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Abstract 

 

The diagnosis of soft tissue tumors is challenging, especially when the evaluable material procured 

is limited. As a result, diagnostic ancillary testing is frequently needed. Moreover, there is a trend 

in soft tissue pathology toward increasing use of molecular results for tumor classification and 

prognostication. Hence, diagnosing newer tumor entities such as CIC-rearranged sarcoma 

explicitly requires molecular testing. Molecular testing can be accomplished by in situ 

hybridization, polymerase chain reaction, as well as next generation sequencing, and more recently 

such testing can even be accomplished leveraging an immunohistochemical proxy. This review 

evaluates the role of different molecular tests in characterizing soft tissue tumors belonging to 

various cytomorphologic categories that have been sampled by small biopsy and cytologic 

techniques.  
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1. Introduction 

 

Soft tissue tumors, whether benign or malignant, often pose a diagnostic challenge for pathologists. 

Many entities in this category have similar demographic prevalence, clinical history, sites of 

predilection, and morphology, making differentiation difficult. Immunohistochemistry (IHC) can 

be diagnostically helpful; however, staining may be patchy or negative in a subset of tumors (e.g., 

S100 and SOX10 in malignant peripheral nerve sheath tumors) and the immunoprofile of many 

soft tissue tumors often also show overlap. Molecular testing has accordingly emerged as an 

invaluable adjunct for diagnosing several soft tissue tumor types. Moreover, the World Health 

Organization (WHO) is beginning to introduce molecularly defined soft tissue tumors (e.g., CIC-

rearranged sarcoma) into their classification system alongside morphologically defined tumors.1 

 

In soft tissue pathology, there are several molecular modalities used to evaluate tumors, includ ing 

IHC, in situ hybridization (ISH), polymerase chain reaction (PCR) and Next-Generation 

Sequencing (NGS). IHC is the most indirect (surrogate) method, but also the most familiar to 

practicing pathologists (e.g., MDM2, STAT6). IHC can be used to evaluate for the presence or 

absence of a mutated protein, expression of a protein in the same pathway as the altered gene, or 

even a protein resulting from a gene fusion. In situ hybridization (ISH), most commonly using 

fluorescent probes (hence FISH), is used to directly observe DNA or RNA, highlighting a specific 

fusion (fusion probes), gene amplification, or disruption of a gene of interest (break-apart probes). 

PCR, with or without sequencing, can also test for a point mutation, a specific fusion or, depending 

on the assay, identify a fusion between a known gene and an unknown partner gene. NGS, or 

massively parallel sequencing, refers to contemporary sequencing technologies of both DNA and 



RNA. NGS is being increasingly applied to interrogate sarcomas.2 For example, the Archer 

FusionPlex sarcoma panel currently covers key fusions and variants in over 60 genes (e.g., BCOR, 

CAMTA1, CIC, EWSR1, FOSB, FOXO1, MDM2, SS18, STAT6, USP6, YAP1, etc.) relevant to 

sarcomas.3 Given that cytology soft tissue tumor specimens may have limited procured material, 

making their morphologic examination challenging and restricting the use of large IHC panels, the 

need to conserve cellular material and employ ancillary molecular tests is becoming more 

desirable. 

 

The aim of this review is to evaluate the role of molecular tests in characterizing soft tissue tumors 

sampled by cytologic techniques.  

 

2. Molecular Alterations in Soft Tissue Tumors 

 

Although there are many ways by which oncogenes can become activated and tumor suppressor 

genes inactivated, the three main mechanisms that are particularly important in sarcomas are 

mutations, chromosomal imbalances (copy number changes), and chromosomal 

rearrangements/fusions.  

 

Mutations in sarcomas: In general, mutations affecting a single nucleotide (single-nucleo t ide 

variant or SNV) or insertion/deletion (indel) are much less common in sarcomas than in 

carcinomas. This difference reflects the fact that many carcinomas develop through a gradual 

transformation from a normal cell, whereas most sarcomas seem to start out as malignanc ies 

without first arising from dysplastic or benign precursor lesions. Hence, mesenchymal tumors have 



fewer and infrequent recurrent mutations. However, important exceptions include gastrointest ina l 

stromal tumors (GIST) which are characterized by specific oncogenic mutations that affect the two 

tyrosine kinase receptors KIT or platelet-derived growth factor receptor-alpha (PDGFRA), in 

approximately 80% and 5-10% of cases, respectively.4 Mutations that prevent beta (β)-catenin 

degradation and activate Wnt signaling occur in a high proportion of desmoid tumors.5 Activating 

mutations of the GNAS1 gene, encoding the stimulatory G protein, are present in most cases of 

intramuscular myxoma,6 and inactivating INI1 (SMARCB1) mutations are present in 

approximately 50% of malignant rhabdoid tumors.7 

 

Chromosomal imbalances in sarcomas: Chromosomal imbalances or copy number changes may 

range from gain or loss of a single nucleotide to whole chromosomes, which has been reported in 

soft tissue tumors, especially in sarcomas. Amplifications of specific chromosomal regions may 

lead to the formation of ring chromosomes, which are particularly common in atypical lipomatous 

tumor/well-differentiated liposarcoma (ALT/WDLPS) and dedifferentiated liposarcoma (DDLPS) 

as well as dermatofibrosarcoma protuberans (DFSP), where they occur in 80% and 50% of cases 

respectively, and often as the sole cytogenetic aberration.8 The murine double minute-2 (MDM2) 

gene located on chromosome 12, an oncogene important for cell cycle control, is highly amplified 

in a significant number of WDLPS and DDLPS cases.9 

 

Gene fusions/rearrangements in sarcomas: Unlike many epithelial neoplasms, where diverse 

genetic alterations usually underlie the stepwise progression of precursor lesions leading ultima te ly 

to the emergence of malignant clones, soft tissue malignancies have no identifiable precursor 

lesions and usually have a single genetic alteration typical of a particular type of sarcoma. In 



addition, chromosomal fusions in soft tissue sarcomas do not seem to represent a form of 

generalized genomic instability, as occurs with germline TP53 mutations or microsatellite 

instability associated with colon cancer. Numerous fusion genes have been identified in malignant 

soft tissue tumors (e.g., EWSR1-FLI1 and EWSR1-ERG in Ewing sarcoma, SS18-SSX1/2/4 in 

synovial sarcoma, NAB2-STAT6 in solitary fibrous tumor, and ETV6-NTRK3 in infant i le 

fibrosarcoma).10 The majority of sarcoma translocations result in in-frame fusion genes, resulting 

in abnormal chimeric transcription factors.11 In a few cases, the gene fusion results in an aberrant 

tyrosine kinase.12  

 

 

3. Characteristic Genetic Alterations in Soft Tissue Tumors 

 

Soft tissue tumors can be broadly grouped into seven categories based on their predominant 

cytomorphology, including: spindle cell tumors, myxoid tumors, small round cell tumors, 

epithelioid tumors, lipomatous tumors, pleomorphic tumors, and giant cell-rich tumors. We review 

below the molecular findings in tumors from each of these categories. 

 

3.1 Spindle Cell Tumors 

 

Spindle cell soft tissue tumors comprise a large proportion of soft tissue diagnoses and include a 

wide spectrum of benign and malignant entities. Reactive conditions that mimic sarcoma 

(pseudosarcoma) and non-mesenchymal tumors with spindle cells (e.g., sarcomatoid carcinoma, 

melanoma) should be excluded. Hence, when working up these cases it is recommended to begin 



by narrowing down the differential diagnoses using IHC as needed, before molecular testing. 

Nonetheless, given the advances in our understanding of spindle cell sarcomas molecular testing 

is becoming increasingly essential for these cases. 

 

3.1.1 Fibroblastic/Myofibroblastic Tumors 

 

Desmoid fibromatosis is characterized by bland spindle cells arranged in sweeping fascicles. 

Lesional cells harbor alterations in the Wnt signaling pathway, commonly a point mutation in 

either CTNNB1 (beta-catenin gene) for sporadic cases or APC in hereditary cases with Gardner 

syndrome,13,14 resulting in nuclear accumulation of beta-catenin.15,16 Other downstream targets of 

beta-catenin, such as c-Myc and cyclin D1, may also be positive but there are fewer supporting 

data.17-19 Beta-catenin expression is higher in familial adenomatous polyposis (FAP)-associated 

tumors as well.20 As these alterations are point mutations, FISH is not helpful. PCR is rarely used 

due to the relative increased expense compared to H&E staining and IHC. Although desmoid 

tumors may be harbingers of FAP, there are no widely adopted guidelines on when genetic testing 

for germline alterations should be performed. Large meta-analyses suggest that the CTNNB1 S45F 

mutation portends a higher risk of recurrence.21,22 A caveat of using beta-catenin IHC to confirm 

the diagnosis is that a significant proportion of cases do not have nuclear beta-catenin expression, 

and thus the negative predictive value is low.23 The sensitivity and specificity of beta-catenin 

immunoreactivity by IHC also depends on the clone used.24 

 

Nodular fasciitis is a benign (“transient”) neoplasm characterized by self-limited growth and 

eventual resolution regardless of therapy.25 The underlying molecular alteration is a fusion of the 



USP6 gene, often but not exclusively with myosin heavy chain 9 (MYH9), most commonly 

evaluated by USP6 break-apart FISH when needed.26 Not all cases of nodular fasciitis will be 

positive, as over time the percentage of cells within these tumors that harbor a fusion decreases 

drastically, and thus if performed on an “old” case (i.e., over 3 months), it may not meet criteria 

for positivity depending on the institutional cutoff and the area biopsied.27 Reverse transcript ion 

(RT)-PCR can identify alternate USP6 fusions, although there is currently no significance linked 

to these various fusions. Anti-USP6 antibodies for IHC exist but have not been well evaluated in 

the literature. USP6-rearranged tumors comprise an increasingly broad group that includes not 

only nodular fasciitis but also fibroma of tendon sheath, myositis ossificans, fibro-osseous 

pseudotumor of digits, and aneurysmal bone cyst.28 

 

Solitary fibrous tumor (SFT) comprises a spectrum of benign to malignant tumors, and their 

prognosis of aggressive behavior is dependent on patient age, tumor size, mitotic rate, and extent 

of necrosis at resection.29 They almost always harbor a NAB2-STAT6 fusion, which is detectable 

via PCR,30 or more commonly with nuclear expression of STAT6 IHC, which detects the resultant 

overexpressed STAT6 protein (Fig. 1A).31,32 STAT6 expression may be lost in cases with 

dedifferentiated SFT,33 but the fusion remains detectable by PCR.34 While any relationship 

between the exact fusion transcript and prognosis is uncertain, alternate prognostic molecular 

factors such as TP53 or TERT promoter mutations, evaluable by PCR, have been associated with 

worse outcome.35-40 

 

Dermatofibrosarcoma protuberans (DFSP) is a locally aggressive sarcoma of the dermis that 

frequently harbors fusions of COL1A1 and either PDGFB (most common, > 90%) or PDGFD (< 



5%). In situ hybridization, either by FISH41,42 or RNA ISH (Fig. 2),43 may be used to detect the 

more common COL1A1-PDGFB fusion, with PCR testing to support alternate fusions when 

needed.44 It should be noted that DFSP may undergo transformation and take on the appearance of 

another sarcoma (typically fibrosarcoma), portending a worse prognosis.45 Despite their malignant 

change in appearance, these tumors retain their original fusion and commonly demonstrate other 

molecular alterations, most often in the TP53 gene.46,47 

 

Inflammatory myofibroblastic tumor (IMT) is a tumor of borderline malignant potential 

composed of atypical myofibroblastic and fibroblastic spindle cells, often intermixed with a 

lymphoplasmacytic infiltrate and/or eosinophils. They occur in the lung as well as several 

extrapulmonary sites (e.g., abdominal and somatic soft tissue). The majority (50-60%) of IMTs 

have a clonal rearrangement involving chromosome band 2p23 (ALK gene) with multiple fusion 

partners.48 This, in turn, results in activation and overexpression of ALK. Immunoreactivty for 

ALK is accordingly detectable in those cases with an ALK gene rearrangement.49 Depending on 

the ALK fusion partner, ALK staining may have a nuclear membranous pattern (e.g., RANBP2-

ALK), perinuclear cytoplasmic pattern (e.g., RRBP1-ALK), granular cytoplasmic pattern (e.g., 

CLTC-ALK), or show a diffuse cytoplasmic pattern (Fig. 3).50 

 

NTRK-rearranged spindle cell neoplasms with NTRK fusions, involving any of the NTRK1/2/3 

genes, are found in infantile fibrosarcoma and an emerging group of molecularly defined soft tissue 

tumors such as lipofibromatosis-like neural tumor. IHC stains for pan-NTRK (which detects any 

NTRK protein) or a protein-specific IHC are available to evaluate for overexpression. A recent 

large study examining 38,095 solid tumors compared IHC, DNA-based NGS, and RNA-based 



sequencing and found that overall, IHC demonstrated excellent sensitivity for tumors with fusions 

of NTRK1 (96%) or NTRK2 (100%), but not NTRK3 (79%), and DNA-based sequencing was 

81.1% sensitive and 99.9% specific.51 However, for sarcomas (of which only 49 cases were 

included), IHC was only 80% sensitive and 74.4% specific. A sarcoma-specific study evaluated 

494 cases and found pan-NTRK immunostaining in 16 (3.2%), of which five had NTRK fusions 

by NGS and 11 did not52. The NTRK-fused tumors showed diffuse staining, while those without 

NTRK fusions had only focal (< 50%) staining, indicating that this may be a useful adjunct if 

appropriately interpreted. Nonetheless, positive staining in a small biopsy sample may be 

misleading. As the Food and Drug Administration (FDA) in the USA has approved the NTRK 

inhibitor Larotrectinib, identifying this fusion may have therapeutic impact for NTRK sarcomas.53   

 

3.1.2 Nerve Sheath Tumors 

 

Functional inactivation of genes on chromosome 22 is critical for development of schwannomas , 

regardless of whether they are sporadic lesions or part of a syndrome such as neurofibromatos is 

type 2 (NF2).54,55 Neurofibroma development depends on inactivation of NF1 tumor suppressor 

gene on the long arm of chromosome 17.56,57 Soft tissue perineuriomas harbor chromosomal 

losses, most commonly of chromosomes 22, 17, 2, or 6,58 while intraneural perineuriomas often 

have TRAF7 mutations.59 The much rarer hybrid nerve sheath tumors often have VGLL3 fusions 

instead, suggesting a different developmental pathway from simple nerve sheath tumors.6 0  

However, because the aforementioned molecular alterations are not pathognomonic currently the 

diagnosis of these benign nerve sheath tumors does not require molecular testing. 

 



Malignant peripheral nerve sheath tumor (MPNST) may arise from a pre-existing nerve sheath 

tumor, such as a neurofibroma, or de novo. In either case, they are aggressive sarcomas that have 

a strong tendency to recur and often metastasize. While genetically complex, alterations in the 

Polycomb repressor complex 2 (PRC2) are common.61,62 These result in decreased histone 

methylation and thus loss of H3K27me3 (the trimethylated form of lysine 27 of the histone 3 

protein), which is detectable by IHC (Fig. 1B).63 The loss of H3K27me2, the demethylated form, 

may be more specific for PRC2 loss.64 Loss of H3K27me3 immunostaining is more frequent in 

high-grade than low-grade tumors.65 FISH and PCR are not used for these tumors due to the 

variability of genetic changes.  

 

3.1.3 Other Spindle Cell Tumors 

 

Synovial sarcoma is characterized by a unique t(X;18) translocation resulting in a fusion between 

the SS18 gene and a member of the SSX gene family on the X chromosome, most commonly SSX1 

or SSX266 and rarely SSX4.67 These sarcomas are commonly monophasic comprised of only spindle 

cells, but a small proportion are biphasic containing both fascicles of spindle cells and epithelia l 

cells forming glands or cribriform structures. When poorly differentiated, synovial sarcoma may 

take on the appearance of a small round blue cell tumor. Traditionally, FISH for the SS18 gene or 

PCR were used to demonstrate the presence of one of the above fusions.68-70 Recently, a new 

antibody that directly targets the fusion protein (SS18-SSX) has been developed.71 It may be paired 

with an antibody against the C-terminus of SSX.72 These antibodies are exquisitely sensitive and 

specific and detect fusions of SSX1, SSX2, or SSX4 due to sequence homology around the fusion 

point. IHC is positive in the vast majority of cases of synovial sarcoma (Fig. 1C); only very rare 



fusions may result in a negative SS18-SSX.73 Indeed, a recent study found the IHC antibody to be 

more specific for the diagnosis of synovial sarcoma compared with FISH.74 

 

Gastrointestinal stromal tumors (GISTs) can harbor a range of alterations, most commonly 

substitution or insertion/deletion mutations, which is unusual for a mesenchymal neoplasm. IHC 

for DOG-1 and CD117 are helpful in the diagnosis of GIST, with the DOG-1 antibody being 

equivalent75 or slightly superior to CD117.76 Molecular testing increasingly guides therapy in these 

tumors, and thus molecular results are often requested. Alterations in KIT, PDGFRA, and SDH 

complex genes, and rarely NF1, KRAS, BRAF, NTRK, and others have been described.77 While 

KIT and PDGFRA mutations are mutually exclusive, they are rarely found in conjunction with 

other mutations that may confer resistance to the tyrosine kinase inhibitor (TKI) imatinib despite 

the presence of a “susceptible” mutation.78 At our institution, we test all GISTs for molecular 

alterations to guide treatment and follow a simple algorithm (see Table 1). KIT mutations are best 

detected by sequencing, as the exact mutation determines susceptibility to TKIs, but for some other 

alterations an IHC proxy can be used. Succinate dehydrogenase (SDH) deficient GISTs, which 

comprise a significant minority of gastric epithelioid GISTs, can be identified using an 

immunostain for SDHB,79 and a PDGFRA immunostain can detect PDGFRA-mutant GISTs,80 

although it was only 81% specific in a recent large study.81 BRAF alterations are typically due to 

the common p.V600E mutation and thus the VE1 IHC antibody, sometimes used in melanoma, 

will be positive in these rare cases.82 For NTRK-rearranged GISTs, however, FISH is preferable 

due to the aforementioned low sensitivity of IHC.83 

 

3.2 Myxoid Tumors 



 

Myxoid soft tissue tumors are among the most difficult to evaluate by cytopathology, as they are 

frequently markedly hypocellular and exhibit overlapping morphology. Furthermore, many “non-

myxoid” tumor types can develop myxoid change focally or globally (e.g., SFT with myxoid 

change). Myxoid tumors with available molecular testing include myxoid liposarcoma, low-grade 

fibromyxoid sarcoma, and extraskeletal myxoid chondrosarcoma. 

 

Myxoid liposarcoma (MLPS) is an adipocytic tumor characterized by prominent myxoid stroma 

and branching vessels. These tumors have a t(12;16) translocation and are accordingly molecular ly 

defined by a fusion of the DDIT3 (formerly CHOP) gene, either with FUS or less commonly 

EWSR1. High-grade MLPS (previously called round cell liposarcoma) has the same genetic 

abnormality. IHC for the DDIT3 chimeric oncoprotein is available,84,85 although it has not been 

broadly tested on cytology specimens. FISH is more frequently used, employing a break-apart 

probe targeted to the DDIT3 gene.86,87 This has been tested in FNA samples yielding good results.8 8  

Care must be taken in interpretation, however, as the DDIT3 gene (12q13.3) may be co-amplified 

with MDM2 (12q15) in dedifferentiated liposarcomas, especially in those with myxoid 

liposarcoma-like areas, leading to a confusing FISH pattern when the DDIT3 telomeric tag is 

used.89,90 Alternately, PCR for both FUS-DDIT3 and EWSR1-DDIT3 fusions can be performed.91 

 

Low-grade fibromyxoid sarcoma (LGFMS) is a heterogeneous sarcoma characterized by bland 

fibrous and myxoid areas. They involve soft tissue locations, and infrequently deep body cavities 

or viscera. More than 90% of LGFMS cases harbor a t(7;16)(q33;p11), resulting in a FUS-

CREB3L2 fusion. The remaining cases have FUS-CREB3L1 fusions.92 If IHC (e.g., MUC4) is 



unhelpful, molecular testing by FISH or RT-PCR to identify the FUS-CREB3L2 or other rare 

fusions can be diagnostically helpful.93 

 

Extraskeletal myxoid chondrosarcoma (EMC) is a soft tissue tumor of uncertain differentia t ion 

that contains uniform interconnected spindle cells growing in cords or nests that are embedded in 

abundant myxoid matrix. These tumors are characterized by fusions involving the NR4A3 

(previously CHN) gene.94 While EWSR1 is the most common fusion partner, numerous others have 

been described (e.g., TAF15), and therefore for diagnostic tests the NR4A3 gene should be 

evaluated rather than a specific partner. IHC against the NR4A3 protein, although reported to be 

useful in salivary gland acinic cell carcinoma,95,96 has not been found to be helpful in EMC in at 

least one study.97 NR4A3 break-apart FISH (Fig. 4A) is the most useful test, given the variety of 

other genes that may fuse with it,98 and this has also been shown to be effective in FNA 

specimens.99 Not all cases will have detectable NR4A3 rearrangements, with sensitivity ranging 

from 61% to 100%.100,101 

 

3.3 Small Round Cell Tumors 

 

Small round cell tumors (SRCTs) range from completely benign to extremely aggressive tumors. 

The differential diagnosis includes mesenchymal tumors that are differentiated (e.g. 

rhabdomyosarcoma) and undifferentiated (e.g., Ewing sarcoma), as well as non-mesenchymal 

tumors (e.g., neuroblastoma, Wilms tumor). Rapid, accurate diagnosis is essential for planning 

therapy. In particular, malignant SRCTs tend to occur in younger patients, increasing the pressure 



for a quick turnaround on any biopsy. Molecular testing is most helpful to confirm the diagnosis 

for many of these tumors. 

 

Ewing sarcoma may affect bone and extraskeletal sites. Classically these undifferentiated 

sarcomas have a fusion of the EWSR1 (previously EWS) gene, most commonly EWSR1-FLI1 and 

EWSR1-ERG (see Table 2). Previously, IHC for ERG and FLI1 have been used, but this is not 

reliable as many commercial anti-FLI1 antibodies bind to the ETS domain, which is shared by 

other proteins (including ERG).102,103 Some ERG antibodies, in particular clone EPR3864 (used 

for prostate cancer) may detect FLI-1 as well.104 Both are markers of vascular differentiation and 

are accordingly expressed in both normal blood vessels and neoplastic vascular tumors.105,106 Both 

ERG and FLI1 have also been documented in other tumor types such as epithelioid sarcoma, which 

has a vastly different treatment approach.107 Molecular testing is usually required to confirm the 

diagnosis of Ewing sarcoma. FISH for EWSR1 (Fig. 4B) is of limited utility, both because this 

gene may be fused in a broad variety of sarcomas other than Ewing sarcoma (includ ing 

desmoplastic small round cell tumor, clear cell sarcoma of soft tissue, extraskeletal myxoid 

chondrosarcoma, angiomatoid fibrous histiocytoma, myoepithelial tumor of soft tissue, and a 

subset of myxoid liposarcomas), and because a small subset of EWS have fusions of FUS rather 

than EWSR1.108 PCR for the specific fusions found in Ewing sarcoma is the best and most accurate 

test to assist in making this diagnosis,109 and multiplex PCR tests for multiple Ewing sarcoma 

fusions can be utilized if necessary.110 NGS is particularly valuable because it provides details 

regarding both translocation partners. 

 



Round cell sarcoma with EWSR1--non-ETS fusions  are round and/or spindle cell sarcomas that 

affect bones more frequently than soft tissue.111 They harbor EWSR1 or FUS fusions that involve 

partners unrelated to the ETS gene family, such as EWSR1-NFATC2, FUS-NFATC2 and EWSR1-

PATZ1. DNA methylation profiling reveals that these sarcomas are indeed distinct from Ewing 

sarcoma.112 Rendering a definitive diagnosis requires identification of one of the characterist ic 

fusions by means of molecular testing.  

 

CIC-rearranged sarcomas are a newly introduced, rare set of aggressive tumors that harbor CIC-

DUX4 or, less commonly CIC-FOXO4 or CIC-NUTM1 fusions. The former is much more 

common, accounting for approximately 57% of all reported CIC-rearranged sarcomas in one large 

study.113 While there is a DUX4 antibody with high specificity for tumors with this fusion,114 other 

IHC stains are also helpful including WT1 (N and C terminal) and ETV4.115 Alternately, FISH for 

the CIC gene may be used, which will catch either alteration; however, there are limitations to 

FISH testing as well, with a recent study showing that up to 26% of cases may have false negative 

FISH results.116 PCR for CIC-DUX4 would reveal this fusion in all cases. Rare, alternate DUX4-

fused sarcomas have been reported, but the data regarding DUX4 IHC in these cases are limited. 

 

BCOR-rearranged sarcomas are another emerging group of tumors, previously categorized as 

undifferentiated round cell sarcoma similar to Ewing sarcoma.117 As is the case in high-grade 

endometrial stromal sarcomas, BCOR IHC is an unreliable surrogate for BCOR fusion, with some 

studies showing that only 71% of cases are positive in BCOR-CCNB3 fused cases.118 FISH or PCR 

for BCOR may be more accurate. 

 



Alveolar and embryonal rhabdomyosarcomas both have SRCT morphology. However, only 

alveolar rhabdomyosarcoma (ARMS) has recurrent genetic alterations, namely fusions between 

members of the paired homeobox family (PAX3 or PAX7) and FOXO1. FISH, PCR and NGS are 

available to test for these alterations. Absence of these fusions is suggestive of embryonal 

rhabdomyosarcoma. Recently, an immunostain was developed to evaluate for the epitope created 

by the fusion.119 This antibody was quite successful in initial testing, with 91% sensitivity and 

100% specificity, and it detected both fusions. However, in PAX7-fused cases, only scattered cells 

were positive compared to the diffuse positivity of PAX3-fused cases. Hence, small biopsies or 

FNA material may have only very rare positivity. Although it may not be needed for diagnosis, 

there is prognostic significance to the PAX gene involved in the fusion, with indications that PAX3-

FOXO1 portends a less favorable prognosis.120,121 

 

Desmoplastic small round cell tumor (DSRCT) is another EWSR1-fused SRCT, in which nests 

of cytokeratin and desmin positive tumor cells are associated with prominent stromal desmoplasia. 

In DSRCT, the fusion partner is the Wilms tumor gene WT1. This results in increased expression 

of the WT1 protein, making WT1 IHC a potential surrogate, provided that the C-terminus is 

targeted (as the N-terminus is lost in the fusion).122,123 Detection of EWSR1 and WT1 gene 

rearrangement is diagnostically helpful, as is PCR for the EWSR1-WT1 chimeric transcript. There 

is a report of three tumors arising in the female genital tract that harbored EWSR1-WT1 fusions 

but were inconsistent with DSRCT morphologically, of which one patient was progression free at 

9 months following only resection.124 Clearly these tumors need to be further evaluated, but this 

emphasizes the importance of morphology in addition to molecular testing. 

 



Extraskeletal mesenchymal chondrosarcoma is a rare malignancy that displays a biphasic 

pattern, consisting of both primitive small round blue cells and well-differentiated cartilage. This 

admixture of patterns is key to making the diagnosis but can be absent in a biopsy or FNA as the 

cartilaginous component may be scant and not readily aspirated. They typically harbor a HEY1-

NCOA2 fusion125 or rarely an IRF2BP2-CDX1 fusion,126 both detectable by PCR. FISH has also 

been performed for HEY1-NCOA2 with high sensitivity.127 

 

3.4 Epithelioid Tumors 

 

Epithelioid tumors are the easiest to confuse with carcinomas, particularly without architecture to 

evaluate. Sheets of epithelioid cells without the formation of glands or nests is common in 

epithelioid sarcomas as opposed to carcinomas, although poorly differentiated carcinomas may 

also form large sheets of tumor cells. Epithelioid sarcoma (ES), malignant rhabdoid tumor (MRT), 

epithelioid hemangioendothelioma (EHE), clear cell sarcoma (CCS), alveolar soft part sarcoma 

(ASPS), and epithelioid MPNST all have recurrent genetic abnormalities that can assist in 

distinguishing them from carcinomas and from each other. 

 

Epithelioid sarcoma (ES) and malignant rhabdoid tumor (MRT) both have alterations in the 

Switch/sucrose non-fermenting (SWI/SNF) pathway. In particular, both lose expression of the 

SMARCB1 protein (INI-1), which is detectable by IHC.128,129 This serves as a useful proxy for 

genetic testing, which demonstrates deletion of SMARCB1 in both entities.130,131 ES and MRT can 

often be distinguished by their site of origin and other immunohistochemical features, such as the 

expression of ERG or SALL4132. Care must be taken when using INI-1 staining alone, as many 



other tumors may show loss of this marker in a small subset of cases (e.g., epithelioid MPNST, 

renal medullary carcinoma, undifferentiated endometrial carcinoma, poorly differentiated 

chordoma), particularly those showing rhabdoid morphology.133 

 

Epithelioid hemangioendothelioma (EHE) is a malignant vascular neoplasm that was initia l ly 

found to have WWTR1-CAMTA1 fusions, the presence of which is testable using CAMTA1 IHC 

due to upregulation of CAMTA1 expression.134,135 FISH for the WWTR1-CAMTA1 fusion may be 

more specific, as some cases of epithelioid angiosarcoma, epithelioid sarcoma, and epithelio id 

hemangioma have been reported to be positive for CAMTA1 IHC, albeit with lower frequency 

than EHE.136,137 A second, smaller group (< 5%) of EHE with distinct morphologic features (e.g., 

more solid growth forming vascular spaces) were reported to harbor YAP1-TFE3 fusions.138 TFE3 

expression or loss of the C-terminus of YAP1 are helpful immunohistochemical markers for 

identifying this second fusion,139 which can also be evaluated by FISH or PCR. Which of these 

two fusions is present may have prognostic significance, as a recent study found that patients with 

CAMTA1-fused EHE fare worse than those with YAP1-fused EHE.140 

 

Clear cell sarcoma (CCS) was previously termed “melanoma of soft parts” due to its unusual 

melanin production and expression of markers typical of melanocytic differentiation.141 They 

harbor either EWSR1-ATF1 (70-90% of cases) or EWSR1-CREB1 fusions, which are detectable by 

FISH or PCR,142 although a thorough clinical history and imaging to rule out metastasis from a 

primary melanoma may be more useful in limited samples. Both gene fusions are also found in 

angiomatoid fibrous histiocytoma, clear cell sarcoma-like tumor of the gastrointestinal tract, 

hyalinizing clear cell carcinoma of the salivary gland, and primary pulmonary myxoid sarcoma; 



however, these often have distinct clinical features.143 While most CCS cases fail to demonstrate 

BRAF or NRAS mutations like melanoma, mutations in these genes have nevertheless been 

identified in a small subset of CCS.144 

 

Alveolar soft part sarcoma (ASPS) harbors a specific ASPSCR1-TFE3 fusion. Similar to YAP1-

TFE3 fusion EHE, these tumors overexpress TFE3 by IHC.145 PCR for the ASPSCR1-TFE3 fusion 

can supplement immunostaining for diagnosis, although the immunomorphologic features of 

ASPS are typically sufficient.146 The ASPSCR1-TFE3 fusion may also be found in a unique subset 

of translocation-associated renal cell carcinomas.147 

 

Epithelioid MPNST, in contrast to the typical spindle cell type, is driven in part by deletion or 

mutation of the SMARCB1 gene, which is adjacent to the NF2 gene on chromosome 22.148 As a 

result, epithelioid MPNST frequently has loss of the INI-1 protein by IHC,149 while H3K27me3 

expression is retained, as there is no disruption of the PRC2 complex.148 No other recurrent 

molecular alterations have been found in epithelioid MPNST, limiting the utility of FISH and NGS 

testing. 

 

3.5 Lipomatous Tumors 

 

Lipomatous tumors, despite being the most common soft tissue neoplasms, represent another 

difficult group to evaluate on a small biopsy.150 In some cases, the challenge is to determine 

whether the tumor is benign or malignant, as atypical cells can be scant even in a large resection. 

In others, the difficulty lies in classifying the tumor as lipomatous, as adipocytes and lipoblasts 



may be rare or even absent. In this category, the diagnosis of spindle cell/pleomorphic lipoma, 

atypical spindle cell/pleomorphic lipomatous tumor, atypical lipomatous tumor/well-differentiated 

liposarcomas (ALT/WDLPS), and dedifferentiated liposarcoma (DDLPS) can be aided by 

molecular testing. Myxoid liposarcoma was discussed above under myxoid neoplasms. 

 

Spindle cell lipoma and pleomorphic lipoma are tumors of the same spectrum, along with 

atypical spindle cell/pleomorphic lipomatous tumors. These entities share not only histologic 

features, but also the loss of 13q14, a region which contains the RB1 gene that encodes the 

retinoblastoma (Rb) protein. Loss or a marked decrease in this protein by IHC is seen in the vast 

majority of these tumors as a result, with the caveat that inflammatory cells and endothelial cells 

will retain expression.151 Atypical spindle cell/pleomorphic lipomatous tumor, a new entity in the 

2020 WHO classification, also shows genetic losses in the same area with resultant Rb protein 

loss.152 

 

Atypical lipomatous tumor/well-differentiated liposarcoma (ALT/WDLPS) have been 

combined in the new edition of the WHO. This combined entity, as well as most cases of DDLPS, 

is driven in part by the formation of supranumerary ring and giant marker chromosomes containing 

the 12q13-15 locus.153 At this locus are the MDM2, CDK4, and HMGA2 genes, which as a result 

are amplified. IHC with nuclear staining for MDM2 and/or CDK4 is often used to distinguish these 

tumors from mimics,154 although with notable pitfalls – CDK4 is often cytoplasmic and may be 

positive in background benign cells, making evaluation of overexpression difficult, while MDM2 

can be positive in activated histiocytes, as seen in fat necrosis.155 A recent study found that even 

in cases with negative MDM2 and CDK4 IHC, there may be underlying amplification.156 The 



limited tissue available on a core needle biopsy or FNA often renders IHC unreliable in making a 

diagnosis of ALT/WDLPS when no staining is seen. Rarely, MDM2 immunoreactivity may be 

noted in myxoid liposarcoma and hibernomas.157 MDM2 FISH is a much more reliable test in these 

situations, as it can directly evaluate for amplification.155,158,159 FISH for MDM2 has been found 

to be 100% sensitive and specific on core needle biopsies of lipomatous tumors.160 However, when 

performed on Pap-stained slides, the background staining may be too high to allow for 

interpretation.161 Additional modalities including brightfield chromogenic in situ hybridiza t ion 

(CISH),162 RT-PCR for MDM2 and CDK4 RNA,163 and multiplex ligation-dependent probe 

amplification (MLPA)164 have comparable efficacy but are much less commonly used. This utility 

is restricted to adipocytic tumors only, as both IHC and FISH for MDM2 can also be seen in a 

variety of non-fatty tumors (e.g., MPNST, myxofibrosarcoma, sclerosing rhabdomyosarcoma, 

gliomas, low-grade osteosarcoma, intimal sarcoma, ependymoma, and some carcinomas).165,166 

 

3.6 Pleomorphic Tumors 

 

Many sarcomas, and rarely even benign tumors, may have a pleomorphic variant (e.g., 

rhabdomyosarcoma, leiomyosarcoma, liposarcoma). Undifferentiated pleomorphic sarcoma 

(UPS) and myxofibrosarcoma (MFS) are pleomorphic tumors without a corresponding non-

pleomorphic variant. UPS, formerly called malignant fibrous histiocytoma (MFH), demonstrates 

extensive genetic complexity. However, only pleomorphic liposarcomas have distinct ive 

molecular alterations that can be leveraged in their diagnosis, although such testing is rarely 

necessary even on a limited sample.  

 



Pleomorphic liposarcoma is a high-grade sarcoma containing pleomorphic lipoblasts. Similar to 

pleomorphic lipomas and atypical pleomorphic lipomatous tumors, pleomorphic liposarcomas 

may have loss of the RB1 gene in superficial tumors, which is best assessed via Rb IHC.167 They 

do not harbor MDM2 amplification, but TP53 is often disrupted, resulting in aberrant expression 

by IHC.168 

 

3.7 Giant Cell-Rich Tumors 

 

Numerous tumors may contain giant cells, both reactive and neoplastic. However, the only tumors 

with a characteristic giant cell component that can be molecularly distinguished are tenosynovia l 

giant cell tumor (TSGCT) and giant cell tumor of soft tissue-like tumors. 

 

Tenosynovial giant cell tumor (TSGCT) may present as either one tumor (localized type) or 

supplant the entire synovium of a joint (diffuse type). Both may have fusions of the colony 

stimulating factor 1 (CSF1) gene, most commonly with COL6A3,169 although other fusion partners 

have been identified including S100A1,170 VCAM1, FN1, CDH1,171 and CD96.172 Rare cases with 

non-CSF1 fusions have been reported within the last few years, including NIPBL-ERG, FN1-

ROS1, YAP1-MAML2,173 and a t(1;1)(p13;p34) translocation.174 A significant number of cases do 

not have an identifiable fusion, and finding a fusion is not necessary for making a diagnosis. 

However, it may provide a potential target for therapy with CSFR1 inhibitors such as pexidartinib, 

which was recently approved by the Food and Drug Administration for symptomatic TSGCT.175 

 



Giant cell tumor of soft tissue (GCT-ST) is a rare tumor that is morphologically identical to giant 

cell tumor of bone (GCT-B). Unlike GCT-B, however, GCT-ST does not have H3F3A p.G34 

mutations.176,177 In fact, no molecular signature has been identified in GCT-ST to date. Recently, 

a set of keratin-positive giant cell-containing tumors with similar morphologic appearance, but 

different immunophenotype, have been identified harboring HMGA2-NCOR2 fusions, which are 

only detectable by PCR.178 

 

4. Conclusion 

 

Soft tissue pathology is a challenging field, even more so when the evaluable material is limited. 

Molecular testing, whether by FISH/CISH, PCR, NGS, or now even an immunohistochemica l 

proxy, is an invaluable adjunct to clinical presentation and morphology not only for rendering a 

definitive diagnosis, but on occasion for prognostication of these soft tissue tumors.179 As 

discussed in this review article, there are a plethora of molecular tests now available for many soft 

tissue tumors to help distinguish them apart and from their mimics. However, it may not be 

practical to bring on every test for pathology laboratories, and the data are often limited or even 

non-existent, on their utility in cytologic or core needle biopsy samples. Moreover, there are some 

cases as with MDM2 FISH, where the cytologic preparation of procured cellular material can 

hinder interpretation, and thus care must be taken with any new assay. Nevertheless, given the 

trend in soft tissue pathology toward increasing use of molecular results for tumor classifica t ion 

and diagnosis (e.g., the introduction of categories such as CIC-rearranged sarcoma, which 

explicitly requires molecular testing to diagnose), concomitant with the demand for less invasive 

procedures, the use of these techniques is rapidly becoming unavoidable, even in the practice of 



cytopathology.180 Not only must the correct molecular test be ordered, but the material must be 

triaged appropriately to ensure the best and most accurate diagnosis is achieved for patient care. 
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Table 1. Our in-house GIST molecular testing algorithm. 

 Gastric GIST Non-Gastric/Unknown Site GIST 

Initial order SDHB IHC KIT mutation testing 

If above fails KIT mutation testing PDGFRA mutation testing 

If above fails PDGFRA mutation testing SDHB IHC 

GIST: gastrointestinal stromal tumor; IHC: immunohistochemistry; PDGFRA: platelet-derived 

growth factor receptor alpha; SDHB: succinate dehydrogenase, subunit B. 

 

Table 2. Chromosomal translocations and associated fusion transcripts identified in Ewing 

sarcoma.109 

Chromosomal 

translocations 

Fusion (genes involved) Frequency (%) 

t(11;22)(q24;q12) EWSR1-FLI1 85 

t(21;22)(q22;q12) EWSR1-ERG 10 

t(2;22)(q33;q12) EWSR1-FEV <1 

t(7;22)(p22;q12) EWSR1-ETV1 <1 

t(17;22)(q21;q12) EWSR1-ETV4 <1 

t(16;21)(p11;q22) FUS-ERG <1 

t(2;16)(q35;p11) FUS-FEV <1 

 

  



Figure Legends 

Figure 1. Immunohistochemical stains may act as a proxy for molecular alterations. The 

alteration may lead to overexpression of a protein, as with STAT6 in solitary fibrous tumor (A, 

STAT6 immunostain, 20x), or there may be loss of expression as is seen in malignant peripheral 

nerve sheath tumor, which loses the ability to methylate certain amino acids in histone proteins 

such as histone 3 lysine 27 (B, H3K27me3 immunostain, 20x). Note that the non-neoplastic 

endothelial cells retain H3K27me3 expression. In rare cases, the chimeric fusion protein can be 

detected, as in synovial sarcoma (C, SS18-SSX immunostain, 20x). 

 

Figure 2. In dermatofibrosarcoma protuberans, RNA in situ hybridization for PDGFB allows for 

detection of a COL1A1-PDGFB fusion without the need for FISH or PCR by demonstrating 

upregulation of PDGFB RNA expression. A tumor is considered positive if there are either five 

puncta or one aggregate in greater than 25% of tumor cells. 

 

Figure 3. An inflammatory myofibroblastic tumor (IMT) seen on fine needle aspiration. The 

Diff-Quik stain (A, 40x) and cell block (B, H&E, 20x) show clusters of mildly pleomorphic 

spindle cells within a background of chronic inflammation. An ALK immunostain (C, 10x) is 

positive in the tumor cells, suggesting the presence of an ALK rearrangement and confirming the 

diagnosis of IMT. 

 

Figure 4. Representative photomicrographs of fluorescent in situ hybridization (FISH) of NR4A3 

(A) and EWSR1 (B) dual-color break-apart probes showing separate red and green signals, 

indicating rearrangements of the NR4A3 and EWSR1 genes, respectively.  
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