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ABSTRACT 

Cancer cell lines serve as model in vitro systems for investigating therapeutic 
interventions. Recent advances in high-throughput genomic profiling have enabled the 
systematic comparison between cell lines and patient tumor samples. The highly 
interconnected nature of biological data, however, presents a challenge when mapping 
patient tumors to cell lines. Standard clustering methods can be particularly susceptible 
to the high level of noise present in these datasets and only output clusters at one 
unknown scale of the data. In light of these challenges, we present NetCellMatch, a 
robust framework for network-based matching of cell lines to patient tumors. 
NetCellMatch first constructs a global network across all cell line-patient samples 
using their genomic similarity. Then, a multi-scale community detection algorithm 
integrates information across topologically meaningful (clustering) scales to obtain 
Network-Based Matching Scores (NBMS). NBMS are measures of cluster robustness 
which map patient tumors to cell lines. We use NBMS to determine representative 
"avatar" cell lines for subgroups of patients. We apply NetCellMatch to reverse-phase 
protein array data obtained from The Cancer Genome Atlas for patients and the MD 
Anderson Cell Lines Project for cell lines. Along with avatar cell line identification, 
we evaluate connectivity patterns for breast, lung, and colon cancer and explore the 
proteomic profiles of avatars and their corresponding top matching patients. Our results 
demonstrate our framework’s ability to identify both patient-cell line matches and 
potential proteomic drivers of similarity. Our methods are general and can be easily 
adapted to other ’omic datasets.  

Availability and implementation: NetCellMatch software is freely available at: 
NetCellMatch 

Contact: neel.desai@pennmedicine.upenn.edu 
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1 Introduction 

In a precision medicine paradigm, matching a patient’s tumor to the correct drug therapy remains 

a critical step towards determining an effective patient-specific personalized treatment plan. 

Compared to generalized treatment options like chemotherapy, a drug therapy properly targeted 

to a patient tumor has shown increased effectiveness while minimizing harmful side-effects [1]. 

The tumor-drug matching problem has made recent advances based on tumors’ molecular 

architecture; mutation-specific therapies have been shown to be effective in breast cancer and 

melanoma [2, 3, 4, 5, 6, 7, 8]. While these approaches effectively incorporate a patient’s genomic 

archictecture, they typically consider only a few select set of mutations. Given that tumors are 

complex systems driven by multiple molecular abberations, the restrictive scope of these 

approaches may limit their effectiveness. As an alternative to mutation-specific therapies, standard 

translational experiments for drug discovery learn genomic regulatory mechanisms using 

perturbation studies in (idealized) tumor derived cell line model systems [9]. The choice of cell 

lines is governed by multiple factors; a cell line is typically deemed appropriate if it lacks 

contamination and produces a biological environment whose functional capabilities match the 

native phenotypic features of the primary patient cell [10, 11]. A direct approach towards 

determining this functional compatability involves using the multitude of genomic data available 

on patient systems to guide the choice of the most appropriate cell lines within and across cancers. 

The core concept is as follows: a patient matches to a cell line, which serves as an ‘avatar’ for that 

patient based on its similar molecular characteristics. Given extensive drug response data for cell 

lines, the therapies to which the avatar cell line responds become prospective therapies for the 

corresponding patient. Past results provide validation for this approach’s key assumption that cell 

lines can potentially serve as in-vitro model systems for tumors of the same (sub)type [9, 12]. 

With the advent of high-throughput molecular profiling, similarities between cell line data and 

tumor samples have been investigated using multiple data-centric analytical methods [2, 3, 13, 

14]. While these approaches have had some success, especially in renal cancer, opportunities 

remain to better address some of the inherent challenges to match patients and cell lines [15]. 

Many data-centric approaches separately assess each potential patient-cell line pair to produce 
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matches; this one-to-one matching strategy discards information that could be used to aid matching 

accuracy if all potential patient-cell line pairs were considered jointly [16]. Similarly, many 

existing approaches form patient-cell line pairs based on a few mutations and do not take full 

advantage of available genomic data [17, 18]. Finally, existing literature does not formally focus 

on methods which assess the cluster robustness of patient-cell line matches. A method which 

produces a metric that carefully assesses confidence in patient-cell line pairs could greatly aid 

scientific discovery by counteracting the false discoveries that result from the molecular 

heterogeneity introduced by random mutations. These challenges, coupled with the cost efficient 

nature and wide availability of cell lines, underscore the importance of developing new analytical 

strategies for integrating patient-cell line genomic data for effective implementation of precision 

medicine strategies [19]. 

In light of these challenges, we present NetCellMatch, a multi-scale network-based approach that 

horizontally integrates across cell line and patient data to find molecularly homogeneous groups 

of tumors and cell lines (Figure 1). Briefly, NetCellMatch adapts a multi-scale community 

detection algorithm [20] to obtain cluster sets along a topologically meaningful path defined by 

the joint patient-cell line network structure (Figure 1 and Section 2). NetCellMatch then aggregates 

information across all steps in this path to yield a Network-Based Matching Score (NBMS) for 

every patient-cell line combination and to determine representative avatar cell lines for subgroups 

of patients; integrating matching information with cell line specific drug responses can then be 

potentially used to identify prospective targeted therapies. Our method’s holistic network-based 

approach uses all available information in the data, potentially improving power compared to more 

common one-to-one matching strategies where patient-cell line pairs are assessed separately by 

standard similarity measures such as Euclidean distance or a correlation-based metric [16]. 

NetCellMatch produces matches by considering multiple biomarkers simultaneously rather than 

focusing on only a handful of mutations at a time. Finally, NetCellMatch creates a natural relative 

ranking of all patient-cell line pairs which provides an added uncertainty measure for assessing 

persistent clustering structure; a pair that forms at many levels of a network’s topology is more 

likely to be meaningful than a pair that only forms at a few levels (Figure 2). 
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Figure 1: Schematic representation of NetCellMatch. In STEP 1, proteomic information is used to form a global patient-cell 

line network based on a similarity metric (STEP 2) Subnetworks of patients and cell lines are obtained from each of N different 

scales of resolution of the global network (STEP 3) Network-Based Matching Scores are formed for each potential patient-cell 

line pair by aggregating subnetwork information across scales of resolution. 

 

Figure 2: Clusters across scales of resolution. Heatmaps represent the global patient-cell line network of NetCellMatch (see 

Figure 1) at different scales of resolution. At STEP 2 of NetCellMatch, distinct sets of patient-cell line clusters are formed based 

on the networks produced at each scale. Each scale filters out a portion of information from the global network along a topologically 

meaningful path. 
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Our methods are motivated by and applied to a pan-cancer proteomics data set comprised of 

reverse-phase protein arrays (RPPA) technology from The Cancer Proteome Atlas (TCPA) for 

patients’ samples and MD Anderson Cell Lines Project (MCLP) for cell lines [21, 22]. In this 

study, we examine patient-cell line pairs across lung, breast, and colon cancer. Along with avatar 

cell line identification, we evaluate connectivity patterns for each cancer type and explore specific 

properties of avatars and their corresponding matching patients. 

The rest of the article is organized as follows. In section 2 we detail our NetCellMatch framework 

and outline the methodology’s key properties. In section 3 we present the results of NetCellMatch 

applied to the data described above. In section 4 we discuss our findings and describe potential 

extensions of the framework. 

 

2 NetCellMatch Framework 

We designed NetCellMatch to produce clusters of molecularly homogeneous patient tumors and 

cell lines with associated measures of cluster robustness. Following the schema of Figure 1, our 

framework takes a patient-cell line network and uses a multi-scale community detection algorithm 

to obtain subnetworks of patients and cell lines across different layers of a network’s structure 

[20]. Information is then aggregated across scales to produce matches. Specifically, let vector C 

represent the genomic profile of a set of cell lines indexed by i = 1,...., nc (where nc indicates the 

number of cell lines) and P represent the corresponding profiles from a set of patients from j = 

1,..., np (where np indicates the number of patients). Given the (matched) genomic information of 

each cell line and patient (i.e. same set of genes/proteins), our immediate goal is to construct an 

undirected, fully connected weighted network G using all available (matched) genomic 

information with set of nodes N (of size nc + np). Let E represent the set of edges for network G. 

The relative strength of these edges is determined by measures of genomic similarity which, in 

contrast to considering patient-cell line pairs individually, borrows strength across a dataset’s 

entire genomic profile, preserving both direct and indirect associations. In order to mine 

information contained in G, we consider K scales of resolution k = 1,...,K. We detail each of the 

steps below. 
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2.1  STEP 1: Formation of Network and Graph Laplacian 

Using all available genomic data, we first construct fully connected network G where edges E 

between the set of nodes N (i.e. patients and cell lines) are weighted by a suitable distance metric. 

For our particular application, we use absolute Spearman’s correlation because we desire a robust, 

computationally feasible rank-based metric that has frequently been found to be an appropriate 

choice for assessing proteomic similarity between biomarkers [23, 24, 25, 26]. We use an absolute 

measurement because patient-cell line similarity only depends on the metric’s magnitude. We also 

note that our algorithm is flexible to incorporate other distance metrics, such as Pearson’s 

correlation, distance correlation, or mutual information that may be suitable for other biological 

applications [27]. Before performing multi-scale community detection, we transform G into its 

corresponding graph Laplacian L. This step is done to ensure that our network’s structural 

information is easily accessible; the span of a graph Laplacian’s eigenvalues contain the network’s 

clustering information at different scales of resolution. More specifically, clustering the first few 

eigenvectors of a graph Laplacian provides a network’s large scale sub-network structure; 

clustering with the inclusion of subsequent eigenvectors incorporates finer scales of information 

when determining sub-networks. 

 

Normalized Graph Laplacian: To form graph Laplacian L, first consider G; this weighted, 

undirected network describes the strength of association between each node (i.e. cell lines and 

patients). Given G, and defining its weighted elements as wij, the Laplacian can be constructed 

using the following steps [28]: 

1. Create diagonal degree matrix D. Each element of the diagonal of D is defined as 

∑ 𝑤𝑖𝑗
𝑁
𝑗= 1  describes the connectivity of node ni. 

2. Form Laplacian L = D − G.  

3. A normalized version of L is produced by taking D−1/2LD−1/2. This normalized L has a 

span bounded by 0 ≤ λ ≤ 2. We will use the normalized version of the Laplacian in this 

study because having a consistent, numerically tight span makes multi-scale community 

detection computationally easier. 
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As previously noted, the Laplacian contains a graph’s inherent clustering patterns in its set of 

eigenvectors. The multiplicity of its first eigenvalue λ1 is equal to the number of connected 

components. Likewise, in a fully connected Laplacian the eigenvector associated with the second 

smallest eigenvalue λ2 is known to contain the graph’s coarsest amount of information [28]. In 

other words, the graph’s most fundamental large-scale clusters will be represented in its 

Laplacian’s second smallest eigenvector. Standard methods such as spectral clustering leverage 

this fact by employing standard clustering algorithms (e.g. k-means) on this eigenvector to separate 

a graph into its basic clusters. Similarly, clusters obtained using more eigenvectors of a Laplacian 

would incorporate smaller scale information when determining network sub-groups. Our method 

seeks to profitably leverage the information contained at all scales of a graph through the 

Laplacian’s eigenvectors (detailed in STEP 2). Our approach’s core idea is that the most 

molecularly homogenous patient-cell line pairs will cluster together across many different scales 

of a network’s information; aggregating cluster results across scales should therefore provide a 

measure of cluster robustness for each patient-cell line pair. 

Briefly, at this stage we have Laplacian L, whose eigenvectors are embedded with our data’s 

connectivity patterns across scales of resolution. We now transition to the next step of our 

framework (see Figure 1) and obtain patient-cell line subnetworks at many scales of resolution. 

To perform multiscale community detection, we transform L into the Fourier domain and then 

apply the continuous wavelet transform; these steps allow us to selectively filter out the Lapacian’s 

eigenvectors and access connectivity information at a particular scale of our network. 

2.2   STEP 2: Multi-Scale Network Clustering 

It is well-established that the graph Laplacian (and any signal defined on it) can be redefined in 

terms of a basis of its orthonormal eigenvectors in the Fourier domain [29]. [30] showed that the 

continuous wavelet transform, in the Fourier domain, acts as a high band-pass filter; the filter’s 

properties are determined by the scale parameter (denoted by s) of the continuous wavelet 

transform. They further capitalized on both facts by defining the spectral graph wavelet transform 

(SGWT, [30]). The transform T essentially consists of a high-band pass filter g (i.e. a function 
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acting as a wavelet) applied to arbitrary signal f defined on a graph’s nodes. The transform is 

defined as  𝑇𝑔 = 𝑔(𝐿) =  𝑇𝑔
∗𝑓(𝑙) = 𝑔(𝜆𝑙)𝑓∗(𝑙)  with inverse Fourier transform (𝑇𝑔𝑓)(𝑚) =

 ∑ 𝑔(𝜆𝑙)𝑓∗𝑁−1
𝑙=0 , where 𝑓∗(𝑙) =  ∑ 𝑓(𝑚)𝑒𝑖𝑚𝑙𝑑𝑚.𝑁

𝑚=1  A graph wavelet ψs,n at scale s and node n is 

defined by applying the SGWT to an impulse δn (a signal with non-zero weight at only one 

location) defined on a graph node: 𝜓𝑠,𝑛 =  𝑇𝑔
𝑠𝛿𝑛, rewritten as 𝜓𝑠,𝑛 =  ∑ 𝑔(𝑠𝜆𝑙)𝜒𝑙

∗(𝑛)𝜒𝑙
 (𝑚)𝑁−1

𝑙=0 . 

Multi-scale community detection utilizes graph wavelets directly; every node has a wavelet 

serving as a proxy at each scale of resolution. Specific to our application, graph wavelets facilitate 

finding sub-networks of patients and cell lines at a given scale because they represent each node 

(i.e. a patient or cell line) based on the genomic similarity information available at only a chosen 

scale of resolution. 

The choice of g is critical when using the SGWT to perform multi-scale community detection. 

Leveraging that g can be approximated by a low rank polynomial p(x), the function we utilize is 

as follows: 

 

where parameters β, α, x1, x2, and maximum and minimum scale smax and smin respectively, are 

specifically chosen to facilitate community detection [20, 30]. 𝑠𝑚𝑎𝑥 =  
𝑥1

𝜆2
2  and is set so that filter 

g(smaxx) attenuates information only after λ2 (therefore the maximum scales keep all large scale 

cluster information). Similarly, β controls how selective g(smaxx) is around information in the 

second eigenvector; it is set to 𝛽 = −𝑙𝑜𝑔10(
𝜆3

𝜆2
) to attenuate information around λ3 by a factor of 

10. 𝑠𝑚𝑖𝑛 =  
𝑥1

𝜆2
 and is set so that g(sminλ2) considers large scale information when incorporating 

results at finer scales of resolution. Parameter α controls the attenuation of g around boundary 

points; higher α means faster attenuation beyond boundary points (we set α = 2 as in the default 

setting). Finally, 𝑥2 =  
𝑥1

𝜆2
  in order to guarantee that g(sminx) spans at least half of the information 

contained in the span of eigenvalues; this setting ensures that our finest scale of resolution 

considers information sufficiently different than our largest scale. 
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The modified SGWT described above provides the framework to isolate similarity network 

information among patients and cell lines at a particular scale of resolution. The transform, when 

modified for multi-scale community detection, has previously been proposed to extract the 

structural organization of intra-chromosomal interactions [31]. Before describing how to obtain 

sub-networks at a particular scale of resolution, we first describe graphical wavelets in more 

concise notation. At a given scale, the SGWT can generate wavelet basis Ψs = (ψs,1|ψs,2|....|ψs,N) = 

χGsχ
T, where Gs = diag(g(sλ1) ,..., g(sλN)) and ψs,i  describes the graph wavelet at scale s for node i. 

To produce a set of patient-cell line subnetworks at scale s, one requires the following steps: 

compute wavelet basis Ψs, construct matrix D of correlation distances between nodes using the 

corresponding graph wavelets at each scale as a proxy, and perform Hierarchical clustering of D 

(these steps are formally outlined in our method’s overall algorithm). A visual demonstration of 

how sub-networks vary across scales of resolution is given in Figure 2. As can be seen, at the 

coarsest scales of resolution, patients and cell lines are grouped together in a small number of 

large, inclusive sub-networks and as we consider finer scales of resolution, patients and cell lines 

are grouped together in larger numbers of small, distinct sub-networks. We next describe the final 

step in our algorithm, aggregating information across scales to rank patient-cell line pairs. 

2.3  STEP 3: Avatar Cell Line Identification 

The implementation of the above steps results in a set of patient-cell line clusters ck across scales 

k = 1,...,K. At each scale the number of clusters returned are directly related to the information 

being filtered through g; g filters through the Laplacian’s eigenstructure by selectively 

attenuating information in eigenvectors through corresponding eigenvalues. We select cell lines 

based on Network Based Matching Scores (NBMS), a metric aggregated for each patient-cell 

line combination across all considered scales. For patient i and cell line j, we define NBMS as 

follows: 

𝑁𝐵𝑀𝑆𝑖𝑗 =  
∑ 𝐼(𝑐𝑘)

𝑠𝑚𝑎𝑥
𝑘 = 𝑠𝑚𝑖𝑛

(𝑖𝑗)

𝑁𝑠𝑐𝑎𝑙𝑒𝑠
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where I(ck)(ij) indicates whether a patient-cell line pair clustered together at scale k and Nscales 

indicates the total number of scales considered. After obtaining NBMS for all patient-cell line 

pairs, we normalize matching scores by setting NBMS(max) = 1 and multiplying all other NBMS(ij) 

for i = 1,... nc and j = 1,..., np by the factor needed Algorithm 1:  

 

to make NBMS(max) = 1. We use these normalized scores because the raw co-clustering proportion 

is dependent on the chosen minimum and maximum scale as well as the distance metric used to 

form the Laplacian; the only meaningful metric is the relative difference between co-clustering 

levels. Finally, to rank potential avatar cell lines, each cell line is scored by summing across 

patients ∑ 𝑁𝐵𝑀𝑆(𝑖𝑗)
𝑛𝑝

𝑗 = 1
, which completes the algorithm. 

In summary, the best potential avatars will have the highest normalized scores. Cell line scoring 

is designed to leverage information across all network scales and across the entire network; 

avatar cell line rankings borrow strength by aggregating across all patients and all network scales 

to obtain a holistic rank of each cell line. We run the pipeline at a number of scales equally 

spaced (on a logarithmic scale) between the previously defined minimum and maximum scale to 
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balance the need to cover a sufficient number of fine scales yet limit computational burden. Our 

current selection of minimum and maximum scale is chosen to allow the filter to 

comprehensively cover the network’s different structures of information; the finest (smallest) 

scale treats each patient-cell line as an independent cluster while the largest scale has clusters of 

a significantly larger size. The NetCellMatch algorithm is presented in Algorithm 1. 

3 Cancer Cell Line and Patient Matching using Functional Proteomics 

3.1   Proteomic profiling of cancer patients and cell lines 

We demonstrate the practical utility of our NetCellMatch framework using functional proteomic 

data across multiple cancer types. Proteomic-based investigations are useful for this purpose since 

they are closer to functional behavior than genomics and transcriptomics; not all molecular 

aberrations in cancer can be traced to specific genomic or transcriptomic changes [32]. Reverse 

Phase Protein Array (RPPA) is a leading technology that allows for simultaneous assessment of 

expression of multiple protein markers in a cost-effective high-throughput format; RPPA has been 

extensively validated for patient and cell line samples [33]. Our analysis uses RPPA-based protein 

expression data of tumors from both patients and cell lines; patient samples are taken from The 

Cancer Proteome Atlas (TCPA [21]) while cell lines are taken from the MD Anderson Cancer Cell 

Lines Project (MCLP [22]). These data sources have collaborated with other big cancer data 

repositories (e.g. TCGA [34], CCLE [35]) to obtain other relevant information about the samples 

such as clinical history of patients and the sensitivity of drugs on cell lines. We consider 233 cancer 

related proteins common to patients and cell lines; these proteins are part of major signaling 

pathways such as PI3K, MAPK, Transforming Growth Factor β, WNT, cell cycle, apoptosis, 

immune responsiveness, and DNA damage response [22]. The combined data are processed for 

batch correction and missing value treatment using ComBat (as in [33]). 

We focus our analyses on three major cancer types: Breast cancer (cell lines nc = 58, patients np = 

879), Lung cancer (nc = 124, np = 687), and Colon cancer (nc = 35, np = 360). For analysis, we 

consider 150 logarithmically spaced scales between the minimum and maximum to balance 

assessing a sufficiently fine grid of resolution scales with computational cost. Additional 
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computational and data pre-processing details available in supplemental section S.1 and all the 

data and software codes are available at following github link: NetCellMatch. A comprehensive 

overview of all non-zero patient-cell line NBMS scores, as well as normalized matching scores 

produced from aggregating across hierarchical clustering dendrogram cut points for different 

distance metrics (distance correlation, Euclidean distance), is provided in supplemental section 

S.5. While certain cell lines are prominently flagged across all three approaches, the distinct 

differences between NBMS results and those of the other two approaches, as well as the high 

similarity of results from both hierarchical clustering dendrogram aggregation approaches, 

highlight NetCellMatch’s potential to uncover new insights by aggregating clustering results along 

a topologically meaningful path. 

Our major results are organized as follows. In Section 3.2 we highlight the overall connectivity 

patterns of cell lines for each cancer type that illustrates how our framework extracts connectivity 

patterns from a similarity network and produces aggregate metrics for patient-cell line pairs; we 

conclude 3.2 by highlighting salient features of top cell lines and corresponding connecting 

patients. Section 3.3 explores proteomic expression levels for top connecting avatar/patient pairs 

demonstrating how our framework can be used to identify proteins potentially driving similarity. 

3.2  Global Analysis - Patient-Cell Line Connectivity Patterns 

Figure 3 provides a comprehensive visual overview of major patient-cell line connectivity 

patterns for each cancer type. To assess connectivity between cell lines (green) and patients 

(red), clustering results were aggregated across scales of resolution; the width of a band between 

a patient and cell line represents the frequency of co-clustering of the two across scales of 

resolution. Using this visual overview, we next examine the properties of our top connecting cell 

lines for each cancer type. 

Breast Cancer: Top connecting cell lines are HCC1395, ZR75T, and AU565. HCC1395 is a 

triple negative cell line (i.e. no estrogen receptor (ER), progesterone receptor (PR), or growth 

factor HER-2 over-expression), which has a comparatively negative prognosis compared to other 

breast cancer subtypes [36]. Common to cancers of this subtype, HCC1395 has mutation of 

tumor suppressor gene p53. Likewise, this cell line exhibits a mutation of tumor suppressor gene 

BRCA1 [37]. Like many triple-negative breast cancers, HCC1395 over expresses growth factor 
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EGFR. While chemotherapy is the most common approach to treating triple negative breast 

cancer, some success has been documented inhibiting EGFR with tyrosine kinase inhibitors or 

antibody cetuximab in combination with chemotherapy [37]. ZR75T is of subtype luminal A; this 

subtype is generally 

 

Figure 3: Patient-cell line connectivity. Circos plots provide a general overview of connectivity patterns for potential 

patient-cell line pairs obtained from NetCellMatch. Cell lines are bordered in red while connecting patients are 

bordered in green. The band widths between each patient cell line pair represent the number of times a pair clustered 

together across all scales of resolution considered. Connecting patients are shown for cell lines with avatar cell line 

scores above 0.75. 

characterized by the lack of HER over-expression and the presence of ER and PR. Cancers of this 

subtype are typically treated with hormone therapy to block ER and PR receptors [38]. ZR75T is 
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positive for ER and PR, has tumor suppressor mutation (PTEN), and is positive for the AR 

androgen receptor; activated AR has been shown to aid suppressing breast cancer’s progression. 

[39]. AU565 is HER2 over-expression subtype which expresses growth factor EGFR. HER2 over 

expression subtypes are typically treated with tyrosine kinase inhibitors [40]. In addition, recent 

studies have shown that PARP-1 inhibitors can be used to treat these cancer subtypes [41]. 

 

Lung Cancer: Top connecting cell lines are H1385, HCC366, and HCC1359. H1385 is a NSCLC 

squamous cell. NSCLC squamous cells can be further classified as primitive, classical, secretory, 

and basal; H1385 is classified as both classical and primitive [42]. Classical subtypes are 

associated with alterations in KEAP1, NFE2L2, and PTEN while primitive subtypes are associated 

with RB1 and PTEN. H1385 has a KRAS mutation [43]. HCC366 is a lung adenosquamous 

carcinoma and is found to have a mutation in ATM and have growth factor EGFR overexpressed 

[44]. Lung adenosquamous carcinoma is a rare cancer type which displays a mixture of squamous 

and adenocarcinoma properties; tyrosine kinase inhibitors have shown success treating lung 

adenosquamous carcinoma by inhibiting EGFR [45]. Additionally, tests on non-small lung cancer 

with ATM mutation suggest that a combination of IR radiation and topoisomerase inhibitors may 

be an effective treatment option due to the mutation providing increased sensitivity [46]. HCC1359 

is a large cell carcinoma with a mutation in TP53 [47]. Large cell carcinoma is rare, has a poor 

prognosis, and typically responds poorly to chemotherapy [48]. 

Colorectal Cancer: Top connecting cell lines are SW480, SW1417, and SW837. SW480 is 

classified as subtype CMS2 and exhibits mutations for tumor supressor genes p53 and APC as 

well as for KRAS [49, 50]. Additionally, SW480 was positive for EGFR [51]. CMS2 is 

characterized by CIN, WNT, and MYC signaling activation [52]. SW1417 is also of subtype CMS2 

and has mutations in BRAF. APC, and p53 [49, 53]. Finally,  SW837 is subtype CMS4 and has a 

mutation in KRAS [54]. Subtype CMS4 is classified by active growth factor β, stromal invasion, 

and angiogenesis [52]. 

Given summaries of top connecting cell lines, we can scrutinize the proteomic profiles of potential 

avatar cell lines and corresponding matching patients. Figure 4 visualizes connectivity patterns 
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between top connecting cell lines and associated patients. For each cancer type (separated by 

color), the width of edge link between a patient-cell line pair represents normalized NBMS. We 

next compare proteomic expression profiles of patient-cell line pairs with the highest NBMS in 

Figure 5. The systematic comparison of proteomic profiles for top matches highlights a key feature 

of NetCellMatch; results from the algorithm can be used to examine which proteomic (or other 

genomic) biomarkers drive molecular homogeneity for patient-cell line pairs with similar 

expression profiles. 

 

 

Figure 4: Avatar cell line connectivity patterns. Sankey plot of matches between top potential avatar cell lines and 

corresponding patients. Cell lines are displayed on the left and patients on the right. Breast cancer is in green, lung 

cancer in blue, and colon cancer in red. The width of a link between a patient-cell line combination represents that 

pair’s NBMS. 

3.3    Potential Proteomic Drivers in Patient-Cell Line Pairs 

Figure 5 displays a scatter plot comparing expression levels of proteomic markers for a top 

connecting patient-cell line pair from Figure 4. Expression levels have been standardized so that 
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phenotypically normal expression levels are marked as 0. For each cancer type, we next explore 

characteristics of aberrantly expressed biomarkers (those mutually deviating from 0 in the same 

direction) for top pairs with the highest NBMS. Abberantly expressed proteins provide insight into 

factors driving molecular homogeneity and could potentially provide insight into appropriate 

mechanisms of action for tumor treatment. Scatterplots for patient-cell line pairs described below 

but not shown in Figure 5 can be seen in supplemental section S.3. 

Breast Cancer: ZR75T ←→ TCGA-A4S2: Aberrantly expressed proteins include TFRC, 

PARP1, GATA3, and ER-α. TFRPC are receptors which facilitate the transfer of iron to cells; iron 

is essential to cell growth and development via its role in oxygen development and energy transport 

[55]. PARP1 is a nuclear enzyme essential to cell DNA damage repair, chromatin dynamics, and 

transcriptional regulation [56]. In breast cancer, PARP1 has been shown to co-activate GATA3 

[57]. GATA3 (hormone signaling pathway) and ER-α share a binding site at the IL-20 promoter 

region and are co-expressed in breast cancer, responsible for cell growth and proliferation [58, 59]. 

AU565 ←→ TCGA-A0E1: Aberrantly expressed proteins are HSP70 and RBM15. HSP70 is a 

protein often found over-expressed in breast cancer cells and is known to be critical in "cellular 

proliferation, senescence, migration, invasion and tumor growth" [60]. RBM15 (breast reactive 

pathway) is a RNA-binding protein associated with methylation modification that plays a critical 

role in cell differentiation [61]. 

 

Colon Cancer: SW480 ←→ TCGA-A1DA: Aberrantly expressed proteins include ER-α and 

CLAUDIN7. CLAUDIN7 regulates tight junctions and maintains cell polarity and connects 

barriers between cells; interestingly lower expression of CLAUDIN7 is associated with colon 

cancer and poorer differentiation (as opposed to the over expression we observe) [62]. SW1417 

←→ TCGA-3975: Aberrantly expressed proteins are TIGAR, CLAUDIN7, ER-α, and PEA15. 

PEA15 is a cytoplasmic protein which plays a key role in cell signaling for processes such as 

proliferation and apoptosis [63]. TIGAR is known to limit apoptosis authophagy and aid tumor 

cell survival [64]. 
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Lung Cancer: HCC1359 ←→ TCGA-5782: Aberrantly expressed proteins include ER-α, 

NDRG1-pT346, and PEA15. Elevated NDRG16 expression in non-small lung cancer is thought 

to be associated with cancer growth [65]. 

 

Figure 5: Evaluating Potential Proteomic Drivers of Similarity. Breast Cancer - Scatterplot comparing proteomic 

expression levels of potential avatar cell line ZR75T on the x-axis and top connecting patient TCGA-A5DA on the y-

axis. 4 biomarkers are highlighted as being mutually aberrantly expressed: GATA3, ER-α, PARP1, and TFRC. 

4 Discussion 

We propose a network-based methodology, NetCellMatch, for matching in-vitro cell lines to 

patient tumor samples. NetCellMatch finds matches via a holistic metric based on proteomic 

profiling. To enhance robustness, NetCellMatch borrows strength in two distinct ways. It creates 

matches based on a network rather than individual one-to-one pairs and uses a metric produced by 

aggregating clustering information across different levels of a network’s structure. We apply 

NetCellMatch to three different cancer types, producing both global avatar cell lines for each 

cohort and individual network based matching scores (NBMS) for every patient-cell line 

combination. 
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Along with its demonstrated capacity for horizontal integration, NetCellMatch has the potential 

for vertical integration across data types. While we create matches based on proteomic 

heterogeneity, incorporating other data types such as genomics or transcriptomics may improve 

matching precision by enhancing cluster accuracy at each scale. It should also be noted that 

NetCellMatch is sensitive to the underlying distance metric chosen during the network formation 

stage. We chose absolute Spearman’s correlation because it is a non-parametric, robust metric that 

can be computed with relative computational ease. When applying NetCellMatch to other contexts, 

the underlying distance metric should be chosen carefully based on the application. 

For our particular application, we see two natural extensions for NetCellMatch. We match patients 

to cell lines due to the maturity of the immortalized cell line literature, and the ready availability 

of drug efficacy data for cell lines. Patient derived xenograft (PDX) models involve implanting 

patient-derived cell lines into nude mice, providing a more realistic in vivo models for evaluation. 

As public data sets including PDX data with genomic and drug response results become available, 

NetCellMatch could be applied to that setting, as well. Although our matching of cell lines and 

patients is motivated by the possibility of identifying potential targeted therapies known to work 

for the avatar cell lines that might be candidates to consider for the individual patient, the 

investigation and validation of translational value of such a strategy is left for future work. On 

similar lines, while NetCellMatch is designed as an exploratory algorithmic tool to assess the 

strength of patient tumor-cell line connectivity, future work could adopt a more (statistical) model-

based approach that provides formal assessments of uncertainty and thresholds. 
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