a linearized staggered scheme with dynamic adjustments of the stabilization parameters
throughout the iteration to reduce the computational cost.

In this work, we adapt the asynchronous variational integrator (AVI) to accelerate the computation for the phase
field approach to dynamic fracture. The AVI is an instance of variational integrators. Variational integrators are a class of
time integration algorithms derived from Hamilton’s principle of stationary action and have the advantages of symplectic
momentum conservation and remarkable energy (or Hamiltonian) behavior for long-time integration. In essence, they
can be classified into synchronous variational integrators and asynchronous variational integrators. The former, such as
central difference, requires all unknown variables to be solved with the same time step, taking into account the global
requirement of stability and accuracy.

In contrast, the latter allows independent time steps for each term contributing to the action functional, effectively
independent time steps for each element in the context of finite elements. This asynchrony allows the elements with
smaller time steps to be more frequently updated. Moreover, the method may be made fully explicit and even in the
implicit case, only assembly of the local reaction force vector and stiffness matrix instead of global ones is needed. For
linear elastodynamics, the AVI was first introduced by Lew et al.,30,31 and the stability and convergence of AVI have been
proved by Fong et al.32 and by Focardi and Mariano,33 respectively. In addition, the AVI has been extended to the contact
problem,34 wave propagation,35 and computer graphics.36

In the case of AVI for the phase field approach to fracture, a few adjustments need to be made. First and fore-
most, the overall Lagrangian is free of the time derivative of the phase field; hence solving the phase field is a local
steady-state problem. More precisely, the coupled multi-field system is solved by employing a staggered scheme, in which
the displacement and velocity fields are integrated with an explicit scheme while the phase field is the solution of an
inequality-constrained optimization problem. In essence, the phase field of only one element is solved at a time, for which
it is very convenient to enforce the inequality constraint compared to doing so for the entire domain. This feature allows
implementing the AT1 variant37 of the method with a similar cost to the more widely used AT2 variant,16 the two variants
differing in terms of the crack surface density function.

The AVI for the phase field approach has many advantages. First, the formulation is derived from the (discrete) Hamil-
ton’s principle and possesses a variational structure, which conserves the local symplectic momentum and possesses good
global energy behavior of the system. More importantly, this formulation alleviates the high computational cost for cer-
tain problems such as those involving bi-materials or functionally graded materials, by allowing each element to have
an independent time step only restricted by the respective elemental critical time step for stability. In addition, the for-
mulation only needs to assemble the elemental (or patchwise) residual vector and tangent stiffness matrix and enforces
the irreversibility condition on only one element instead of over the entire domain. These features render the proposed
formulation highly efficient.

There are other asynchronous methods for dynamic fracture with the phase field. For example, Ren et al.38 proposed
an explicit phase field formulation where the mechanical field is solved with a larger time step while the phase field is
updated with smaller sub-steps. Suh and Sun39 presented a subcycling method to capture the brittle fracture in porous
media, where the heat transfer between the fluid and solid constituents is solved with different time steps as integer
multiples of each other. Note that the formulations in References 38 and 39 are not variational but obtained by directly
discretizing the time-dependent mechanical and phase field differential equations, and hence may not enjoy the said
advantages of variational integrators, that is, they may not preserve the symplectic and variational structure of the system.
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The article is organized as follows. In Section 2, we briefly review the formulation of the phase field model for brit-
tle fracture and introduce Hamilton’s principle in the continuum Lagrangian framework. In Section 3, we present the
asynchronous spacetime discretization scheme and derive the discrete Euler–Lagrange equations by discrete variational
principle, then we present how to solve the mechanical field and phase field by a staggered scheme. In addition, we
summarize the overall implementation of AVI for the phase field approach to fracture. In Section 4, we showcase four
benchmark examples under dynamic loading for verification and examining the performance. Finally, we conclude this
work in Section 5.

2 FORMULATIONS

This section devotes to the formulation of a dynamic fracture phase field model through Hamilton’s principle for an elastic
body with possible cracks represented by a phase field.

2.1 Hamilton’s principle

Let Ω ⊂ Rn, n = 2, 3, be the domain occupied by the reference configuration of a body with possible cracks. Hamilton’s
principle states that the true trajectory of a body with prescribed initial and final conditions is the stationary point of the
action functional with respect to arbitrary admissible variations. Here, we considerΩwith possible internal cracks during
a specified time interval t ∈ [t0, tf ] with the action functional given by

S(u, d) = ∫
tf

t0

L(u, u̇, d) dt, (1)

where u(X, t), X ∈ Ω, denotes the displacement field of the body, and u̇ = du∕dt is the velocity field. The scalar field
d ∶ Ω × [t0, tf ]→ [0, 1] is called the phase field, which approximates possible sharp cracks in a diffusive way. Herein, the
Lagrangian function is in the form

L(u, u̇, d) = T(u̇) − V(u, d) − Γ(d), (2)

where V(u, d) is the potential energy, Γ(d) is the crack surface energy, and

T(u̇) = ∫Ω
1
2
𝜌u̇ ⋅ u̇ dΩ, (3)

is the kinetic energy, where 𝜌 is the initial mass density.

2.2 Phase field approximation

In this subsection, we revisit the two versions of the phase field model as a basis for subsequent development. In the
phase field model of fracture, the sharp crack surface is approximated by a scalar phase field d as shown in Figure 1. The
range of this field d has to be between 0 and 1. In particular, our convention is such that the region with d = 1 represents
the fully cracked state and that with d = 0 represents the pristine state of the material. Following Reference 16, the crack
surface energy Γ(d) in (2) is given by

Γ(d) = ∫Ω gc𝛾(d,∇d) dΩ, (4)

where gc > 0 is the critical crack energy release rate, and 𝛾(d,∇d) is the crack surface density per unit volume,

𝛾(d,∇d) = 1
4cw

(
w(d)
𝓁

+ 𝓁|∇d|2
)
, (5)
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(A) (B)

F I G U R E 1 Body with an internal crack with: (A) A sharp crack; (B) a crack approximated by the phase field.

where 𝓁 > 0 is the regularization length scale parameter, which controls the width of the transition region of the
smoothed crack. Crack geometric function w(d) and normalization constant cw = ∫ 1

0

√
w(d) dd are model dependent.

Specifically, for the brittle fracture, classical examples are w(d) = d2 and cw = 1∕2 for the AT2 model; and w(d) = d and
cw = 2∕3 for the AT1 model.37 In addition, a notable difference between the AT2 and AT1 models is that the former
gives rise to a more diffuse phase field profile while the latter generates a phase field profile with a narrow support near
the crack.

The potential energy V(u, d) in (2) is expressed as

V(u, d) = ∫Ω 𝜓(𝜺(u), d) dΩ − ∫
𝜕Ωt

tN ⋅ u dA − ∫Ω b ⋅ u dΩ, (6)

where 𝜓 is the strain energy density, tN ∶ 𝜕Ωt → Rn is the prescribed traction boundary condition, and b ∶ Ω→ Rn

is the body force. The strain tensor is given by 𝜺 = (∇u + ∇uT)∕2, where ∇(⋅) is the gradient operator with respect
to X.

Here we adopt a form for 𝜓 that accounts for the unilateral constraint following Miehe et al.40 which involves
spectral decomposition of 𝜺. Other choices are, for example, the volumetric-deviatoric split by Amor et al.,41 the
micromechanics-informed model by Liu et al.,42 and the model by Wu et al.43 In the chosen formulation, the strain energy
density takes the following form

𝜓(𝜺, d) = g(d)𝜓+ + 𝜓−, (7)

where g(d) = (1 − d)2 is the degradation function, and 𝜓+ and 𝜓− are, respectively, the crack-driving and persistent
portions of the strain energy density as

𝜓±(𝜺) =
𝜆

2
⟨tr (𝜺)⟩2

± + 𝜇 tr
(
𝜺

2
±
)
, (8)

where 𝜆 and 𝜇 are Lamé constants such that 𝜇 > 0 and 𝜆 + 2𝜇 > 0, the Macauley bracket is defined as ⟨⋅⟩± = (⋅ ± | ⋅ |)∕2,
and

𝜺± =
3∑

a=1
⟨𝜀a⟩±na ⊗ na, (9)

where {𝜀a}3
a=1 denote the principal strains, na are the corresponding orthonormal principal directions, and the operator

⊗ represents the dyadic product. Correspondingly, the Cauchy stress tensor is

𝝈±(𝜺) =
𝜕𝜓±

𝜕𝜺

= 𝜆⟨tr (𝜺)⟩±1 + 2𝜇
3∑

a=1
⟨𝜀a⟩±na ⊗ na, (10)

where 1 is the second-order identity tensor.
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2.3 Spatial discretization

In this subsection, we obtain the semi-discrete Lagrangian by discretizing the displacement field and the phase field with
a finite element mesh h for Ω. Let 𝜂 be the set of nodes of h. The discretized fields take the following form

u(X) =
∑
a∈𝜂

Na(X)ua, d(X) =
∑
a∈𝜂

Na(X)da, (11)

where ua ∈ Rn and da ∈ R are the displacement vector and phase field value at node a ∈ 𝜂, respectively, and Na is the
finite element shape function associated with node a.

The Lagrangian L may be decomposed as

L(u, u̇, d) =
∑
e∈h

Le (ue, u̇e,de) , (12)

where e is an element of the mesh h, and ue, u̇e, and de are the vectors containing the displacements, velocities, and
phase field values of all the nodes of element e, respectively. The quantity Le is given by

Le (ue, u̇e,de) = Te (u̇e) − Ve (ue,de) − Γe(de), (13)

where Ve and Γe are the elemental potential energy and elemental surface energy, respectively, and

Te (u̇e) =
1
2

u̇T
e meu̇e, (14)

is the elemental kinetic energy, where me is the diagonal element mass matrix. Hence, the space-discretized action is in
the form

S ({ue}, {de}) = ∫
tf

t0

∑
e∈h

(1
2

u̇T
e meu̇e − Ve (ue,de) − Γe(de)

)
dt, (15)

where the curly braces {⋅} represent the collection of all components of all e ∈ h over the entire time span.

3 ASYNCHRONOUS VARIATIONAL INTEGRATOR WITH THE FRACTURE
PHASE FIELD

The main feature of the AVI is to assign different time steps to different elements of h. The key idea is the stationarity
of (15), a functional over space and time, which allows to divide the total Lagrangian into contributions from elemental
terms which may possess independent time steps. For example, the smaller elements in the mesh may be updated a few
times while the larger elements are held, according to either a preset schedule or a schedule determined on the fly.

In the context of fracture phase field in this work, the phase field is implicitly solved at the element level instead of at
the global level, permitting more efficient solvers of inequality constraints.

In this section, we detail a phase field formulation and implementation for dynamic fracture through the AVI. The
reader interested in the overall algorithmic implementation can directly go to Algorithm 2. In essence, we derive the pro-
posed formulation from the discrete Hamilton’s principle of stationary action with the fracture phase field incorporated.
In addition, we adapt the reduced-space active set method to enforce the irreversibility constraint involved in the phase
field problem.

3.1 Asynchronous discretization

This subsection presents the discretization of the time domain through an asynchronous strategy. Such an asynchronous
discretization allows each element to have an independent time step. As an example, Figure 2 shows the spacetime
diagram of a three-element mesh with asynchronous time steps.
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F I G U R E 2 Asynchronous discretization of the time domain for a three-element mesh in the reference configuration. The entire
update schedule follows the chronological order, that is, Θ =

{
t0
e1
, t0

e2
, t0

e3
, t1

e1
, t1

e3
, t1

e2
, t2

e1
, t2

e3
, t3

e1
, t2

e2
, t3

e3
, …

}
, where tnow = t2

e3
is the current time

and e3 is the current active element.

Here, we assign to the element e ∈ h the update schedule

Θe =
{

t0 = t0
e < t1

e < t2
e · · · t

Ne−1
e < tf ≤ tNe

e

}
. (16)

At these instants, the displacements and velocities, and the phase field values of all nodes a ∈ 𝜂(e) are updated, where 𝜂(e)
is the set of nodes of e. In addition, we define the discrete elemental displacements uj

e ≡ ue(tj
e) and the discrete elemental

phase fields dj
e ≡ de(tj

e) at tj
e ∈ Θe, and the entire update schedule of the mesh is

Θ =
⋃

e∈h
Θe. (17)

For simplicity, we assume that there are no coincident instants for any pair of elements except for the initial time, that
is, Θe ∩ Θe′ = {t0} if e ≠ e′. The general case with coincident update instants can be handled without much difficulty
and will not change the results as long as elements with coincident instants are far away enough from each other. More
discussions on the case of update coincidences for the adjacent elements are given in Appendix A.

Similarly, we also gather the schedule for node a ∈ 𝜂 as

Θa =
⋃

e∋a Θe =
{

t0 = t0
a < t1

a < · · · < tna−1
a < tna

a

}
. (18)

We additionally define ui
a ≡ ua(ti

a), di
a ≡ da(ti

a), ti
a ∈ Θa, and the set of nodal displacements

a =
{

ui
a ∶ i = 0, 1, … ,na

}
, a ∈ 𝜂, (19)

and the set of nodal phase fields
a =

{
di

a ∶ i = 0, 1, … ,na
}
, a ∈ 𝜂. (20)

The triple (Θ,a,a) defines the discrete trajectory of the system. To solve for this triple, we write the discrete action
sum as

Sdis(Θ,a,a) =
∑

e∈h

∑Ne−1
j=0 Lj

e, (21)

where Lj
e ≈ ∫ tj+1

e

tj
e

Le dt.
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This approximation can be realized by multiple schemes. In this article, we adopt one such that each node a ∈ 𝜂
follows a linear trajectory within the time interval [ti

a, ti+1
a ]; consequently, the corresponding nodal velocities are constant

in the said interval. Moreover, the potential energy and the crack energy terms are approximated with the rectangular
rule using their values at tj+1

e . Then the discrete Lagrangian is

∫
tj+1
e

tj
e

Le dt ≈ Lj
e =

∑
a∈e

∑
ti
a∈

[
tj
e,t

j+1
e

)
1
2

me,a
(

ti+1
a − ti

a
) ‖‖‖‖‖

ui+1
a − ui

a

ti+1
a − ti

a

‖‖‖‖‖
2

−
(

tj+1
e − tj

e

)(
Ve

(
uj+1

e ,dj+1
e

)
+ Γe

(
dj+1

e

))
, (22)

where me,a is the mass matrix entry of node a contributed by element e and dj+1
e ≡ de(tj+1

e ) is the elemental phase field
vector. Finally, the discrete action sum (21) takes the following form

Sdis =
∑
a∈𝜂

na−1∑
i=0

1
2

Ma
(

ti+1
a − ti

a
) ‖‖‖‖‖

ui+1
a − ui

a

ti+1
a − ti

a

‖‖‖‖‖
2

−
∑
e∈h

Ne−1∑
j=0

(
tj+1
e − tj

e

)(
Ve

(
uj+1

e ,dj+1
e

)
+ Γe

(
dj+1

e

))
, (23)

where Ma =
∑

e,a∈𝜂(e) me,a.

3.2 Discrete variational principle

In this subsection, we derive the formulation of the AVI for the phase field approach to dynamic fracture using the discrete
Hamilton’s principle.44 Taking the partial derivative of the discrete action sum (23) with respect to ui

a follows

0 = 𝜕Sdis

𝜕ui
a
= 𝜕

𝜕ui
a

(
1
2

Ma
(

ti
a − ti−1

a
) ‖‖‖‖‖

ui
a − ui−1

a

ti
a − ti−1

a

‖‖‖‖‖
2

+ 1
2

Ma
(

ti+1
a − ti

a
) ‖‖‖‖‖

ui+1
a − ui

a

ti+1
a − ti

a

‖‖‖‖‖
2

−
(

tj
e − tj−1

e

)
Ve

(
uj

e,d
j
e

))
, (24)

where a ∈ 𝜂(e) such at ti
a = tj

e, which yields the discrete Euler–Lagrange equations

pi+1∕2
a − pi−1∕2

a = Ii
e,a = −

(
tj
e − tj−1

e

) 𝜕Ve

(
uj

e,d
j
e

)

𝜕ui
a

, (25)

where Ii
e,a may be regarded as the impulse component of node a ∈ e at the time ti

a = tj
e, and the discrete linear momentum

is defined as

pi−1∕2
a = Ma

ui
a − ui−1

a

ti
a − ti−1

a
= Mavi−1∕2

a . (26)

Similarly, we take the partial derivative of (23) with respect to dj
e as follows

0 = 𝜕Sdis

𝜕dj
e

= 𝜕

𝜕dj
e

[
Ve

(
uj

e,d
j
e

)
+ Γe

(
dj

e

)]
, (27)

for element e at time tj
e, then the phase field of element e are updated by

dj
e = arg min

d⋆e ≤de≤1

{
Ve

(
uj

e,de

)
+ Γe (de)

}
, (28)

where d⋆e represents the phase field value of 𝜂(e) at their most recent time of update; namely, for node a ∈ 𝜂(e),
at step i, d⋆e contains the phase field value di−1

a . Note that normally in the same element e, d⋆e may contain phase field
values at different times. Here the stationarity condition (27) becomes a minimization in (28) since Γe is elliptic. The
irreversibility constraint in (28) may be enforced in many ways, for which we have chosen the reduced-space active set
strategy, to be discussed in Section 3.4.
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e
: ( )

: ( )

: e

: e′

F I G U R E 3 Diagram of a patch e that consists of the element e (gray element) and its adjacent elements e′ ∈ e (white elements). At
the beginning of an iteration for element e at time tj

e for solving the phase field dj
e, the displacements uj

e are known. Correspondingly, both the
displacements u∗e′ and the phase fields d∗e′ of nodes in 𝜂(e′) ⧵ 𝜂(e) (hollow nodes) assume their most recent values for the iteration.

Now, we consider an element e ∈ h with uj−1
e and pi−1∕2

a , a ∈ 𝜂(e), known at time tj−1
e , also known d⋆e , the provisional

solution procedure is thus:

• For all a ∈ 𝜂(e), solve ui
a from (26): ui

a = ui−1
a + (ti

a − ti−1
a )M−1

a pi−1∕2
a .

• Solve dj
e from (28).

• For all a ∈ 𝜂(e), solve pi+1∕2
a from (25): pi+1∕2

a = pi−1∕2
a −

(
tj
e − tj−1

e

)
𝜕Ve

(
uj

e,d
j
e

)
∕𝜕ui

a.

3.3 Reformulation for solving the phase field with element patches

The solution procedure mentioned above is variational; however, the results obtained with (28) show an unreasonable
crack pattern (see Appendix B), hence we reformulate the constrained optimization problem (28) as follows. Essentially,
we want to minimize V + Γwith the newly obtained uj

e (same as before) while the field values of all nodes not belonging
to e frozen to their most recent values. To this end, we define the patch for element e

e =
{

e′ ∈ h ∶ 𝜂(e) ∩ 𝜂(e′) ≠ ∅} , (29)

as shown in Figure 3. In this way, Equation (28) is modified to take into account the contributions of its neighboring
elements

dj
e = arg min

d⋆e ≤de≤1

∑
e

[
Ve

({
u∗e′ ,u

j
e

}
,

{
d∗e′ ,de

})
+ Γe

({
d∗e′ ,de

})]
, (30)

where the superscript ∗ represents the nodal values of 𝜂(e′) ⧵ 𝜂(e) (hollow nodes in Figure 3) at their most recent time of
update.

Based on the spatial discretization, the minimization problem (30) leads to the phase field residual of the element

(re)a ∶= ∫e

[
g′(d)𝜓+(𝜺)Na +

gc

4cw

(
w′(d)Na

𝓁
+ 2𝓁∇d ⋅ ∇Na

)]
dΩ, a ∈ 𝜂(e), (31)

where g′ = dg∕dd and the tangent stiffness matrix of the element

(ke)aa′ ∶= ∫e

[
g′′(d)𝜓+(𝜺)NaNa′ +

gc

4cw

(
w′′(d)NaNa′

𝓁
+ 2𝓁∇Na ⋅ ∇Na′

)]
dΩ, a, a′ ∈ 𝜂(e). (32)

For the detailed derivation of (31) and (32), the reader is referred to Shen et al.21
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3.4 Reduced-space active set method for irreversibility constraint

There are several approaches to impose the inequality constraints of the phase field when solving (30), such as the local
history variable method,40 the penalty method,45 and the augmented Lagrangian method.46

In this work, we employ the reduced-space active set strategy47 to ensure the phase field bounds d ∈ [0, 1] and the
irreversibility condition ḋ > 0. In the discrete setting, the phase field needs to satisfy the condition

0 ≤ di−1
a ≤ di

a ≤ 1, ∀i = 1, 2, … ,na and a ∈ 𝜂(e). (33)

Note that we solve this inequality-constrained optimization problem efficiently for only one element instead of for the
entire domain. Then the solutions are determined by a mixed complementarity problem48

⎧⎪⎨⎪⎩

di−1
a = di

a, ra ≥ 0,
di−1

a ≤ di
a ≤ 1, ra = 0,

di
a = 1, ra ≤ 0,

(34)

where di
a is the nodal phase field at time ti

a = tj
e, and ra is the phase field residual corresponding to node a. For each

iteration, with d⋆e , uj
e, d∗e′ , and u∗e′ of the patch at time tj

e known, the phase field value of element e can be updated through
Algorithm 1.

Algorithm 1. Reduced-space active set method for solving the phase field

Input: d⋆e ,u
j
e,d∗e′ ,u

∗
e′ , ∀e′ ∈ e and tol ⊳ tol may be chosen differently at each occurrence

Output: dj
e

1: Compute re from (31) and initialize dj
e = d⋆e

2: ⊳ Let di
a and di−1

a denote the components of dj
e and d⋆e corresponding to node a, respectively, where di

a is the nodal
phase field at time ti

a = tj
e. Initially di

a = di−1
a .

3:  =
{

a ∈ 𝜂(e) ∶ ra>tol or
(

di
a = 1, ra< −tol

)}
, = 𝜂(e) ⧵ ⊳ All components of dj

e are in either or  at any time
4: while  ≠ ∅ do
5: while ‖r‖ > tol do ⊳ {} is the component of {}e corresponding to nodes of 
6: Compute k from (32), solve d ← d − k−1 r , and update r
7: end while
8: for a ∈  do
9: if di

a>1 + tol then
10: Set di

a ← 1 and←  ∪ {a},  ←  ⧵ {a}
11: else if di

a<di−1
a − tol then

12: Set di
a ← di−1

a and ←  ∪ {a},  ←  ⧵ {a}
13: end if
14: end for
15: Compute r from (31)
16: if ∀a ∈  satisfy (34) then
17: return with dj

e
18: else
19: For each a ∈  not satisfying (34),  ←  ∪ {a},←  ⧵ {a}
20: end if
21: end while

An explanation of Algorithm 1 is as follows. First, the phase field residual re is computed from (31) and the new phase
field dj

e is initialized with the old phase field d⋆e . Next, the set 𝜂(e) is divided into an active set and its complementary
inactive set  = 𝜂(e) ⧵ according to which case of (34) each node falls into, up to the given tolerance. If  is an empty
set, then the procedure is returned with dj

e. Otherwise, the components of re corresponding to nodes of  need to be close
enough to zero, up to a certain tolerance. For this purpose, Newton iteration is performed until convergence. After that,



NIU et al. 443

the sets and  are adjusted based on (33). This process of Newton iteration and adjustment of node sets is iterated until
all nodes of satisfy (34).

3.5 Algorithmic implementation

This section focuses on the algorithmic implementation of the AVI for the phase field fracture. The overall pseudo-code is
provided in Algorithm 2. The time step of each element is taken as a fraction of their critical time step and is computed by

tcrit = CCFL
2
𝜔e
, (35)

where CCFL is taken as 0.6 and 𝜔e is the maximum natural frequency of the element, which is the square root of the
maximum eigenvalue of the generalized eigenvalue problem keU = 𝜔2meU. The time step of each element allows certain
adaptivity, although we keep CCFL constant in this work for simplicity.

Due to the asynchrony of the algorithm, we employ the priority queue49 to keep track of the causality. The priority
queue assigns each element a priority according to their next update time where the element to be updated at a sooner
time has a higher priority. In other words, the priority queue ensures that all elements in the queue are ordered according
to their next time to be updated, and the top element in the queue is always the one whose next update time is the closest
to the current time in the future.

The implementation details are shown in Algorithm 2. First, the first time steps of all elements in the mesh are com-
puted and pushed into the priority queue to establish the initial queue. Within each iteration, the priority queue pops an
element (calls the active element) and its next update time. The nodal displacements, phase fields, and momenta of the
active element are updated accordingly. Subsequently, the next update time of this element is computed and if this time
is less than tf , it is pushed into the priority queue. The algorithm continues until the priority queue is empty.

Algorithm 2. Algorithm of AVI for the phase field to fracture

Input: h, 𝜂, Θ, Q = ∅ and {u0
a, d0

e , p1∕2
a |a ∈ 𝜂}

Output: ui
a,d

j
e,p

i+1∕2
a , where i, j = 1, 2, 3,… , corresponding to Θ

1: Initialization: ua ← u0
a, de ← d0

e , pa ← p1∕2
a , 𝜏a ← t0 for all a ∈ 𝜂

2: for all e ∈ h do
3: 𝜏e ← t0
4: Compute t1

e and push (t1
e , e) into priority queue Q

5: end for
6: while Q is not empty do
7: Extract next element: pop (t, e) from Q
8: Compute displacements ue with (26) and update node’s time 𝜏a ← t for all a ∈ 𝜂(e)
9: Compute the phase fields de with (30) following Algorithm 1

10: if t < tf then
11: Compute momentum pa with (25) for all a ∈ 𝜂(e)
12: Update element’s time: 𝜏e ← t
13: Compute tnext

e and schedule e for next iterate: push (tnext
e , e) into Q

14: end if
15: end while

4 NUMERICAL EXAMPLES

In this section, we showcase four benchmark examples to demonstrate the ability of the proposed formulation in captur-
ing the key features of dynamic fracture. In addition, we compare the computational costs and the energy conservation
behavior of our approach for the AT1 and AT2 models. While all examples conducted here are two-dimensional, the
proposed formulation is easy to be generalized to three dimensions. In particular, we use an unstructured mesh with
first-order quadrilateral finite elements, which is refined along the potential crack paths.
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A note on the post-processing is as follows. We sample the solution at a frequency of every 500,000 elemental iterations.
For example, if the current time tnow = t2

e3
in Figure 2 happens to be a sampling time, then post-processing results are

obtained using the most recent nodal displacement, velocity, and phase field values prior to tnow, that is, values at nodal
times t2

a1
, t3

a2
, t3

a3
, t2

a4
for the nodes shown. For example, the crack patterns to be plotted are obtained using the most recent

phase field values prior to the sampling times. More accurate results can be obtained by interpolation using the values
before and after the sampling time, which is not undertaken in this work for simplicity.

4.1 Boundary tension test

In this section, a pre-notched rectangular plate loaded dynamically in tension is modeled. The geometry and boundary
conditions are shown in Figure 4. A constant traction 𝜎∗ = 1 MPa is applied on the top and bottom edges throughout the
simulation and the remaining boundary is traction free. This benchmark problem has been widely studied, for example by
Song et al.50 using the extended finite element method, by Nguyen10 with the cohesive zone method, and by Borden et al.22

with a synchronous phase field approach to fracture, as well as in experimental studies.51,52 As described in Reference 51,
a crack emerges at the notch tip and starts propagating to the right in a stable way. Over a certain distance, the main crack
branches into two symmetrical sub-cracks and continue growing until it reaches the right surface.

The material used in this test is silica glass and its properties are listed in Table 1. A plane strain state with a unit
thickness is assumed. The length scale parameter takes 𝓁 = 1 × 10−3 m, which is small enough with respect to the
specimen dimensions. Two different mesh levels are used: Mesh 1 with h = 5 × 10−4 m = 𝓁∕2, and Mesh 2 with
h = 2.5 × 10−4 m = 𝓁∕4 in the refined region.

The final phase field results are shown in Figure 5. As seen, there is no significant difference of in the crack pattern
between the AT2 and AT1 models. The crack branches at between 34 and 36 μs and reaches the right boundary at t ≈ 80 μs.
The upper crack branching angle is around 27.5◦, which agrees well with the results in References 53 and 23. In addition,
the bifurcation angle of the lower branch is slightly different from that of the upper one, which may be caused by the
non-symmetric discretization of the mesh. This non-perfect symmetry was also observed by Ren et al..38

Figure 6A shows the evolution of the total crack tip velocity calculated by

vtip =
1
gc

dΓ
dt
, (36)

50 mm
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m
20

 m
m

100 mm

∗ = 1 MPa

F I G U R E 4 Geometry and boundary conditions of the boundary tension test, in which a pre-notched plate is under tension.

T A B L E 1 Material properties for the numerical examples of Section 4.1 through Section 4.3.

Parameter Symbol Section 4.1 Section 4.2 Section 4.3

Material - Silica glass Soda-lime glass Maraging steel 18Ni(300)

Young’s modulus (GPa) E 32 72 190

Poisson’s ratio 𝜈 0.2 0.22 0.3

Density (kg/m3) 𝜌 2450 2440 8000

Critical energy release rate (J/m2) gc 3 3.8 2.213×104

Rayleigh wave speed (m/s) vR 2119 3172 2803
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(A) (B)

(C) (D)

27.5°

F I G U R E 5 Phase field results of the test in Section 4.1. (A) AT2 with h = l∕2; (B) AT2 with h = l∕4; (C) AT1 with h = l∕2; (D) AT1 with
h = l∕4

(A) (B) (C)

(D) (E) (F)

F I G U R E 6 Results of the test in Section 4.1 compared with those of Borden et al.22 Evolution of: (A) normalized total crack tip
velocity; (B) crack energy Γ(d); (C) strain energy; (D) kinetic energy T(u̇); (E) external work; and (F) free energy T(u̇) + V(u, d) + Γ(d). Note
that for (A), the velocity result in Borden et al.22 is only for one of the branches while it is the total velocity of both branches in this work.
Here for (E) as well as for (B)–(D) the results are obtained by sampling, see the text for more details. It can be seen that the free energy is
1.32% of the external work at the end, indicating the conservation of energy.

and normalized by the Rayleigh wave speed. In particular, the derivative is obtained by comparing the values of Γ at
consecutive sampling times. It is observed that at the beginning, a single main crack propagates to the right with a speed
of less than 60% of the Rayleigh wave speed. Then, the main crack branches into two sub-cracks and in this respect the
total crack tip velocity of both branches is plotted, which is still less than 60% of twice the Rayleigh wave speed. Therefore,
whether before or after the branching emerges, the velocity is within a reasonable range. Moreover, the overall propagation
speed during the evolution is in good agreement with the results reported by Borden et al.22 Note that the velocity of
Borden et al.22 is only for one of the branches while it is the total velocity of both branches in this work.
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(A) (B)

F I G U R E 7 Maximum principal stress of the test in Section 4.1 with Mesh 1 at t = 70 𝜇s, where the region d > 0.9 is removed. (A) AT2;
(B) AT1

(A)
(B)

F I G U R E 8 The performance indicators of the tests in Section 4.1 with Mesh 1: (A) Number of updates per element; and (B) wall time
corresponding to tf = 80 μs, where “Syn.” represents the results of a synchronous method (central difference).

Figure 6B–D present the evolution of the crack surface energy, the strain energy, and the kinetic energy, respectively.
The crack surface energy monotonically increases as expected due to the unilaterality of the phase field. In addition,
the strain energy evidently shows the periodic oscillation at the beginning and this trend gradually weakens
with crack evolution, because the stress wave is reflected at the boundaries and cracks, and interacts with
itself.

Figure 6E shows the evolution of the external work, which is calculated from the second term on the right hand side
of Equation (6). It is clear that the kinetic energy accounts for most of the energy converted from external work.

Figure 6F shows the evolutions of the free energy T(u̇) + V(u, d) + Γ(d). The free energy is negative and its magni-
tude is only 1.32% of the external work at the end. This small negative numbers demonstrate that the method possesses
remarkable energy conservation property and is energetically stable.

Figure 7 shows the maximum principal stress with Mesh 1 at t = 70 μs. Therein, stress concentration is clearly seen
at the crack tips and the results are in good agreement with those in Reference 54.

Figure 8A shows the number of updates per element for Mesh 1. By construction, the elements near the cracks are
updated more frequently than those far away from the cracks. Figure 8B shows the wall time corresponding to tf = 80 μs
for the AVI and a synchronous method (central difference). The simulations are conducted using an in-house MATLAB
code on a personal computer with Intel(R) Core(TM) i7-6700 CPU @ 3.40GHz and 16.0 GB RAM. The results indicate
that the AVI for both AT2 and AT1 models take similar computational time. In addition, the computational efficiency of
the AVI is approximately four times that of the synchronous method.

Table 2 collects statistics of the computational cost for the example at hand. As a platform-independent indicator,
the number of updates of each element throughout the simulation for each case is counted. The second, third, and
fourth columns represent the minimum, maximum, and median numbers of updates among the elements, respectively.
The fifth column is the total numbers of updates for all elements of AVI. The sixth column is the total numbers of
updates of synchronous integration, where the data is estimated by assuming the global critical time step is used for the
same time interval [t0, tf ]. As shown, the total numbers of AVI updates is approximately 31% of those of a synchronous
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T A B L E 2 Numbers of elemental updates for the test in Section 4.1 during the entire simulation.

Mesh Minimum Maximum Median AVI totala Synchronous integration (estimated)b

Mesh 1 178 5983 2106 27,400,002 86,382,554

Mesh 2 160 10,150 3440 62,285,189 201,051,200

aTotal numbers of the elements involved in the update of the mechanical field and phase field.
bThis column of data is estimated by assuming the global critical time step is used throughout the computation for the same desired time interval [t0, tf ].
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F I G U R E 9 Geometry and boundary conditions for the dynamic CT test.
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F I G U R E 10 Phase field results of the test in Section 4.2 under different loads.

integration. Considering that it is even more costly to implicitly solve for the phase field with a synchronous method per
time step, the data in Table 2 indicates that the proposed scheme effectively reduces the computational cost compared
with a synchronous method.

4.2 Compact tension test

In this section, we investigate a series of dynamic loads applied on pre-crack surfaces as the compact tension (CT) test.
The geometry and boundary conditions are shown in Figure 9. Three different constant normal tractions 𝜎∗ = {0.5, 3, 6}
MPa are applied on the pre-crack surfaces. This benchmark problem has been studied by Bobaru and Zhang55 using
peridynamics and Mandal et al.56 with a synchronous phase field approach.

The material is assumed to be soda-lime glass, whose properties are given in Table 1. Plane strain state is assumed.
The length scale parameter 𝓁 = 5 × 10−4 m and the mesh size h = 2.5 × 10−4 m = 𝓁∕2 in the refined region are used for
all cases. Figure 10 shows the phase field results for the CT test. For 𝜎∗ = 0.5 MPa, a straight crack without branching
is obtained. For larger values of 𝜎∗ crack branching is observed and the branching location moves to the left with the
increase of 𝜎∗. The crack branching happens at around 17.3 and 9.2 μs, and the branching angles are 52◦ and 46◦ for
𝜎
∗ = 3 and 6 MPa, respectively. Also, there is no significant difference of the crack patterns between the AT2 and AT1 mod-

els for the same load. Moreover, the crack patterns, branching instants, and branching angles are all in good agreement
with the results reported in Reference 56.
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(A) (B) (C)

(D) (E) (F)

F I G U R E 11 Results of the test in Section 4.2 with 𝜎∗ = 3 MPa compared with Mandal et al.56 Evolution of: (A) Normalized total crack
propagation velocity. Note that the velocity of Mandal et al.56 is only for one of the branches while our result is the total velocity of both
branches; (B) Crack energy; (C) strain energy; (D) kinetic energy; (E) external work; and (F) free energy. The free energy is only 1.69% of the
external work, which indicates the conservation of energy.

Figure 11A illustrates the evolution of the normalized total crack tip velocity of CT test for 𝜎∗ = 3 MPa. Like the case
of Figure 6A, a main crack propagates to the right with an increasing speed less than 60% of the Rayleigh wave speed.
Then, then main crack branches into two sub-cracks and the total speed is still less than 60% of twice the Rayleigh wave
speed. Note that the velocity of Mandal et al.56 is only for one of the branches while our results are the total velocity of
both branches. Figure 11B shows the evolution of the crack energy, and the results of both models are slightly higher than
the result reported by Mandal et al.56 Figure 11C shows the evolution of the strain energy. An interesting observation is
that the curve presents a periodic oscillation with a period of approximately 6.8 μs, which can be explained as follows.
During the process, the stress waves propagate from the crack to the top and bottom boundaries and then are reflected
until they meet the crack again. The time it takes the stress wave to travel a round trip can be estimated by l∕vD = 6.89 μs,
where l = 40 mm is twice the half-width of the specimen and vD = 5800 m/s is the dilatational wave speed of soda-lime
glass. This process is repeated, and hence the periodicity. Figure 11D,E show the evolution of the kinetic energy and
the external work, both of which monotonically increase. Figure 11F shows the free energy of the AT2 and AT1 model
during the evolution. As we can see, the magnitude of the free energy only accounts for 1.69% of the external work, which
indicates the conservation of energy.

Figure 12 shows the maximum principal stress for 𝜎∗ = 3 and 6 MPa, respectively. Therein, stress concentration is
clearly seen at the crack tips.

Figure 13A shows the number of updates per element with the mesh of the case 𝜎∗ = 3 MPa. Like the previous
example, the elements in the refined region are updated more frequently while those without refinement are updated less
frequently. Figure 13B shows the wall time corresponding to tf = 35 μs of the AVI and a synchronous method for both
models. As can be seen, the AVI takes one third time of a synchronous method.

4.3 The Kalthoff-Winkler test

This section studies the Kalthoff-Winkler experiment in which an edge-cracked plate is under impact velocity. Due to
symmetry, only half of the plate is considered. The geometry and boundary conditions are shown in Figure 14. In the
experiment,57,58 the brittle failure mode with a crack propagating at about 70◦ was observed at a certain impact speed,
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(A) (B) 

F I G U R E 12 Maximum principal stress of the test in Section 4.2. (A) 𝜎∗ = 3 MPa, t = 35 μs; (B) 𝜎∗ = 6 MPa, t = 30 μs

(A) (B)

F I G U R E 13 The performance indicators of the tests in Section 4.2 with the mesh of the case 𝜎∗ = 3 MPa: (A) Number of updates per
element; and (B) wall time corresponding to tf = 35 μs.
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F I G U R E 14 Geometry and boundary conditions of the Kalthoff test, where v = 16.5 m/s.

and the relevant numerical results were reported by other researchers using the extended finite element method,50

peridynamics,59 and the gradient damage method.14

The material is maraging steel 18Ni(300), whose properties are given in Table 1. A plane strain state is assumed. The
length scale parameter 𝓁 = 3.9 × 10−4 m and two different meshes are used: Mesh 1 with size h = 1.95 × 10−4 m = 𝓁∕2
and Mesh 2 with h = 9.75 × 10−5 m= 𝓁∕4 in the refined region.

Figure 15 shows the final phase field patterns at t = 87 μs for different meshes and models. The crack propagates at
25.5 μs and with an angle of about 67◦ with the horizontal line, which is in good agreement with the experimental results57

and the numerical results using the phase field method.60,61

Figure 16A presents the evolution of the normalized crack tip velocity of the Kalthoff test. The velocity results
here are almost two times that reported by Liu et al.54 The differences in crack tip velocity may be caused by the dif-
ferent post-processing methods, where Reference 54 employed an alternative method that is different from ours by
Equation (36), to be discussed later. Figure 16B shows the evolution of the crack energy calculated by (4), which agrees
well with the numerical results in Reference 46. In addition, the crack energy of the AT2 model is a little higher than
the AT1 model for both meshes. Figure 16C,D show the evolution of the strain energy and kinetic energy, respectively,
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(A) (B)

(C) (D)

F I G U R E 15 Phase field results of the test in Section 4.3 at t = 87 μs. (A) AT2 with h = l∕2; (B) AT2 with h = l∕4; (C) AT1 with h = l∕2;
(D) AT1 with h = l∕4

(A) (B) (C)

(D) (E) (F)

F I G U R E 16 Results of the test in Section 4.3 compared with Liu et al.54 Evolution of: (A) Normalized crack tip velocity; (B) crack
energy; (C) strain energy; (D) kinetic energy; (E) external work; and (F) free energy. The external work (E) is obtained by sampling the power
of the reaction force, and then integrating this power with respect to time. The free energy gradually increases, reaching between 3.74% and
7.34% of the external work in the end, which seems to violate the law of conservation of energy. See Figure 19 for a comparison.
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(A) (B)

F I G U R E 17 Maximum principal stress of the test in Section 4.3 with Mesh 2 at t = 70 μs. (A) AT2; (B) AT1

(A) (B)

F I G U R E 18 The performance indicators of the tests in Section 4.3 with Mesh 1: (A) Number of updates per element; and (B) wall time
corresponding to tf = 87 μs.

and the results are consistent with numerical results reported by Zhang et al.62 Figure 16E shows the evolution of the
external work, to the best of our knowledge, there is no relevant report on external work of the Kalthoff test by the phase
field method at present. However, our result is in good agreement with the result using the cohesive zone model by Park
et al.63 Figure 16F shows the evolution of the free energy. As we can see, the free energy gradually increases, reaching
between 715.34 and 1403.51 J at the end of the simulation, which seems to violate the law of conservation of energy. This
phenomenon appears to be an open question.

Figure 17 shows the distribution of the maximum principal stress for Mesh 2. The stress concentration is clearly seen
at the crack tip and the bottom right corner, in both AT2 and AT1 models. The result is in good agreement with those in
Liu et al.54

Figure 18A shows the number of updates per element of the Kalthoff test with Mesh 1. Similar to the previous exam-
ples, the elements near the crack are updated more frequently by design while those far way are updated less frequently.
Figure 18B shows the wall time corresponding to tf = 87 μs, indicating that the AVI takes only one-third of the wall time
of a synchronous method.

4.3.1 Alternative method to calculate the crack tip velocity

As an attempt to reconcile the discrepancy, we employ the iso-curve strategy to calculate the crack tip velocity, as also
done by Liu et al.54 In this approach, the position of the crack tip is determined by the iso-curve with phase field d = 0.9.
Therefore, the crack tip velocity is recalculated by vn = ||xn − xn−1||∕(tn − tn−1), where xn represents the location of the
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(A) (B) (C)

F I G U R E 19 Results of the test in Section 4.3. Evolution of: (A) Normalized crack tip velocity calculated by iso-curve strategy; (B) crack
energy calculated by Equation (37), that is, Γ̂ (left vertical axis), and crack length (right vertical axis); and (C) free energy
T(u̇) + V(u, d) + Γ̂(d), which satisfies the conservation of energy.

crack tip at nth sampling time tn, and the result is shown in Figure 19A. As can be seen, the crack accelerates to near 0.6vR
and then remains with this velocity during the propagation until it reaches the top boundary, which agrees well with the
result reported in Reference 54.

With this iso-curve scheme, the four cases of Kalthoff test show a similar final crack length of approximately lcrack = 83
mm, see Figure 19B with the right vertical axis. Correspondingly, the crack energy can be computed as

Γ̂ = gclcrack, (37)

with the value of 1836.79 J for a sharp crack, see Figure 19B with the left vertical axis. A significant difference is that Γ̂ is
much smaller than Γ, and the ratios of Γ∕Γ̂ are 1.9 and 1.75 for the AT2 and AT1 models, respectively.

In addition, we recalculate the free energy by using (37) instead of (4), that is, T(u̇) + V(u, d) + Γ̂, and the result is
shown in Figure 19C. As seen, with Γ̂, the results are energetically stable and satisfy the conservation of energy.

4.3.2 Discussions

In the Kalthoff test, the crack energy calculated by (4) is higher than that by (37). This phenomenon is not unique to this
work but also reported in References 22,46,54,61,62,64, and 65, in which the ratio of Γ∕Γ̂ is between 1.90 and 2.45, equal
to or even higher than our value. Meanwhile, in Reference 23, this ratio is 1.37. In addition, this phenomenon was also
reported in other dynamic phase field fracture by Ziaei-Rad and Shen,27 where the ratio is approximately 2.

Although the main reason why Γ is higher than Γ̂ need to be further investigated, we suggest that the way of enforcing
irreversibility constraint is not an ideal candidate. Borden et al.22 suggested that the strain-history field (alternative way
to enforce the irreversibility) could play an important role, but the ratio of Γ∕Γ̂ is still 1.4 despite the strain-history field
being removed which allows the crack to heal. In addition, Geelen et al.46 employed the augmented Lagrangian method
to enforce the irreversibility and the resulting ratio is 2.

Moreover, Li et al.14 stated that the numerical phase field of the Kalthoff test is wider than the analytical one, and
the wider damage profile will lead to an amplified effective fracture toughness, which had also been reported by Bourdin
et al.66 Furthermore, Bleyer et al.67 suggested that the mesh size has an influence on the result of both quasi-static and
dynamic fracture and that will further lead to an overestimated crack energy (see eqs. (16) and (17) in Reference 67 for
more details).

This issue appears to be an open question for the Kalthoff test.

4.4 The fiber-reinforced composite test

This section studies the cracking behavior in a fiber-reinforced composite with two asymmetric initial explicit cracks.
Figure 20A illustrates the geometry and the boundary conditions, where the cracks are located at the end of the parallel
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F I G U R E 20 The fiber-reinforced composite test. (A) The geometry and boundary conditions, where v = 5 m/s. The phase field results
of the (B) AT2 and (C) AT1.

(A) (B) (C)

(D) (E) (F)

F I G U R E 21 Results of the fiber-reinforced composite test in Section 4.4 as the evolution of: (A) Normalized total crack tip velocity; (B)
crack energy; (C) strain energy; (D) kinetic energy; (E) external work; and (F) free energy.

fibers and with a length of 3 mm. Plane stress state is assumed. The material parameters for the matrix are selected as
Em = 35 GPa, 𝜈m = 0.42, 𝜌m = 1450 kg/m3, gcm = 5 × 102 J/m2, 𝓁m = 2 × 10−4 m while those for the fiber are Ef = 208
GPa, 𝜈f = 0.42, 𝜌f = 8000 kg/m3, gcf = 1 × 104 J/m2, 𝓁f = 1 × 10−3 m. The mesh size in the refined region is h = 5 × 10−5

m = 𝓁m∕4.
Figure 20B,C show the phase field results of the AT2 and AT1 models, respectively. It is observed that the cracks

propagate from the pre-crack tips and toward each other in a curved shape. This crack pattern was also observed in
References 68 and 69.

Figure 21A shows the evolution of the normalized crack tip velocity. The cracks propagate at 3 μs and rapidly
increase to the Rayleigh wave speed vR, then decrease to vR∕2 at the end of the simulation. Figure 21B shows the
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F I G U R E 22 The performance indicators of the tests in Section 4.4: (A) Number of updates per element; and (B) wall time
corresponding to tf = 5.5 μs.

evolution of the crack energy, which increases monotonically during the simulation. Figure 21C shows the evolution
of the strain energy, which increases at the beginning and then decreases after the cracks begin to propagation. Figure 21D
shows the evolution of the kinetic energy. Interestingly the kinetic energy shows a plateau at the beginning of the
crack propagation (about 3 μs) and then increases. Figure 21E,F show the evolution of the external work and the
free energy respectively, indicating that the free energy is approximately 6% of the external work at the end of the
simulation.

Figure 22A shows the number of updates per element. Again, by design, the elements near the cracks are updated
more frequently. Furthermore, it is noted that the fiber elements are updated three times more frequently than the
matrix elements far away from the cracks. Figure 22B shows the wall time corresponding to tf = 5.5 μs for the AVI and
a synchronous method, and the results indicate that the time the AVI takes is approximately a quarter times that of a
synchronous method.

5 CONCLUSIONS

In this article, we have proposed an asynchronous variational formulation for the phase field approach to dynamic brit-
tle fracture. The formulation is derived from Hamilton’s principle of stationary action and to a great extent, retains the
advantages of variational integrators. A major characteristic of the formulation is that it allows elements to have indepen-
dent time steps. The result indicates that the formulation is able to simulate dynamic fracture propagation and branching
successfully. As a result of the variational structure, the formulation performs a remarkable energy behavior during the
simulation. Compared to synchronous methods, the presented formulation is computationally more efficient for problems
involving a high contrast in element sizes or material properties, such as bi-materials.

Another characteristic is that the phase field irreversibility condition is enforced by the reduced-space active set
method at the level of element patches. As a result, the AT2 and AT1 variants of the phase field approach may be imple-
mented with similar costs. The present study shows that these two variants lead to similar results at roughly the same
computational cost.
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APPENDIX A. THE CASE WITH COINCIDENCE IN THE UPDATE SCHEDULE

The assumption of no coincident instants is not a restrictive assumption but for simplifying the derivation. Without this
assumption, consider the case in which there are coincidences in the update instants for multiple adjacent elements
sharing node a. Let the set of these nodes be denoted a. It can be shown that the result of the simulation is equal for the
pure elasticity case even if the update order of the elements in a is exchanged.

However, when considering the phase field, the results are slightly dependent on the update order due to the
irreversibility of the phase field. An alternative and the most orthodox treatment is to rewrite (24) as
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with the last term modified compared with (24). In this treatment, the elements in a need to be simultaneously updated.
It is believed that such more rigorous treatment will not alter too much the numerical results.

APPENDIX B. PHASE FIELD RESULT WITHOUT USING ELEMENT PATCHES

Figure B1 shows the phase field result obtained with (28), that is, without patches, the boundary conditions and material
properties are the same as those of Section 4.1. As seen, the crack patterns are too diffused.

(A) (B)

F I G U R E B1 Phase field result with the formulation without using patches. (A) AT2; (B) AT1
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